Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Atomic Hardy space.

Articles de revues sur le sujet « Atomic Hardy space »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Atomic Hardy space ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Chen, Xinyu, and Jian Tan. "The atomic characterization of weighted local Hardy spaces and its applications." Filomat 38, no. 17 (2024): 5925–49. https://doi.org/10.2298/fil2417925c.

Texte intégral
Résumé :
The purpose of this paper is to obtain atomic decomposition characterization of the weighted local Hardy space hp ?(Rn) with ? ? A?. We apply the discrete version of Calder?n?s identity and the weighted Littlewood?Paley?Stein theory to prove that hp ?(Rn) coincides with the weighted-(p, q, s) atomic local Hardy space hp,q,s,?,atom(Rn) for 0 < p < ?. The atomic decomposition theorems in our paper improve the previous atomic decomposition results of local weighted Hardy spaces in the literature. As applications, we derive the boundedness of inhomogeneous Calder?n?Zygmund singular integrals
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chai, Yan, Yaoyao Han, and Kai Zhao. "Herz-Type Hardy Spaces Associated with Operators." Journal of Function Spaces 2018 (July 17, 2018): 1–10. http://dx.doi.org/10.1155/2018/1296837.

Texte intégral
Résumé :
Suppose L is a nonnegative, self-adjoint differential operator. In this paper, we introduce the Herz-type Hardy spaces associated with operator L. Then, similar to the atomic and molecular decompositions of classical Herz-type Hardy spaces and the Hardy space associated with operators, we prove the atomic and molecular decompositions of the Herz-type Hardy spaces associated with operator L. As applications, the boundedness of some singular integral operators on Herz-type Hardy spaces associated with operators is obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Folch-Gabayet, Magali, Martha Guzmán-Partida, and Salvador Pérez-Esteva. "Lipschitz measures and vector-valued Hardy spaces." International Journal of Mathematics and Mathematical Sciences 25, no. 5 (2001): 345–56. http://dx.doi.org/10.1155/s0161171201004549.

Texte intégral
Résumé :
We define certain spaces of Banach-valued measures called Lipschitz measures. When the Banach space is a dual spaceX*, these spaces can be identified with the duals of the atomic vector-valued Hardy spacesHXp(ℝn),0<p<1. We also prove that all these measures have Lipschitz densities. This implies that for every real Banach spaceXand0<p<1, the dualHXp(ℝn)∗can be identified with a space of Lipschitz functions with values inX*.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Long, Long, Niyonkuru Silas, and Guangheng Xie. "Weak martingale Hardy-type spaces associated with quasi-Banach function lattice." Forum Mathematicum 34, no. 2 (2022): 407–23. http://dx.doi.org/10.1515/forum-2021-0270.

Texte intégral
Résumé :
Abstract In this paper, the authors introduce weak martingale Hardy-type spaces associated with a quasi-Banach function lattice. The authors then establish the atomic characterizations of these weak martingale Hardy-type spaces. As applications, the authors give the sufficient conditions for the boundedness of σ-sublinear operators from weak martingale Hardy-type spaces to a quasi-Banach function lattice. Furthermore, the authors clarify the relation among different weak martingale Hardy-type spaces in the framework of a rearrangement-invariant quasi-Banach function space. Finally, the authors
Styles APA, Harvard, Vancouver, ISO, etc.
5

KEMPPAINEN, MIKKO. "ON VECTOR-VALUED TENT SPACES AND HARDY SPACES ASSOCIATED WITH NON-NEGATIVE SELF-ADJOINT OPERATORS." Glasgow Mathematical Journal 58, no. 3 (2015): 689–716. http://dx.doi.org/10.1017/s0017089515000415.

Texte intégral
Résumé :
AbstractIn this paper, we study Hardy spaces associated with non-negative self-adjoint operators and develop their vector-valued theory. The complex interpolation scales of vector-valued tent spaces and Hardy spaces are extended to the endpoint p=1. The holomorphic functional calculus of L is also shown to be bounded on the associated Hardy space H1L(X). These results, along with the atomic decomposition for the aforementioned space, rely on boundedness of certain integral operators on the tent space T1(X).
Styles APA, Harvard, Vancouver, ISO, etc.
6

WANG, HUA. "BOUNDEDNESS OF SEVERAL INTEGRAL OPERATORS WITH BOUNDED VARIABLE KERNELS ON HARDY AND WEAK HARDY SPACES." International Journal of Mathematics 24, no. 12 (2013): 1350095. http://dx.doi.org/10.1142/s0129167x1350095x.

