Articles de revues sur le sujet « Au-catalyzed »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Au-catalyzed.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Au-catalyzed ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Pung, Swee Yong, Chee Chee Tee, Kwang Leong Choy et Xiang Hui Hou. « Growth Mechanism of Au-Catalyzed Zno Nanowires : VLS or VS-VLS ? » Advanced Materials Research 364 (octobre 2011) : 333–37. http://dx.doi.org/10.4028/www.scientific.net/amr.364.333.

Texte intégral
Résumé :
A systematic study was carried out to study the effect of process parameters on the growth of Au-catalyzed ZnO nanowires (NWs). Growth of Au-catalyzed ZnO NWs could be mainly occurred at the tip or at the base of NWs. This study provided useful information in determining the process window for the tip-growth Au-catalyzed ZnO NWs. Besides, a generic growth mechanism, i.e. a combination of Vapor-Liquid-Solid and Vapor-Solid (VLS and VS) mechanism is proposed to explain the tip-growth and base-growth Au-catalyzed ZnO NWs.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rodriguez, Jessica, Nicolas Adet, Nathalie Saffon-Merceron et Didier Bourissou. « Au(i)/Au(iii)-Catalyzed C–N coupling ». Chemical Communications 56, no 1 (2020) : 94–97. http://dx.doi.org/10.1039/c9cc07666b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Reeves, Ryan D., Caitlin N. Kinkema, Eleanor M. Landwehr, Logan E. Vine et Jennifer M. Schomaker. « Stereodivergent Metal-Catalyzed Allene Cycloisomerizations ». Synlett 31, no 06 (4 février 2020) : 627–31. http://dx.doi.org/10.1055/s-0037-1610746.

Texte intégral
Résumé :
Metal-catalyzed allene cycloisomerizations provide rapid entry into five-membered carbocyclic frameworks, a common motif in natural products and pharmaceuticals. While both Au(I) and Pd(0)-catalyzed allene cycloisomerizations give 5-endo-dig cyclization, Pd prefers the syn diastereomer in contrast to the anti isomer observed with Au. The change in stereoselectivity is proposed to arise from buildup of A1,3 strain during the key carbopalladation step to furnish the cycloisomerized products in moderate to good dr with yields comparable to Au(I) catalysts.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Shi, Min, et Qiang Wang. « Synthesis of Cyclic and Heterocyclic Compounds via Gold-Catalyzed Reactions ». Synlett 28, no 17 (27 juillet 2017) : 2230–40. http://dx.doi.org/10.1055/s-0036-1590827.

Texte intégral
Résumé :
This account outlines the latest advances from our group in the field of gold catalysis. A variety of cyclic and heterocyclic compounds, containing different sized skeletons, are synthesized selectively by fine-tuning the substrates, catalysts, and ligands. Au(I)/Au(III) redox catalysis is applied in our latest work through adding external oxidation. The reaction mechanisms are discussed in detail. Moreover, the photoredox catalytic process is also introduced briefly, which opens avenues for the development of new strategies in gold chemistry.1 Introduction2 Gold-Catalyzed Cycloisomerization of Enynes3 Gold-Catalyzed Intramolecular Cyclization of Propargylic Ester Substrates4 Gold-Catalyzed C(sp3)–H Functionalizations5 The Au(I)/Au(III) Redox Catalytic Cycle6 Conclusion
Styles APA, Harvard, Vancouver, ISO, etc.
5

Лещенко, Е. Д., et В. Г. Дубровский. « Моделирование профиля состава осевой гетероструктуры InSb/GaInSb/InSb в нитевидных нанокристаллах ». Письма в журнал технической физики 48, no 19 (2022) : 20. http://dx.doi.org/10.21883/pjtf.2022.19.53590.19339.

