Littérature scientifique sur le sujet « Atomic defect »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Atomic defect ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Atomic defect"
Chu, Liu, Jiajia Shi et Eduardo Souza de Cursi. « The Fingerprints of Resonant Frequency for Atomic Vacancy Defect Identification in Graphene ». Nanomaterials 11, no 12 (20 décembre 2021) : 3451. http://dx.doi.org/10.3390/nano11123451.
Texte intégralSozykin, Sergey Anatolevich, Valeriy Petrovich Beskachko et G. P. Vyatkin. « Atomic Structure and Mechanical Properties of Defective Carbon Nanotube (7,7) ». Materials Science Forum 843 (février 2016) : 78–84. http://dx.doi.org/10.4028/www.scientific.net/msf.843.78.
Texte intégralSchuler, Bruno, Katherine A. Cochrane, Christoph Kastl, Edward S. Barnard, Edward Wong, Nicholas J. Borys, Adam M. Schwartzberg, D. Frank Ogletree, F. Javier García de Abajo et Alexander Weber-Bargioni. « Electrically driven photon emission from individual atomic defects in monolayer WS2 ». Science Advances 6, no 38 (septembre 2020) : eabb5988. http://dx.doi.org/10.1126/sciadv.abb5988.
Texte intégralKim, Honggyu, Yifei Meng, Ji-Hwan Kwon, Jean-Luc Rouviére et Jian Min Zuo. « Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain ». IUCrJ 5, no 1 (1 janvier 2018) : 67–72. http://dx.doi.org/10.1107/s2052252517016219.
Texte intégralHsu, Julia W. P. « Semiconductor Defect Studies Using Scanning Probes ». Microscopy and Microanalysis 6, S2 (août 2000) : 704–5. http://dx.doi.org/10.1017/s1431927600036011.
Texte intégralStemmer, S., G. Duscher, E. M. James, M. Ceh et N. D. Browning. « Atomic Scale Structure-Property Relationships of Defects and Interfaces in Ceramics ». Microscopy and Microanalysis 4, S2 (juillet 1998) : 556–57. http://dx.doi.org/10.1017/s143192760002290x.
Texte intégralWeber, William J., Fei Gao, Ram Devanathan, Weilin Jiang et Y. Zhang. « Defects and Ion-Solid Interactions in Silicon Carbide ». Materials Science Forum 475-479 (janvier 2005) : 1345–50. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1345.
Texte intégralWang, Zhen, Hangwen Guo, Shuai Shao, Mohammad Saghayezhian, Jun Li, Rosalba Fittipaldi, Antonio Vecchione et al. « Designing antiphase boundaries by atomic control of heterointerfaces ». Proceedings of the National Academy of Sciences 115, no 38 (13 août 2018) : 9485–90. http://dx.doi.org/10.1073/pnas.1808812115.
Texte intégralCho, Philip, Aihua Wood, Krishnamurthy Mahalingam et Kurt Eyink. « Defect Detection in Atomic Resolution Transmission Electron Microscopy Images Using Machine Learning ». Mathematics 9, no 11 (27 mai 2021) : 1209. http://dx.doi.org/10.3390/math9111209.
Texte intégralZiatdinov, Maxim, Ondrej Dyck, Xin Li, Bobby G. Sumpter, Stephen Jesse, Rama K. Vasudevan et Sergei V. Kalinin. « Building and exploring libraries of atomic defects in graphene : Scanning transmission electron and scanning tunneling microscopy study ». Science Advances 5, no 9 (septembre 2019) : eaaw8989. http://dx.doi.org/10.1126/sciadv.aaw8989.
Texte intégralThèses sur le sujet "Atomic defect"
Siegl, Manuel. « Atomic-scale investigation of point defect interactions in semiconductors ». Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10043636/.
Texte intégralValikova, Irina, et Andrei Nazarov. « Pressure effects on point defect diffusion features in cubic metals : atomic simulation ». Diffusion fundamentals 6 (2007) 48, S. 1-2, 2007. https://ul.qucosa.de/id/qucosa%3A14227.