Texte intégral
Résumé :
In this paper, by using the atomic decomposition theory of Hardy space H1(ℝn) and weak Hardy space WH1(ℝn), we give the boundedness properties of some operators with variable kernels such as singular integral operators, fractional integrals and parametric Marcinkiewicz integrals on these spaces, under certain logarithmic type Lipschitz conditions assumed on the variable kernel Ω(x, z).
Styles APA, Harvard, Vancouver, ISO, etc.
7

HYTÖNEN, TUOMAS, DACHUN YANG, and DONGYONG YANG. "The Hardy space H1 on non-homogeneous metric spaces." Mathematical Proceedings of the Cambridge Philosophical Society 153, no. 1 (2011): 9–31. http://dx.doi.org/10.1017/s0305004111000776.

Texte intégral
Résumé :
AbstractLet (, d, μ) be a metric measure space and satisfy the so-called upper doubling condition and the geometrical doubling condition. We introduce the atomic Hardy space H1(μ) and prove that its dual space is the known space RBMO(μ) in this context. Using this duality, we establish a criterion for the boundedness of linear operators from H1(μ) to any Banach space. As an application of this criterion, we obtain the boundedness of Calderón–Zygmund operators from H1(μ) to L1(μ).
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhang, Yangyang, Dachun Yang, Wen Yuan, and Songbai Wang. "Real-variable characterizations of Orlicz-slice Hardy spaces." Analysis and Applications 17, no. 04 (2019): 597–664. http://dx.doi.org/10.1142/s0219530518500318.

Texte intégral
Résumé :
In this paper, the authors first introduce a class of Orlicz-slice spaces which generalize the slice spaces recently studied by Auscher et al. Based on these Orlicz-slice spaces, the authors then introduce a new kind of Hardy-type spaces, the Orlicz-slice Hardy spaces, via the radial maximal functions. This new scale of Orlicz-slice Hardy spaces contains the variant of the Orlicz–Hardy space of Bonami and Feuto as well as the Hardy-amalgam space of de Paul Ablé and Feuto as special cases. Their characterizations via the atom, the molecule, various maximal functions, the Poisson integral and th
Styles APA, Harvard, Vancouver, ISO, etc.
9

Berndt, Ryan. "Atomic Hardy space theory for unbounded singular integrals." Indiana University Mathematics Journal 55, no. 4 (2006): 1461–82. http://dx.doi.org/10.1512/iumj.2006.55.2649.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lou, Zengjian, and Shouzhi Yang. "AN ATOMIC DECOMPOSITION FOR THE HARDY-SOBOLEV SPACE." Taiwanese Journal of Mathematics 11, no. 4 (2007): 1167–76. http://dx.doi.org/10.11650/twjm/1500404810.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Xia, Runlian, and Xiao Xiong. "Operator-valued local Hardy spaces." Journal of Operator Theory 82, no. 2 (2019): 383–443. http://dx.doi.org/10.7900/jot.2018jun02.2191.

Texte intégral
Résumé :
This paper gives a systematic study of operator-valued local\break Hardy spaces, which are localizations of the Hardy spaces defined by Mei. We prove the h1-bmo duality and the hp-hq duality for any conjugate pair (p,q) when p∈(1,∞). We show that h1(Rd,M) and bmo(Rd,M) are also good endpoints of Lp(L∞(Rd)¯¯¯¯⊗M) for interpolation. We obtain the local version of Calder\'on--Zygmund theory, and then deduce that the Poisson kernel in our definition of the local Hardy norms can be replaced by any reasonable test function. Finally, we establish the atomic decomposition of the local Hardy space hc1(
Styles APA, Harvard, Vancouver, ISO, etc.
12

Vasilis, Jonatan. "Discrete Hardy Spaces Related to Powers of the Poisson Kernel." MATHEMATICA SCANDINAVICA 112, no. 2 (2013): 240. http://dx.doi.org/10.7146/math.scand.a-15243.