Texte intégral
Résumé :
The formation of the double InSb/GaInSb/InSb heterostructure in self-catalyzed and Au-catalyzed nanowires is studied theoretically. We calculate the compositional profiles across the axial heterostructures and study the influence of different growth parameters on the heterointerface properties, including temperature, Sb and Au concentrations.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Leshchenko E. D. et Dubrovskii V. G. « Modeling the compositional profiles across axial InSb/GaInSb/InSb nanowire heterostructures ». Technical Physics Letters 48, no 10 (2022) : 17. http://dx.doi.org/10.21883/tpl.2022.10.54790.19339.

Texte intégral
Résumé :
The formation of the double InSb/GaInSb/InSb heterostructure in self-catalyzed and Au-catalyzed nanowires is studied theoretically. We calculate the compositional profiles across the axial heterostructures and study the influence of different growth parameters on the heterointerface properties, including temperature, Sb and Au concentrations. Keywords: III-V nanowires, axial heterostructure, heterointerface, modeling
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bhunia, Sabyasachi, et Rai-Shung Liu. « Access to molecular complexity via gold- and platinum-catalyzed cascade reactions ». Pure and Applied Chemistry 84, no 8 (31 mars 2012) : 1749–57. http://dx.doi.org/10.1351/pac-con-11-09-13.

Texte intégral
Résumé :
We report recent progress on Au- and Pt-catalyzed cascade reactions to access complicated molecular frameworks. Reported reactions include new cyclization/cycloaddition cascades on carbonyl and epoxide substrates tethered with an allene, alkene, and alkyne. Such substrates enable Au-catalyzed cascade reactions comprising an initial cyclization to form reactive 1,n-dipole that undergoes subsequent cycloadditions with suitable dipolarophiles.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dubrovskii, V. G., N. V. Sibirev, Y. Berdnikov, U. P. Gomes, D. Ercolani, V. Zannier et L. Sorba. « Length distributions of Au-catalyzed and In-catalyzed InAs nanowires ». Nanotechnology 27, no 37 (8 août 2016) : 375602. http://dx.doi.org/10.1088/0957-4484/27/37/375602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xu, Shao Hong. « Au-Catalyzed Homocoupling of Terminal Alkynes ». Applied Mechanics and Materials 184-185 (juin 2012) : 900–903. http://dx.doi.org/10.4028/www.scientific.net/amm.184-185.900.

Texte intégral
Résumé :
The homocoupling reaction of alkynes was carried out smoothly in the presence of 10 mol% AuCl3 using I2 as oxidant to generate diyned products in high yields. The method is simple, efficient, safe and AuClPh3 also showed comparable catalytic activity to this transformation.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Aponick, Aaron, Chuan-Ying Li et Berenger Biannic. « Au-Catalyzed Cyclization of Monoallylic Diols ». Organic Letters 10, no 4 (février 2008) : 669–71. http://dx.doi.org/10.1021/ol703002p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Kanjanachuchai, Songphol, Thipusa Wongpinij, Chanan Euaruksakul et Pat Photongkam. « Au-catalyzed desorption of GaAs oxides ». Nanotechnology 30, no 21 (15 mars 2019) : 215703. http://dx.doi.org/10.1088/1361-6528/ab062e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ho, Tam D., et Michael P. Schramm. « Au-Cavitand Catalyzed Alkyne-Acid Cyclizations ». European Journal of Organic Chemistry 2019, no 33 (12 août 2019) : 5678–84. http://dx.doi.org/10.1002/ejoc.201900829.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

García‐Fernández, Pedro D., Cristina Izquierdo, Javier Iglesias‐Sigüenza, Elena Díez, Rosario Fernández et José M. Lassaletta. « Au I ‐Catalyzed Haloalkynylation of Alkenes ». Chemistry – A European Journal 26, no 3 (17 décembre 2019) : 629–33. http://dx.doi.org/10.1002/chem.201905078.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Bhattacharjee, Debajyoti, Bhupesh Kumar Mishra, Arup Kumar Chakrabartty et Ramesh Ch Deka. « Catalytic activity of anionic Au–Ag dimer for nitric oxide oxidation : a DFT study ». New Journal of Chemistry 39, no 3 (2015) : 2209–16. http://dx.doi.org/10.1039/c4nj01328j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kumar, Dhurjati Prasad. « Synthesis of gold nanoparticles and nanoclusters in a supramolecular gel and their applications in catalytic reduction of p-nitrophenol to p-aminophenol and Hg(ii) sensing ». RSC Adv. 4, no 85 (2014) : 45449–57. http://dx.doi.org/10.1039/c4ra07532c.