Texte intégralLee, Donghun. « Atomic Scale Gate Electrode Formed by a Charged Defect : Scanning Tunneling Microscopy of Single Impurities in GaAs Semiconductors ». The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274913629.
Texte intégralUppal, Hasan Javed. « Nanoscale performance, degradation and defect analysis of mos devices using high-k dielectric materials as gate stacks by atomic force microscopy ». Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509394.
Texte intégralGilbert, Mark R. « BCC metals in extreme environments : modelling the structure and evolution of defects ». Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d972d28d-5d2d-4392-8cf5-fc5728dc74f6.
Texte intégralJin, Xin. « Combining RBS/Channeling, X-ray diffraction and atomic-scale modelling to study irradiation-induced defects and microstructural changes ». Thesis, Limoges, 2021. http://www.theses.fr/2021LIMO0017.
Texte intégralEnergetic particles are involved in many activities of modern society. They constitute a significant aspect of the semiconductor industry and may play important role in shaping materials in a controllable way in the future. However, their energetic nature also poses grand challenges, especially in the nuclear industry. Thus, it is crucial to have a comprehensive understanding of the underlying mechanisms of irradiation-induced defects and the associated microstructural changes. Experimentally, irradiation-induced effects can be monitored by characterization techniques including, but not limited to, Rutherford backscattering spectrometry in channeling mode (RBS/C) and X-ray diffraction (XRD), because they are extremely sensitive to changes in the crystalline structure. However, it is not straightforward to establish a clear link between the characterization results and the defect quantity and nature, and this connection is usually made according to simple phenomenological models. In this thesis work, in order to cope with this problem, we performed RBS/C and XRD atomic-scale modelling. The first step was to improve a recently developed RBS/C simulation code that can generate RBS/C signals from arbitrary atomic structures. By modifying the algorithms describing ion-solid interactions and adding new features, we enhanced the flexibility of the code and its applicability to different types of materials. Subsequently, we employed the improved RBS/C code with a XRD program to compute disordering and elastic strain kinetics of a model material, namely UO2, as a function of irradiation fluence. Radiation defects in UO2 were simulated by molecular dynamics (MD) calculations. Both the strain and disordering kinetics exhibit qualitatively close agreement with those determined experimentally, indicating the validity of the used methodology. The decomposition of the kinetics was performed in order to study the effect of each defect separately, which enables a quantitative description of the disordering and strain build-up processes. Finally, we computed RBS/C and XRD signals from Fe MD cells, each of which contains one single type of defects. A clear comparison of disorder and elastic strain induced by different types of defects in Fe was made. The relation between RBS/C yield and He energy was also studied using the Fe MD cells, which shows dependency with defect types. The global approach used in this work has the hope to be extended and tested in more materials
CARUSO, FRANCESCO. « Study of electrical conduction and defects in high-permittivity metal oxides : experiments and simulation ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382298.