Texte intégral
Résumé :
Discrete Hardy spaces $H^{1}_{\alpha}(\partial{T})$, related to powers $\alpha \ge 1/2$ of the Poisson kernels on boundaries $\partial{T}$ of regular rooted trees, are studied. The spaces for $\alpha > 1/2$ coincide with the ordinary atomic Hardy space on $\partial{T}$, which in turn is strictly smaller than $H^{1}_{1/2}(\partial{T})$. The Orlicz space $L\log\log L(\partial{T})$ characterizes the positive and increasing functions in $H^{1}_{1/2}(\partial{T})$, but there is no such characterization for general positive functions.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Mirotin, Adolf R. "Hausdorff operators on homogeneous spaces of locally compact groups." Journal of the Belarusian State University. Mathematics and Informatics, no. 2 (July 30, 2020): 28–35. http://dx.doi.org/10.33581/2520-6508-2020-2-28-35.

Texte intégral
Résumé :
Hausdorff operators on the real line and multidimensional Euclidean spaces originated from some classical summation methods. Now it is an active research area. Hausdorff operators on general groups were defined and studied by the author since 2019. The purpose of this paper is to define and study Hausdorff operators on Lebesgue and real Hardy spaces over homogeneous spaces of locally compact groups. We introduce in particular an atomic Hardy space over homogeneous spaces of locally compact groups and obtain conditions for boundedness of Hausdorff operators on such spaces. Several corollaries a
Styles APA, Harvard, Vancouver, ISO, etc.
14

Liu, Jun, Long Huang, and Chenlong Yue. "Molecular Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications." Mathematics 9, no. 18 (2021): 2216. http://dx.doi.org/10.3390/math9182216.

Texte intégral
Résumé :
Let p→∈(0,∞)n be an exponent vector and A be a general expansive matrix on Rn. Let HAp→(Rn) be the anisotropic mixed-norm Hardy spaces associated with A defined via the non-tangential grand maximal function. In this article, using the known atomic characterization of HAp→(Rn), the authors characterize this Hardy space via molecules with the best possible known decay. As an application, the authors establish a criterion on the boundedness of linear operators from HAp→(Rn) to itself, which is used to explore the boundedness of anisotropic Calderón–Zygmund operators on HAp→(Rn). In addition, the
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hao, Zhiwei. "Atomic decomposition of predictable martingale Hardy space with variable exponents." Czechoslovak Mathematical Journal 65, no. 4 (2015): 1033–45. http://dx.doi.org/10.1007/s10587-015-0226-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Li, Baode, Dachun Yang, and Wen Yuan. "Anisotropic Hardy Spaces of Musielak-Orlicz Type with Applications to Boundedness of Sublinear Operators." Scientific World Journal 2014 (2014): 1–19. http://dx.doi.org/10.1155/2014/306214.

Texte intégral
Résumé :
Letφ:ℝn×[0,∞)→[0,∞)be a Musielak-Orlicz function andAan expansive dilation. In this paper, the authors introduce the anisotropic Hardy space of Musielak-Orlicz type,HAφ(ℝn), via the grand maximal function. The authors then obtain some real-variable characterizations ofHAφ(ℝn)in terms of the radial, the nontangential, and the tangential maximal functions, which generalize the known results on the anisotropic Hardy spaceHAp(ℝn)withp∈(0,1]and are new even for its weighted variant. Finally, the authors characterize these spaces by anisotropic atomic decompositions. The authors also obtain the fini
Styles APA, Harvard, Vancouver, ISO, etc.
17

Giga, Yoshikazu, and Xingfei Xiang. "Lorentz space estimates for vector fields with divergence and curl in Hardy spaces." Tamkang Journal of Mathematics 47, no. 2 (2016): 249–60. http://dx.doi.org/10.5556/j.tkjm.47.2016.1932.