Texte intégral
Résumé :
Seven gelator molecules giving supramolecular gels produced Au-nanoparticles and fluorescent, small Au-nanoclusters. Such Au-nanoparticle containing gels catalyzed the reduction of p-nitrophenol to p-aminophenol without NaBH4. The fluorescent Au-nanoclusters acted as a Hg(ii) sensor.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Kidonakis, Marios, et Manolis Stratakis. « Reduction of the Diazo Functionality of α-Diazocarbonyl Compounds into a Methylene Group by NH3BH3 or NaBH4 Catalyzed by Au Nanoparticles ». Nanomaterials 11, no 1 (18 janvier 2021) : 248. http://dx.doi.org/10.3390/nano11010248.

Texte intégral
Résumé :
Supported Au nanoparticles on TiO2 (1 mol%) are capable of catalyzing the reduction of the carbene-like diazo functionality of α-diazocarbonyl compounds into a methylene group [C=(N2) → CH2] by NH3BH3 or NaBH4 in methanol as solvent. The Au-catalyzed reduction that occurs within a few minutes at room temperature formally requires one hydride equivalent (B-H) and one proton that originates from the protic solvent. This pathway is in contrast to the Pt/CeO2-catalyzed reaction of α-diazocarbonyl compounds with NH3BH3 in methanol, which leads to the corresponding hydrazones instead. Under our stoichiometric Au-catalyzed reaction conditions, the ketone-type carbonyls remain intact, which is in contrast to the uncatalyzed conditions where they are selectively reduced by the boron hydride reagent. It is proposed that the transformation occurs via the formation of chemisorbed carbenes on Au nanoparticles, having proximally activated the boron hydride reagent. This protocol is the first general example of catalytic transfer hydrogenation of the carbene-like α -ketodiazo functionality.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Jie, Wang-Bin Sun, Ying-Zi Li, Xuan Wang, Bing-Feng Sun, Guo-Qiang Lin et Jian-Ping Zou. « A concise formal synthesis of platencin ». Organic Chemistry Frontiers 2, no 6 (2015) : 674–76. http://dx.doi.org/10.1039/c5qo00065c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Yu, Jin-Sheng, et Jian Zhou. « A highly efficient Mukaiyama–Mannich reaction of N-Boc isatin ketimines and other active cyclic ketimines using difluoroenol silyl ethers catalyzed by Ph3PAuOTf ». Organic & ; Biomolecular Chemistry 13, no 45 (2015) : 10968–72. http://dx.doi.org/10.1039/c5ob01895a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Qian, Deyun, et Junliang Zhang. « Au(I)/Au(III)-catalyzed Sonogashira-type reactions of functionalized terminal alkynes with arylboronic acids under mild conditions ». Beilstein Journal of Organic Chemistry 7 (15 juin 2011) : 808–12. http://dx.doi.org/10.3762/bjoc.7.92.

Texte intégral
Résumé :
A straightforward, efficient, and reliable redox catalyst system for the Au(I)/Au(III)-catalyzed Sonogashira cross-coupling reaction of functionalized terminal alkynes with arylboronic acids under mild conditions has been developed.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Li, Pan, Bingbing Ma, Liangbao Yang et Jinhuai Liu. « Hybrid single nanoreactor for in situ SERS monitoring of plasmon-driven and small Au nanoparticles catalyzed reactions ». Chemical Communications 51, no 57 (2015) : 11394–97. http://dx.doi.org/10.1039/c5cc03792a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Brand, Jonathan P., Clara Chevalley et Jérôme Waser. « One-pot gold-catalyzed synthesis of 3-silylethynyl indoles from unprotected o-alkynylanilines ». Beilstein Journal of Organic Chemistry 7 (4 mai 2011) : 565–69. http://dx.doi.org/10.3762/bjoc.7.65.