Texte intégralOriginally investigated in the electronic manufacturing to replace the SiO2 insulating layer, metal oxides are now extensively used as insulating or active layers in a multitude of electronics devices. It is known that the electrical properties are strongly correlated to atomic defects, which generate localized electronic states inside the band gap that act as charge traps. Therefore, the understanding of the physical mechanisms and the role of defects governing the charge transport in metal oxide stacks is of utmost importance for the optimization of nano-electronic devices. However, the charge transport and role of defects in metal oxides is still under debate and a complete and self-consistent understanding over large thickness, temperature and voltage regimes is not reached. In this thesis I investigated the conduction mechanisms in metal-insulator-metal (MIM) capacitors incorporating three model materials Al2O3, HfO2 and Al-doped-HfO2 (AlHfO) deposited by atomic layer deposition (ALD), in three different thicknesses 5, 10, and 20 nm. Furthermore, Hf-based oxides deposited using either water or ozone as ALD oxygen source, as well as AlHfO at two Al concentrations (5% and 17%) were analyzed. The aim of this study is to identify the charge traps properties of each material and investigate the path that electrons take within metal oxide dielectrics under applied electric field. Moreover, the impact of different manufacturing processes and film thicknesses on the material properties is discussed. Traps properties are extracted from experimental current-voltage characteristics of MIM capacitors, over a broad temperature and voltage regime, using a comprehensive charge transport model implemented in the Ginestra® (Applied Materials, Inc.) simulation software. Defects in Al2O3 are characterized by a thermal ionization energy ET≈3.5 eV below the dielectric conduction band minimum (CBM) and a relaxation energy EREL≈1 eV, in agreement with the ab-initio calculations of oxygen vacancies reported in literature. Two kinds of defects are identified in each 10 and 20 nm-thick Hf-based oxide, characterized by ET≈1.8eV for "shallow" traps, and ET≈3eV for "deep" traps. The use of water as oxygen source during the oxide ALD introduces fixed positive charges in the oxide. The introduction of Al atoms in HfO2 increases the oxide energy band gap, without significantly impacting on the density and properties of defects. The analysis allowed to identify the location of traps most involved in the conduction and the dominant transport mechanism in 20 nm-thick oxides, at each applied electric field. Despite the different properties, in each material transient displacement currents occur at low electric fields, originating from electron trapping and emission at traps near the metal/oxide interface. The transport of electrons through the oxide occurs only at higher electric fields, in two different ways. If a large density of traps is energetically located near the electrodes Fermi level (as in HfO2), the electrons tunnel from trap to trap until they reach the anode. Otherwise, when traps are closer to the conduction band (as in Al2O3 and AlHfO), the electrons tunnel from the cathode into one trap and then into the oxide conduction band, interacting only with traps near the cathode. These findings may have profound implications for the functional optimization of future nano-electronics devices. Furthermore, since in metal oxides trapping, defects generation and breakdown processes are strongly related, results can provide new insight in the breakdown process of metal oxides, impacting on device reliability.
Bagués, Salguero Núria. « Atomic and electronic structure of self-organized defects in epitaxial films of functional perovskite-type oxides ». Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/405668.
Texte intégralThe epitaxial thin films of functional perovskite-type oxides (ABO3) present interfacial coupling and misfit relaxation mechanisms governed by a complex interplay of chemical, electronic and structural degrees of freedom. The relaxation mechanisms of strained films may accommodate defects, such as misfit dislocations or twin walls, which exhibit a strong tendency towards self-organization with characteristic length scales of tens of nanometres. The core lattice structure of these defects is different from the bulk of the material and thus may be considered as a nano-phase with likely different physical properties, leading to the formation of functional nanostructures. The correlation between defect structure and functionality, together with the capacity of these defects to self-organize, offers a unique opportunity for the bottom-up elaboration of functional complex oxides nanodevices. This thesis focuses on the characterization of the microstructure, interface and self-organized defects of epitaxial films and functional nanostructures of oxide materials by using advanced transmission electron microscopy. Special emphasis is put on the atomic and chemical structure of the interfaces and generated defects, such as dislocations, twin walls and phase segregations, as well as on the strain fields and their correlation