Texte intégral
Résumé :
In this note, we establish the estimate on the Lorentz space $L(3/2,1)$ for vector fields in bounded domains under the assumption that the normal or the tangential component of the vector fields on the boundary vanishes. We prove that the $L(3/2,1)$ norm of the vector field can be controlled by the norms of its divergence and curl in the atomic Hardy spaces and the $L^1$ norm of the vector field itself.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Heraiz, R. "Variable Herz estimates for fractional integral operators." Ukrains’kyi Matematychnyi Zhurnal 72, no. 8 (2020): 1034–46. http://dx.doi.org/10.37863/umzh.v72i8.6024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Fu, Xing, and Dachun Yang. "Wavelet characterizations of the atomic Hardy space H 1 on spaces of homogeneous type." Applied and Computational Harmonic Analysis 44, no. 1 (2018): 1–37. http://dx.doi.org/10.1016/j.acha.2016.04.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Yang, Dachun, and Dongyong Yang. "Boundedness of linear operators via atoms on Hardy spaces with non-doubling measures." gmj 18, no. 2 (2011): 377–97. http://dx.doi.org/10.1515/gmj.2011.0018.

Texte intégral
Résumé :
Abstract Let μ be a non-negative Radon measure on which satisfies only the polynomial growth condition. Let 𝒴 be a Banach space and H 1(μ) be the Hardy space of Tolsa. In this paper, the authors prove that a linear operator T is bounded from H 1(μ) to 𝒴 if and only if T maps all (p, γ)-atomic blocks into uniformly bounded elements of 𝒴; moreover, the authors prove that for a sublinear operator T bounded from L 1(μ) to L 1, ∞(μ), if T maps all (p, γ)-atomic blocks with p ∈ (1, ∞) and γ ∈ ℕ into uniformly bounded elements of L 1(μ), then T extends to a bounded sublinear operator from H 1(μ) to L
Styles APA, Harvard, Vancouver, ISO, etc.
21

Saibi, Khedoudj. "Intrinsic Square Function Characterizations of Variable Hardy–Lorentz Spaces." Journal of Function Spaces 2020 (February 10, 2020): 1–9. http://dx.doi.org/10.1155/2020/2681719.

Texte intégral
Résumé :
The aim of this paper is to establish the intrinsic square function characterizations in terms of the intrinsic Littlewood–Paley g-function, the intrinsic Lusin area function, and the intrinsic gλ∗-function of the variable Hardy–Lorentz space Hp⋅,qℝn, for p⋅ being a measurable function on ℝn satisfying 0<p−≔ess infx∈ℝnpx≤ess supx∈ℝnpx≕p+<∞ and the globally log-Hölder continuity condition and q∈0,∞, via its atomic and Littlewood–Paley function characterizations.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lu, Guanghui, та Shuangping Tao. "Commutators of Littlewood-Paley gκ∗ $g_{\kappa}^{*} $-functions on non-homogeneous metric measure spaces". Open Mathematics 15, № 1 (2017): 1283–99. http://dx.doi.org/10.1515/math-2017-0110.

Texte intégral
Résumé :
Abstract The main purpose of this paper is to prove that the boundedness of the commutator $\mathcal{M}_{\kappa,b}^{*} $ generated by the Littlewood-Paley operator $\mathcal{M}_{\kappa}^{*} $ and RBMO (μ) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of $\mathcal{M}_{\kappa}^{*} $ satisfies a certain Hörmander-type condition, the authors prove that $\mathcal{M}_{\kappa,b}^{*} $ is bounded on Lebesgue spaces Lp(μ) for 1 < p < ∞, bounded from the space L log L(μ) to the weak Le
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ruan, Jianmiao, Dashan Fan, and Chunjie Zhang. "Estimates of damped fractional wave equations." Fractional Calculus and Applied Analysis 22, no. 4 (2019): 990–1013. http://dx.doi.org/10.1515/fca-2019-0053.