Texte intégral
Résumé :
The Au(III)-catalyzed cyclization of 2-alkynylanilines was combined in a one-pot procedure with the Au(I)-catalyzed C3-selective direct alkynylation of indoles using the benziodoxolone reagent TIPS-EBX to give a mild, easy and straightforward entry to 2-substituted-3-alkynylindoles. The reaction can be applied to unprotected anilines, was tolerant to functional groups and easy to carry out (RT, and requires neither an inert atmosphere nor special solvents).
Styles APA, Harvard, Vancouver, ISO, etc.
22

Barabé, Francis, Patrick Levesque, Boubacar Sow, Gabriel Bellavance, Geneviève Bétournay et Louis Barriault. « Gold(I)-catalyzed formation of bridged and fused carbocycles ». Pure and Applied Chemistry 85, no 6 (10 mai 2013) : 1161–73. http://dx.doi.org/10.1351/pac-con-13-01-02.

Texte intégral
Résumé :
For many years, despite a rich coordination chemistry, gold (Au) was judged as being catalytically inactive for the formation of carbon–carbon bonds. In mid-1970, few reports demonstrated that Au salts could be very useful reagents to catalyze organic transformations. In recent years, homogeneous catalysis by Au has received considerable attention by the scientific community. It was shown that Au(I) or (III) catalysts are specific and more reactive than most of the other soft Lewis acids such as Hg(II), Cu(II), Pt(II), and Pd(II). Taking advantage of the affinity of cationic phosphine Au complexes to triple bonds, we conceived a Au(I)-catalyzed 6-endo-dig cyclization of cyclic enol ether to prepare bridged and fused bicyclic ketone. Keeping in mind that 5-exo-dig cyclizations can be a competitive process, we surveyed various Au(I) complexes.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ding, Liangbing, Feng Xiong, Yuekang Jin, Zhengming Wang, Guanghui Sun et Weixin Huang. « Surface reaction network of CO oxidation on CeO2/Au(110) inverse model catalysts ». Physical Chemistry Chemical Physics 18, no 47 (2016) : 32551–59. http://dx.doi.org/10.1039/c6cp05951a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Taskaya, Sultan, Nurettin Menges et Metin Balci. « Gold-catalyzed formation of pyrrolo- and indolo-oxazin-1-one derivatives : The key structure of some marine natural products ». Beilstein Journal of Organic Chemistry 11 (28 mai 2015) : 897–905. http://dx.doi.org/10.3762/bjoc.11.101.

Texte intégral
Résumé :
Various N-propargylpyrrole and indolecarboxylic acids were efficiently converted into 3,4-dihydropyrrolo- and indolo-oxazin-1-one derivatives by a gold(III)-catalyzed cyclization reaction. Some of the products underwent TFA-catalyzed double bond isomerization and some did not. Cyclization reactions in the presence of alcohol catalyzed by Au(I) resulted in the formation of hemiacetals after cascade reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Fructos, Manuel R., Juan Urbano, M. Mar Díaz-Requejo et Pedro J. Pérez. « Evidencing an inner-sphere mechanism for NHC-Au(I)-catalyzed carbene-transfer reactions from ethyl diazoacetate ». Beilstein Journal of Organic Chemistry 11 (20 novembre 2015) : 2254–60. http://dx.doi.org/10.3762/bjoc.11.245.