with chemical heterogeneities. In this regard, two different systems composed of lanthanum manganites are considered: LaMnO3:MnOx nanocomposite grown on (001)SrTiO3 and on (001)LaAlO3 substrates; and La0.7Sr0.3MnO3 films with self-organized defects grown on (001)SrTiO3 and on (001)LaAlO3. The materials studied in this work may be regarded as nanostructured films resulting from the self-organization of misfit relieving defects as follows: nanoinclusions of a MnOx phase (volume defects) in LaMnO3; twin walls between twin domains (planar defects) in La0.7Sr0.3MnO3 on SrTiO3; and misfit dislocations (line defects) in La0.7Sr0.3MnO3 on LaAlO3. In the LaMnO3:MnOx nanocomposite, the formation of regular vertically aligned nanoinclusions of a manganese oxide (MnOx) embedded in an LaMnO3 film is analysed via microstructural characterization. This analysis includes the determination of the LaMnO3 matrix microstructure with respect to the substrate together with the identification of the manganese oxide phase and a secondary phase: a La-rich layer close to LaMnO3-substrate interface. In the case of La0.7Sr0.3MnO3 on (001)SrTiO3 substrates, a detailed analysis of twin walls and their implications on the functional properties is performed. Local changes in the physical and structural properties of the TWs lead to the view of a twinned film as a self-organized nanostructure consisting of vertical nano-sheets of strongly compressed La0.7Sr0.3MnO3 embedded in a matrix of tensile strained La0.7Sr0.3MnO3. In the case of La0.7Sr0.3MnO3 ultrathin films grown on (001)LaAlO3, the relaxation mechanism of this films is analysed. These films relieve the misfit strain by the formation of misfit dislocations above a critical film thickness of 2.5 nm. A detailed study of structural, chemical and electronic changes associated with the dislocation is also performed paying particular attention to the influence of strain fields on chemical composition at the nanoscale. A chemical reorganization occurs to accommodate the strain at the dislocations core region. The dependence of the degree of order of the dislocation pattern on film thickness is also explored. Finally, the implications of the dislocation strain field on surface topography and electrical transport are analysed, demonstrating that the multiscale nature of dislocations holds great promise for the creation of spontaneous surface ordered functional nanostructures in complex oxide thin films.The results and main conclusions obtained in this work open new perspectives for the development of functional self-organized nanostructures based on strain relieving defects.
Khazaka, Rami. « From atomic level investigations to membrane architecture : an in-depth study of the innovative 3C-SiC/Si/3C-SiC/Si heterostructure ». Thesis, Tours, 2016. http://www.theses.fr/2016TOUR4023/document.
Texte intégralDue to its outstanding physico-chemical properties, the cubic polytype of silicon carbide (3C-SiC) gained significant interest in several fields. In particular, this material emerged as a potential candidate to replace Si in MEMS devices operating in harsh environment. The development of 3C-SiC/Si/3C-SiC heterostructures on top of Si substrate can pave the road towards original and novel MEMS devices profiting from the properties of the 3C-SiC. However, such epitaxial system suffers from wide range of defects characterizing each layer. Thus, we first tried to improve the quality of each layer in this heterostructure. This was achieved relying on two levers; (i) the optimization of the growth parameters of each layer and (ii) the understanding of the nature of defects present in each layer. These two key points combined together allowed an in-depth understanding of the limit of improvement of the overall quality of this heterostructure. After the development of the complete heterostructure, the fabrication of 3C-SiC microstructures was performed. Furthermore, we presented an unprecedented method to form free-standing 3C-SiC membranes in-situ during its growth stage. This novel technique is expected to markedly simplify the fabrication process of suspended membranes by reducing the fabrication time and cost
Drain, John Frederick. « Development of magnetic bond-order potentials for Mn and Fe-Mn ». Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:68a01493-4a20-4d78-ad4a-6c3c2fe072d6.
Texte intégralLivres sur le sujet "Atomic defect"
K, De Groh Kim, et NASA Glenn Research Center, dir. The dependence of atomic oxygen undercutting of protected polyimide Kapton® H upon defect size. [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center, 2001.
Trouver le texte intégralSnyder, Aaron. The dependence of atomic oxygen undercutting of protected polyimide Kapton® H upon defect size. [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center, 2001.
Trouver le texte intégralUllmaier, H., dir. Atomic Defects in Metals. Berlin/Heidelberg : Springer-Verlag, 1991. http://dx.doi.org/10.1007/b37800.
Texte intégralFrank-Kamenetskaya, O. V. Atomic defects and crystal structure of minerals. Sous la direction de Rozhdestvenskaya, I. V. (Ira V.) et Frank-Kamenet︠s︡kiĭ V. A. 2e éd. Saint Petersburg : Yanus, 2004.