Texte intégral
Résumé :
Abstract In this paper, for the high frequency part of the solution u(x, t) to the linear fractional damped wave equation, we derive asymptotic-in-time linear estimates in Triebel-Lizorkin spaces. Thus we obtain long time decay estimates in real Hardy spaces Hp for u(x, t). The obtained results are natural extension of the known Lp estimates. Our proof is based on some basic properties of the Triebel-Lizorkin space, as well as an atomic decomposition introduced by Han, Paluszynski and Weiss.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Zhuo, Ciqiang, та Dachun Yang. "Variable weak Hardy spaces WH L p(·)(ℝ n ) associated with operators satisfying Davies–Gaffney estimates". Forum Mathematicum 31, № 3 (2019): 579–605. http://dx.doi.org/10.1515/forum-2018-0125.

Texte intégral
Résumé :
Abstract Let {p(\,\cdot\,)\colon\mathbb{R}^{n}\to[0,1]} be a variable exponent function satisfying the globally log-Hölder continuous condition, and L a one-to-one operator of type ω in {L^{2}({\mathbb{R}}^{n})} , with {\omega\in[0,\pi/2)} , which has a bounded holomorphic functional calculus and satisfies the Davies–Gaffney estimates. In this article, we introduce the variable weak Hardy space {\mathrm{WH}^{{p(\,\cdot\,)}}_{L}(\mathbb{R}^{n})} , associated with L via the corresponding square function. Its molecular characterization is then established by means of the atomic decomposition of t
Styles APA, Harvard, Vancouver, ISO, etc.
25

Bui, The Anh, Jun Cao, Luong Dang Ky, Dachun Yang, and Sibei Yang. "Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates." Analysis and Geometry in Metric Spaces 1 (February 7, 2013): 69–129. http://dx.doi.org/10.2478/agms-2012-0006.

Texte intégral
Résumé :
Abstract Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order (qL/l(φ))′, where (qL/l(φ))′ denotes the conjugate exponent of qL/l(φ). In this paper, th
Styles APA, Harvard, Vancouver, ISO, etc.
26

JIANG, RENJIN, and DACHUN YANG. "ORLICZ–HARDY SPACES ASSOCIATED WITH OPERATORS SATISFYING DAVIES–GAFFNEY ESTIMATES." Communications in Contemporary Mathematics 13, no. 02 (2011): 331–73. http://dx.doi.org/10.1142/s0219199711004221.

Texte intégral
Résumé :
Let [Formula: see text] be a metric space with doubling measure, L a nonnegative self-adjoint operator in [Formula: see text] satisfying the Davies–Gaffney estimate, ω a concave function on (0, ∞) of strictly lower type pω∈(0, 1] and ρ(t) = t-1/ω-1(t-1) for all t∈(0, ∞). The authors introduce the Orlicz–Hardy space [Formula: see text] via the Lusin area function associated to the heat semigroup, and the BMO-type space [Formula: see text]. The authors then establish the duality between [Formula: see text] and [Formula: see text]; as a corollary, the authors obtain the ρ-Carleson measure charact
Styles APA, Harvard, Vancouver, ISO, etc.
27

Dziubański, Jacek, and Agnieszka Hejna. "Remark on atomic decompositions for the Hardy space $H^1$ in the rational Dunkl setting." Studia Mathematica 251, no. 1 (2020): 89–110. http://dx.doi.org/10.4064/sm180618-25-11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Yang, Dachun, Dongyong Yang, and Yuan Zhou. "Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrüdinger operators." Nagoya Mathematical Journal 198 (June 2010): 77–119. http://dx.doi.org/10.1215/00277630-2009-008.

Texte intégral
Résumé :
AbstractLet be a space of homogeneous type in the sense of Coifman and Weiss, and let be a collection of balls in . The authors introduce the localized atomic Hardy space the localized Morrey-Campanato space and the localized Morrey-Campanato-BLO (bounded lower oscillation) space with α ∊ ℝ and p ∊ (0, ∞) , and they establish their basic properties, including and several equivalent characterizations for In particular, the authors prove that when α > 0 and p ∊ [1, ∞), then and when p ∈(0,1], then the dual space of is Let ρ be an admissible function modeled on the known auxiliary function det
Styles APA, Harvard, Vancouver, ISO, etc.
29

Lu, Guanghui, та Shuangping Tao. "Estimates for Parameter Littlewood-Paleygκ⁎Functions on Nonhomogeneous Metric Measure Spaces". Journal of Function Spaces 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/9091478.