Texte intégral
Résumé :
Kinetic experiments based on the measurement of nitrogen evolution in the reaction of ethyl diazoacetate (N2CHCO2Et, EDA) and styrene or methanol catalyzed by the [IPrAu]+ core (IPr = 1,3-bis(diisopropylphenyl)imidazole-2-ylidene) have provided evidence that the transfer of the carbene group CHCO2Et to the substrate (styrene or methanol) takes place in the coordination sphere of Au(I) by means of an inner-sphere mechanism, in contrast to the generally accepted proposal of outer-sphere mechanisms for Au(I)-catalyzed reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Tong, Zixuan, Olivia L. Garry, Philip J. Smith, Yubo Jiang, Steven J. Mansfield et Edward A. Anderson. « Au(I)-Catalyzed Oxidative Functionalization of Yndiamides ». Organic Letters 23, no 12 (3 juin 2021) : 4888–92. http://dx.doi.org/10.1021/acs.orglett.1c01625.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Algasinger, Michael, Maximilian Bernt, Svetoslav Koynov et Martin Stutzmann. « Porous silicon formation during Au-catalyzed etching ». Journal of Applied Physics 115, no 16 (28 avril 2014) : 164308. http://dx.doi.org/10.1063/1.4873892.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wu, Jinsong, Sonal Padalkar, Sujing Xie, Eric R. Hemesath, Jipeng Cheng, George Liu, Aiming Yan et al. « Electron Tomography of Au-Catalyzed Semiconductor Nanowires ». Journal of Physical Chemistry C 117, no 2 (4 janvier 2013) : 1059–63. http://dx.doi.org/10.1021/jp310816f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kung, Mayfair C., Robert J. Davis et Harold H. Kung. « Understanding Au-Catalyzed Low-Temperature CO Oxidation ». Journal of Physical Chemistry C 111, no 32 (11 juillet 2007) : 11767–75. http://dx.doi.org/10.1021/jp072102i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Genêt, J. P., V. Michelet, P. Toullec, E. Genin et L. Leseurre. « Au(I)-Catalyzed Diastereoselective Tandem Addition/Carbocyclization ». Synfacts 2007, no 1 (janvier 2007) : 0048. http://dx.doi.org/10.1055/s-2006-955730.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Dembinski, R., Y. Li et K. Wheeler. « Au/Ag-Catalyzed Synthesis of 3-Fluorofurans ». Synfacts 2011, no 02 (19 janvier 2011) : 0131. http://dx.doi.org/10.1055/s-0030-1259375.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Chan, S. K., Y. Cai, I. K. Sou et N. Wang. « MBE-grown Au-island-catalyzed ZnSe nanowires ». Journal of Crystal Growth 278, no 1-4 (mai 2005) : 146–50. http://dx.doi.org/10.1016/j.jcrysgro.2004.12.108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Goodwin, Justin A., et Aaron Aponick. « Regioselectivity in the Au-catalyzed hydration and hydroalkoxylation of alkynes ». Chemical Communications 51, no 42 (2015) : 8730–41. http://dx.doi.org/10.1039/c5cc00120j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Wu, Qingshi, Han Cheng, Aiping Chang, Wenting Xu, Fan Lu et Weitai Wu. « Glucose-mediated catalysis of Au nanoparticles in microgels ». Chemical Communications 51, no 89 (2015) : 16068–71. http://dx.doi.org/10.1039/c5cc06386h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

OVERBURY, S., V. SCHWARTZ, D. MULLINS, W. YAN et S. DAI. « Evaluation of the Au size effect : CO oxidation catalyzed by Au/TiO2 ». Journal of Catalysis 241, no 1 (1 juillet 2006) : 56–65. http://dx.doi.org/10.1016/j.jcat.2006.04.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kim, C. C., J. K. Kim, J. L. Lee, J. H. Je, M. S. Yi, D. Y. Noh, Y. Hwu et P. Ruterana. « Au Catalyzed Structural and Electrical Evolution of Ni/Au Contact to GaN ». physica status solidi (a) 188, no 1 (novembre 2001) : 379–82. http://dx.doi.org/10.1002/1521-396x(200111)188:1<379 ::aid-pssa379>3.0.co;2-u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Sheppard, Tom D. « Complexity-generating hydration reactions via gold-catalyzed addition of boronic acids to alkynes ». Pure and Applied Chemistry 84, no 11 (24 juin 2012) : 2431–41. http://dx.doi.org/10.1351/pac-con-12-01-08.