Trouver le texte intégralDongchuan, Wu, Old Dominion University. Research Foundation. et Langley Research Center, dir. Hyperthermal atomic oxygen generator. Norfolk, Va : Old Dominion University Research Foundation, 1990.
Trouver le texte intégralJanot, Christian, Winfried Petry, Dieter Richter et Tasso Springer, dir. Atomic Transport and Defects in Metals by Neutron Scattering. Berlin, Heidelberg : Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71007-0.
Texte intégralThe most controversial decision : Truman, the atomic bombs, and the defeat of Japan. Cambridge : Cambridge University Press, 2011.
Trouver le texte intégralGreat Britain. Advisory Committee on the Safety of Nuclear Installations. An examination of the CEGB's R6 procedure for the assessment of the integrity of structures containing defects. London : H.M.S.O., 1989.
Trouver le texte intégralDefects and diffusion studied using PAC spectroscopy : Special topic volume with invited peer reviewed papers only. Zurich-Durnten, Switzerland : Trans Tech Publications, 2011.
Trouver le texte intégralRutledge, Sharon K. Undercutting of defects in thin film protective coatings on polymer surfaces exposed to atomic oxygen. [Washington, DC : National Aeronautics and Space Administration, 1989.
Trouver le texte intégralChapitres de livres sur le sujet "Atomic defect"
Weik, Martin H. « atomic defect absorption ». Dans Computer Science and Communications Dictionary, 72. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_954.
Texte intégralBaskes, M. I. « Defect and Atomic Process Simulations ». Dans Intermetallic Compounds - Principles and Practice, 765–78. Chichester, UK : John Wiley & Sons, Ltd, 2002. http://dx.doi.org/10.1002/0470845856.ch36.
Texte intégralKozubski, Rafał, Andrzej Biborski, Mirosław Kozłowski, Christine Goyhenex, Veronique Pierron-Bohnes, Mebarek Alouani, Marcus Rennhofer et Savko Malinov. « Atomic-Migration-Controlled Processes in Intermetallics ». Dans Defect and Diffusion Forum, 113–18. Stafa : Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-55-8.113.
Texte intégralGreene, Chris H. « Quantum Defect Theory ». Dans Springer Handbook of Atomic, Molecular, and Optical Physics, 751–59. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-73893-8_50.
Texte intégralEvteev, Alexander V., Elena V. Levchenko, Irina V. Belova et Graeme E. Murch. « Atomic Mechanism of Carbon Diffusion in Cementite ». Dans Defect and Diffusion Forum, 101–6. Stafa : Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-55-8.101.
Texte intégralLi, Jun Hui, Si Zong Min, Ji An Duan, Lei Han et Jue Zhong. « Atomic Diffusion Features in Au/Al & ; Al/Ni Bonding Interface ». Dans Defect and Diffusion Forum, 29–0. Stafa : Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-20-5.29.
Texte intégralPierron-Bohnes, Veronique, R. V. P. Montsouka, Christine Goyhenex, T. Mehaddene, Leila Messad, H. Bouzar, Hiroshi Numakura, Katsushi Tanaka et B. Hennion. « Atomic Migration in Bulk and Thin Film L10 Alloys : Experiments and Molecular Dynamics Simulations ». Dans Defect and Diffusion Forum, 41–50. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-35-3.41.
Texte intégralGruber, W., Günter Borchardt et Harald Schmidt. « Atomic Motion and Diffusion Mechanism of Hydrogen in Amorphous Ceramics of the System Si-B-C-N ». Dans Defect and Diffusion Forum, 63–68. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-35-3.63.
Texte intégralShimokawa, Tomotsugu. « Atomistic Study of Disclinations in Nanostructured Metals ». Dans The Plaston Concept, 57–78. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7715-1_3.
Texte intégralTatarenko, Valentin A., S. M. Bokoch, V. M. Nadutov, Taras M. Radchenko et Yong Bum Park. « Semi-Empirical Parameterization of Interatomic Interactions and Kinetics of the Atomic Ordering in Ni-Fe-C Permalloys and Elinvars ». Dans Defect and Diffusion Forum, 29–78. Stafa : Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-62-0.29.