Texte intégral
Résumé :
Let(X,d,μ)be a metric measure space which satisfies the geometrically doubling measure and the upper doubling measure conditions. In this paper, the authors prove that, under the assumption that the kernel ofMκ⁎satisfies a certain Hörmander-type condition,Mκ⁎,ρis bounded from Lebesgue spacesLp(μ)to Lebesgue spacesLp(μ)forp≥2and is bounded fromL1(μ)intoL1,∞(μ). As a corollary,Mκ⁎,ρis bounded onLp(μ)for1<p<2. In addition, the authors also obtain thatMκ⁎,ρis bounded from the atomic Hardy spaceH1(μ)into the Lebesgue spaceL1(μ).
Styles APA, Harvard, Vancouver, ISO, etc.
30

Zhou, Xilin, Ziyi He, and Dachun Yang. "Real-Variable Characterizations of Hardy–Lorentz Spaces on Spaces of Homogeneous Type with Applications to Real Interpolation and Boundedness of Calderón–Zygmund Operators." Analysis and Geometry in Metric Spaces 8, no. 1 (2020): 182–260. http://dx.doi.org/10.1515/agms-2020-0109.

Texte intégral
Résumé :
AbstractLet (𝒳, d, μ) be a space of homogeneous type, in the sense of Coifman and Weiss, with the upper dimension ω. Assume that η ∈(0, 1) is the smoothness index of the wavelets on 𝒳 constructed by Auscher and Hytönen. In this article, via grand maximal functions, the authors introduce the Hardy–Lorentz spaces H_*^{p,q}\left( \mathcal{X} \right) with the optimal range p \in \left( {{\omega \over {\omega + \eta }},\infty } \right) and q ∈ (0, ∞]. When and p \in ({\omega \over {\omega + \eta }},1]q ∈ (0, ∞], the authors establish its real-variable characterizations, respectively, in terms of ra
Styles APA, Harvard, Vancouver, ISO, etc.
31

Czaja, Wojciech, and Jacek Zienkiewicz. "Atomic characterization of the Hardy space $H^1_L(\mathbb R)$ of one-dimensional Schrödinger operators with nonnegative potentials." Proceedings of the American Mathematical Society 136, no. 01 (2008): 89–95. http://dx.doi.org/10.1090/s0002-9939-07-09096-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Yang, Dachun, Dongyong Yang, and Yuan Zhou. "Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrüdinger operators." Nagoya Mathematical Journal 198 (June 2010): 77–119. http://dx.doi.org/10.1017/s0027763000009946.

Texte intégral
Résumé :
AbstractLetbe a space of homogeneous type in the sense of Coifman and Weiss, and letbe a collection of balls in. The authors introduce the localized atomic Hardy spacethe localized Morrey-Campanato spaceand the localized Morrey-Campanato-BLO (bounded lower oscillation) spacewithα∊ ℝ andp∊ (0, ∞) , and they establish their basic properties, includingand several equivalent characterizations forIn particular, the authors prove that when α > 0 andp∊ [1, ∞), thenand whenp∈(0,1], then the dual space ofisLetρbe an admissible function modeled on the known auxiliary function determined by the Sc
Styles APA, Harvard, Vancouver, ISO, etc.
33

EISNER, TANJA, and BEN KRAUSE. "(Uniform) convergence of twisted ergodic averages." Ergodic Theory and Dynamical Systems 36, no. 7 (2015): 2172–202. http://dx.doi.org/10.1017/etds.2015.6.

Texte intégral
Résumé :
Let$T$be an ergodic measure-preserving transformation on a non-atomic probability space$(X,\unicode[STIX]{x1D6F4},\unicode[STIX]{x1D707})$. We prove uniform extensions of the Wiener–Wintner theorem in two settings: for averages involving weights coming from Hardy field functions $p$,$$\begin{eqnarray}\displaystyle \bigg\{\frac{1}{N}\mathop{\sum }_{n\leq N}e(p(n))T^{n}f(x)\bigg\}; & & \displaystyle \nonumber\end{eqnarray}$$and for ‘twisted’ polynomial ergodic averages,$$\begin{eqnarray}\displaystyle \bigg\{\frac{1}{N}\mathop{\sum }_{n\leq N}e(n\unicode[STIX]{x1D703})T^{P(n)}f(x)\bigg\}
Styles APA, Harvard, Vancouver, ISO, etc.
34

Weisz, F. "Atomic Hardy spaces." Analysis Mathematica 20, no. 1 (1994): 65–80. http://dx.doi.org/10.1007/bf01908919.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wang, Yixin, Yu Liu, Chuanhong Sun, and Pengtao Li. "Carleson measure characterizations of the Campanato type space associated with Schrödinger operators on stratified Lie groups." Forum Mathematicum 32, no. 5 (2020): 1337–73. http://dx.doi.org/10.1515/forum-2019-0224.

Texte intégral
Résumé :
AbstractLet {\mathcal{L}=-{\Delta}_{\mathbb{G}}+V} be a Schrödinger operator on the stratified Lie group {\mathbb{G}}, where {{\Delta}_{\mathbb{G}}} is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class {B_{q_{0}}} with {q_{0}>\mathcal{Q}/2} and {\mathcal{Q}} is the homogeneous dimension of {\mathbb{G}}. In this article, by Campanato type spaces {\Lambda^{\alpha}_{\mathcal{L}}(\mathbb{G})}, we introduce Hardy type spaces associated with {\mathcal{L}} denoted by {H^{{p}}_{\vphantom{\varepsilon}{\mathcal{L}}}(\mathbb{G})} and prove the atomic characterizatio
Styles APA, Harvard, Vancouver, ISO, etc.
36

Jiao, Yong, Lian Wu, and Lihua Peng. "Weak Orlicz–Hardy martingale spaces." International Journal of Mathematics 26, no. 08 (2015): 1550062. http://dx.doi.org/10.1142/s0129167x15500627.

Texte intégral
Résumé :
In this paper, several weak Orlicz–Hardy martingale spaces associated with concave functions are introduced, and some weak atomic decomposition theorems for them are established. With the help of weak atomic decompositions, a sufficient condition for a sublinear operator defined on the weak Orlicz–Hardy martingale spaces to be bounded is given. Further, we investigate the duality of weak Orlicz–Hardy martingale spaces and obtain a new John–Nirenberg type inequality when the stochastic basis is regular. These results can be regarded as weak versions of the Orlicz–Hardy martingale spaces due to
Styles APA, Harvard, Vancouver, ISO, etc.
37

Cho, Yong-Kum, and Joonil Kim. "Atomic decomposition on Hardy–Sobolev spaces." Studia Mathematica 177, no. 1 (2006): 25–42. http://dx.doi.org/10.4064/sm177-1-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Pérez-Esteva, Salvador, and Hugo Ocampo-Salgado. "Atomic decomposition of vector Hardy spaces." Journal of Mathematical Analysis and Applications 403, no. 2 (2013): 408–22. http://dx.doi.org/10.1016/j.jmaa.2013.02.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Ablé, Zobo Vincent de Paul, and Justin Feuto. "Atomic decomposition of Hardy-amalgam spaces." Journal of Mathematical Analysis and Applications 455, no. 2 (2017): 1899–936. http://dx.doi.org/10.1016/j.jmaa.2017.06.057.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Boza, Santiago, and María J. Carro. "Hardy spaces on ZN." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 132, no. 1 (2002): 25–43. http://dx.doi.org/10.1017/s0308210500001517.

Texte intégral
Résumé :
The work of Coifman and Weiss concerning Hardy spaces on spaces of homogeneous type gives, as a particular case, a definition of Hp(ZN) in terms of an atomic decomposition.Other characterizations of these spaces have been studied by other authors, but it was an open question to see if they can be defined, as it happens in the classical case, in terms of a maximal function or via the discrete Riesz transforms.In this paper, we give a positive answer to this question.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Ding, Wei, Meidi Qin, and Yueping Zhu. "The Boundedness on Mixed Hardy Spaces." Journal of Function Spaces 2020 (February 24, 2020): 1–12. http://dx.doi.org/10.1155/2020/5341674.