Texte intégral
Résumé :
Boronic acids can serve as organic soluble substitutes for water molecules in the metal-catalyzed hydration of alkynes. The Au-catalyzed addition of boronic acids to alkynes provides an alternative method for enolate generation, which proceeds under exceptionally mild conditions. The resulting enolates can be trapped by aldehydes present in the reaction mixture, giving aldol products that can be isolated as cyclic borate esters. These compounds are versatile synthetic intermediates that can be elaborated into a variety of products by transformation of the boron moiety. The Au-catalyzed reaction of boronic acids with propargylic alcohols results in efficient Meyer–Schuster rearrangement to the corresponding enones. The rearrangement of tertiary alcohols gives (E)-enones with moderate to good selectivity, and the addition of a boronic acid to the reaction appears to enhance the level of geometrical control. The rearrangement of primary alcohols to terminal enones also occurs readily in the presence of catalytic Au(I) and a boronic acid, and the resulting terminal enones can be reacted with nucleophiles in one-pot procedures to give a variety of β-substituted ketones.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Goodwin, Justin A., et Aaron Aponick. « Correction : Regioselectivity in the Au-catalyzed hydration and hydroalkoxylation of alkynes ». Chemical Communications 52, no 40 (2016) : 6731. http://dx.doi.org/10.1039/c6cc90121b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Luo, Cuicui, Hongwei Yang, Rongfang Mao, Chunxu Lu et Guangbin Cheng. « An efficient Au(i) catalyst for double hydroarylation of alkynes with heteroarenes ». New Journal of Chemistry 39, no 5 (2015) : 3417–23. http://dx.doi.org/10.1039/c4nj02170c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Cai, Rong, Dawei Wang, Yunfeng Chen, Wuming Yan, Natalie R. Geise, Sripadh Sharma, Huiyuan Li, Jeffrey L. Petersen, Minyong Li et Xiaodong Shi. « Facile synthesis of fluorescent active triazapentalenes through gold-catalyzed triazole–alkyne cyclization ». Chem. Commun. 50, no 55 (2014) : 7303–5. http://dx.doi.org/10.1039/c4cc03175j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Nguyen, Duy Trinh, Nguyen Phu Thuong Nhan, Tran Thien Hien, Nguyen Dai Hai, Dai Viet N. Vo et Long Giang Bach. « A Simple Approach for Immobilization of Fe-Core/Au-Shell Magnetic Nanoparticles on Multi-Walled Carbon Nanotubes via Cu(I) Huisgen Cycloaddition : Preparation and Characterization ». Solid State Phenomena 279 (août 2018) : 187–91. http://dx.doi.org/10.4028/www.scientific.net/ssp.279.187.