Texte intégralActes de conférences sur le sujet "Atomic defect"
Campbell, J. P., P. M. Lenahan, A. T. Krishnan et S. Krishnan. « NBTI : An Atomic-Scale Defect Perspective ». Dans 2006 IEEE International Reliability Physics Symposium Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/relphy.2006.251259.
Texte intégralYudin, Valeriy I., et Alexey V. Taichenachev. « Mass defect effects in atomic clocks ». Dans 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium ((EFTF/IFC). IEEE, 2017. http://dx.doi.org/10.1109/fcs.2017.8088813.
Texte intégralGao, F. « Atomic Modeling of Defects, Defect Generation and Multiple Ion-Solid Interactions ». Dans APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY : 17TH International Conference on the Application of Accelerators in Research and Industry. AIP, 2003. http://dx.doi.org/10.1063/1.1619782.
Texte intégralMazevet, S. « Using Quantum Defect Theory in the (e,2e) Ionization of Argon ». Dans ATOMIC PROCESSES AND PLASMAS : 13th APS Topical Conference on Atomic Processes in Plasmas. AIP, 2002. http://dx.doi.org/10.1063/1.1516306.
Texte intégralOsborne, Jason, Shuiqing Hu, Haiming Wang, Yan Hu, Jian Shi, Sean Hand et Chanmin Su. « High-speed atomic force microscopy for patterned defect review ». Dans SPIE Advanced Lithography, sous la direction de Alexander Starikov et Jason P. Cain. SPIE, 2013. http://dx.doi.org/10.1117/12.2011665.
Texte intégralMurthy, Aravind N., Karl A. Flechsig, Wes Hillman, Keith Conard et Remmelt Pit. « Thermal Fly-Height Controlled Glide for Disk Defect Detection and In-Situ Defect Size Estimation for Disk Drives ». Dans ASME 2013 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/isps2013-2805.
Texte intégralHarmin, David A. « Multichannel quantum-defect theory of the Stark effect ». Dans International conference on the physics of electronic and atomic collisions. AIP, 1990. http://dx.doi.org/10.1063/1.39192.
Texte intégralLee, Z. H., C. J. Lin, S. W. Lai et J. H. Chou. « Gate Oxide Defect Localization and Analysis by Using Conductive Atomic Force Microscopy ». Dans ISTFA 2005. ASM International, 2005. http://dx.doi.org/10.31399/asm.cp.istfa2005p0235.
Texte intégralKrainov, V. P. « Barrier-Suppression Ionization of Complex Atoms and Diatomic Molecules ». Dans Applications of High Field and Short Wavelength Sources. Washington, D.C. : Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the8.
Texte intégralPan, Li, Don R. Metzger et Marek Niewczas. « The Meshless Dynamic Relaxation Techniques for Simulating Atomic Structures of Materials ». Dans ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1284.
Texte intégralRapports d'organisations sur le sujet "Atomic defect"
Diaz de la Rubia, T., N. Soneda et Y. Shimomura. Atomic scale modeling of defect production and microstructure evolution in irradiated metals. Office of Scientific and Technical Information (OSTI), avril 1997. http://dx.doi.org/10.2172/543299.
Texte intégralXin, Y., S. J. Pennycook, N. D. Browning, S. Sivananthan, P. D. Nellist, J. P. Faurie et P. Gibart. Direct observations of atomic structures of defects in GaN by high-resolution Z-contrast STEM. Office of Scientific and Technical Information (OSTI), décembre 1997. http://dx.doi.org/10.2172/564252.
Texte intégralWolf, R. J., et K. A. Mansour. Molecular modeling of metal hydrides : 2. Calculation of lattice defect structures and energies utilizing the Embedded Atom Method. Office of Scientific and Technical Information (OSTI), décembre 1990. http://dx.doi.org/10.2172/6335193.
Texte intégral