Texte intégral
Résumé :
The boundedness of operators on Hardy spaces is usually given by atomic decomposition. In this paper, we obtain the boundedness of singular integral operators in mixed Journé class on mixed Hardy spaces by a direct method.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Heinig, Hans P. "Fourier operators on weighted Hardy spaces." Mathematical Proceedings of the Cambridge Philosophical Society 101, no. 1 (1987): 113–21. http://dx.doi.org/10.1017/s0305004100066457.

Texte intégral
Résumé :
AbstractIn this note we utilize the atomic decomposition of weighted Hardy spaces to prove weighted versions of Hardy's inequality for the Fourier transform with Muckenhoupt weight. The result extends to certain integral operators with homogeneous kernels of degree −1.
Styles APA, Harvard, Vancouver, ISO, etc.
43

CONGO, Mohamed, and Marie Françoise OUEDRAOGO. "BOUNDEDNESS OF PSEUDO-DIFFERENTIAL OPERATORS ON WEIGHTED HARDY SPACES AND VARIABLE EXPONENTS HARDY LOCAL MORREY SPACES." Universal Journal of Mathematics and Mathematical Sciences 18, no. 2 (2023): 121–43. http://dx.doi.org/10.17654/2277141723008.

Texte intégral
Résumé :
In this paper, we use the atomic decomposition to establish the boundedness of pseudo-differential operators belonging to Hörmander class on weighted Hardy spaces $H^p(\omega)$ and on variable exponents Hardy local Morrey spaces $HLM_{p(\cdot)}^{u(\cdot)}$.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Wilson, James. "On the atomic decomposition for Hardy spaces." Pacific Journal of Mathematics 116, no. 1 (1985): 201–7. http://dx.doi.org/10.2140/pjm.1985.116.201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

HO, Kwok-Pun. "Atomic decompositions of weighted Hardy-Morrey spaces." Hokkaido Mathematical Journal 42, no. 1 (2013): 131–57. http://dx.doi.org/10.14492/hokmj/1362406643.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

KAWAZOE, Takeshi. "Atomic Hardy spaces on semisimple Lie groups." Japanese journal of mathematics. New series 11, no. 2 (1985): 293–343. http://dx.doi.org/10.4099/math1924.11.293.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Ho, K. P. "Atomic decompositions of martingale hardy–morrey spaces." Acta Mathematica Hungarica 149, no. 1 (2016): 177–89. http://dx.doi.org/10.1007/s10474-016-0591-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Zhao, Yichun, Mingquan Wei, and Jiang Zhou. "New mixed Herz-Hardy spaces and their applications." Filomat 38, no. 13 (2024): 4395–415. https://doi.org/10.2298/fil2413395z.

Texte intégral
Résumé :
In this paper, Herz-Hardy spaces with mixed-norm are introduced, and some properties of these spaces are established, such as the characterization of various maximal operators, including property and some inequalities. Furthermore, we investigate atomic decomposition and molecular decomposition of mixed-norm Herz-Hardy spaces. As an application, the authors obtain the boundedness of some operators on these spaces by atomic decomposition.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Song, Liang, and Chaoqiang Tan. "Hardy Spaces Associated to Schrödinger Operators on Product Spaces." Journal of Function Spaces and Applications 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/179015.

Texte intégral
Résumé :
LetL=−Δ+Vbe a Schrödinger operator onℝn, whereV∈Lloc1(ℝn)is a nonnegative function onℝn. In this article, we show that the Hardy spacesLon product spaces can be characterized in terms of the Lusin area integral, atomic decomposition, and maximal functions.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Mohsenipour, Maryam, and Ghadir Sadeghi. "Atomic decompositions of martingale Hardy-Lorentz spaces and interpolation." Filomat 31, no. 19 (2017): 5921–29. http://dx.doi.org/10.2298/fil1719921m.

Texte intégral
Résumé :
In this paper, we establish atomic decompositions for the martingale Hardy-Lorentz spaces. As an application, with the help of atomic decomposition, some interpolation theorems with a function parameter for these spaces are proved.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!