Texte intégral
Résumé :
In this report, we demonstrated a novel efficient a simple strategy route for the preparation of smart hybrid Fe-core/Au-shell magnetic onto multi-walled carbon nanotubes (CNT) sidewalls via Cu (I)-catalyzed 1, 3-dipolar cycloaddition (“click” coupling). The fabrication of gold-coated iron nanoparticles (Fe@AuNPs) is initially achieved by employing a two-step reverse micelle process. A new azide terminated ligand was first synthesized to change Fe@AuNPs by ligand exchange reaction. The Fe@Au NPs decorated MWNTs (MWNTs-Fe@Au) nanohybrids were synthesized by the reaction of an azide-containing Fe@Au NPs with alkyne-functionalized MWNTs via the Cu (I)-catalyzed 1,3-dipolar cycloaddition reaction. Energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and Transmission electron microscopy (HR-TEM) were used to study the changes in surface functionalities and demonstrate the successful immobilization of Fe@Au on CNT surface. In addition, the superconducting quantum interference device (SQUID) study revealed that the nanohybrids possess superparamagnetic character which is susceptible to rapid separation under an external magnetic field.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Zhu, Dapeng, Xin Cao et Biao Yu. « Au(i) π-bis(tert-butyldimethylsilyl)acetylene triphenylphosphine complex, an effective pre-catalyst for Au(i)-catalyzed reactions ». Organic Chemistry Frontiers 2, no 4 (2015) : 360–65. http://dx.doi.org/10.1039/c5qo00023h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Liu, Congrong, Jin Xu, Lianghui Ding, Haiyun Zhang, Yunbo Xue et Fulai Yang. « Au-Catalyzed tandem intermolecular hydroalkoxylation/Claisen rearrangement between allylic alcohols and chloroalkynes ». Organic & ; Biomolecular Chemistry 17, no 18 (2019) : 4435–39. http://dx.doi.org/10.1039/c9ob00151d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lau, Vivian M., Craig F. Gorin et Matthew W. Kanan. « Electrostatic control of regioselectivity via ion pairing in a Au(i)-catalyzed rearrangement ». Chem. Sci. 5, no 12 (2014) : 4975–79. http://dx.doi.org/10.1039/c4sc02058h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Liu, Yongxiang, Jia Guo, Yang Liu, Xiaoyu Wang, Yanshi Wang, Xinyu Jia, Gaofei Wei, Lizhu Chen, Jianyong Xiao et Maosheng Cheng. « Au(i)-catalyzed triple bond alkoxylation/dienolether aromaticity-driven cascade cyclization to naphthalenes ». Chem. Commun. 50, no 47 (2014) : 6243–45. http://dx.doi.org/10.1039/c4cc00464g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Jeon, Min Ho, Bijoy P. Mathew, Malleswara Rao Kuram, Kyungjae Myung et Sung You Hong. « A palladium and gold catalytic system enables direct access to O- and S-linked non-natural glyco-conjugates ». Organic & ; Biomolecular Chemistry 14, no 48 (2016) : 11518–24. http://dx.doi.org/10.1039/c6ob02437h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Liu, Yanhong, Yiying Yang, Rongxiu Zhu, Chengbu Liu et Dongju Zhang. « Computational study on the 1,3-diyne synthesis from gold(i)-catalyzed alkynylation of terminal alkynes with alkynyl hypervalent iodine reagents under the aid of a silver complex and 1,10-phenanthroline ». Catalysis Science & ; Technology 9, no 15 (2019) : 4091–99. http://dx.doi.org/10.1039/c9cy01067j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Waheed, Ammara, Changhai Cao, Yifei Zhang, Kai Zheng et Gao Li. « Insight into Au/ZnO catalyzed aerobic benzyl alcohol oxidation by modulation–excitation attenuated total reflection IR spectroscopy ». New Journal of Chemistry 46, no 11 (2022) : 5361–67. http://dx.doi.org/10.1039/d2nj00176d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Ma, Can-Liang, Xiao-Hua Li, Xiao-Long Yu, Xiao-Long Zhu, Yong-Zhou Hu, Xiao-Wu Dong, Bin Tan et Xin-Yuan Liu. « Gold-catalyzed tandem synthesis of bioactive spiro-dipyrroloquinolines and its application in the one-step synthesis of incargranine B aglycone and seneciobipyrrolidine (I) ». Organic Chemistry Frontiers 3, no 3 (2016) : 324–29. http://dx.doi.org/10.1039/c5qo00354g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Xi, Yumeng, Qiaoyi Wang, Yijin Su, Minyong Li et Xiaodong Shi. « Quantitative kinetic investigation of triazole–gold(i) complex catalyzed [3,3]-rearrangement of propargyl ester ». Chem. Commun. 50, no 17 (2014) : 2158–60. http://dx.doi.org/10.1039/c3cc49351b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie