Littérature scientifique sur le sujet « Atlantification »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Atlantification ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Atlantification"

1

Polyakov, Igor V., Randi B. Ingvaldsen, Andrey V. Pnyushkov, Uma S. Bhatt, Jennifer A. Francis, Markus Janout, Ronald Kwok et Øystein Skagseth. « Fluctuating Atlantic inflows modulate Arctic atlantification ». Science 381, no 6661 (septembre 2023) : 972–79. http://dx.doi.org/10.1126/science.adh5158.

Texte intégral
Résumé :
Enhanced warm, salty subarctic inflows drive high-latitude atlantification, which weakens oceanic stratification, amplifies heat fluxes, and reduces sea ice. In this work, we show that the atmospheric Arctic Dipole (AD) associated with anticyclonic winds over North America and cyclonic winds over Eurasia modulates inflows from the North Atlantic across the Nordic Seas. The alternating AD phases create a “switchgear mechanism.” From 2007 to 2021, this switchgear mechanism weakened northward inflows and enhanced sea-ice export across Fram Strait and increased inflows throughout the Barents Sea. By favoring stronger Arctic Ocean circulation, transferring freshwater into the Amerasian Basin, boosting stratification, and lowering oceanic heat fluxes there after 2007, AD+ contributed to slowing sea-ice loss. A transition to an AD− phase may accelerate the Arctic sea-ice decline, which would further change the Arctic climate system.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kujawa, Agnieszka, Magdalena Łącka, Natalia Szymańska, Joanna Pawłowska, Maciej M. Telesiński et Marek Zajączkowski. « Could Norwegian fjords serve as an analogue for the future of the Svalbard fjords ? State and fate of high latitude fjords in the face of progressive “atlantification” ». Polar Biology 44, no 12 (18 octobre 2021) : 2217–33. http://dx.doi.org/10.1007/s00300-021-02951-z.

Texte intégral
Résumé :
AbstractBenthic foraminifera are one of the most widely and abundantly distributed organisms in the fjords of Svalbard and Norway. Due to their short life span and quick reactivity to environmental changes they can be used as indicators of the “atlantification” process. Here, we compare the benthic foraminifera assemblages along the latitudinal gradient, from the fjords of northern Svalbard to southern Norway to assess whether the “atlantification” process may homogenise the foraminiferal assemblages in terms of their abundance and species composition. Furthermore, the previously published data on benthic foraminiferal faunas was updated to identify changes in distribution that have occurred over the last few decades. For this purpose, fjord mouths in western and northern Svalbard (Isfjorden, Wijdefjorden and Rijpfjorden) and northern and southern Norway (Balsfjorden, Raunefjorden and Hjeltefjorden) were resampled. The analysis revealed similarities between the Svalbard and Norwegian foraminiferal assemblages of up to 30%; however, there were essential differences in terms of abundance and biodiversity. These results suggest that Svalbard fjords will remain distinct in the future, even under conditions of further warming or “atlantification”. Svalbard fjords may be dominated by Atlantic Water- preferring species, whereas, in Norwegian fjords, pressure from human activity will probably be the main driver of environmental changes, leading to changes in the foraminiferal assemblages with the increasing dominance of opportunistic, hypoxia-tolerant species.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ingvaldsen, Randi B., Karen M. Assmann, Raul Primicerio, Maria Fossheim, Igor V. Polyakov et Andrey V. Dolgov. « Physical manifestations and ecological implications of Arctic Atlantification ». Nature Reviews Earth & ; Environment 2, no 12 (16 novembre 2021) : 874–89. http://dx.doi.org/10.1038/s43017-021-00228-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Blum, Hester. « Atlantification : Facing the Atlantic from the Arctic – a provocation ». Atlantic Studies 21, no 1 (2 janvier 2024) : 192–94. http://dx.doi.org/10.1080/14788810.2023.2287277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Aksenov, P. V., et V. V. Ivanov. « “Atlantification” as a Possible Cause for Reducing of the Sea-Ice Cover in the Nansen Basin in winter ». Arctic and Antarctic Research 64, no 1 (30 mars 2018) : 42–54. http://dx.doi.org/10.30758/0555-2648-2018-64-1-42-54.

Texte intégral
Résumé :
The paper presents arguments in favor of an explanation of the reduction of the ice-covered area in the Nansen basin of the Arctic Ocean (AO) in winter by the so-called “atlantification “ — the strengthening of the influence of waters of Atlantic origin on the hydrological regime of the Arctic Ocean. We hypothesize that the main agent of “atlantification” in theWesternNansenBasinis winter thermal convection, which delivers heat from the deep to the upper mixed layer, thus melting sea ice and warming the near-surface air. To check up this hypothesis we used ocean reanalysis MERCATOR data for time interval 2007–2017. The quantitative criterion of thermal convection, based on the type of vertical thermohaline structure in the upper ocean layer, was applied to access the change of convection depth between climatic values in 1950–1990 and the present time. The main conclusion of the paper can be summarized as the following. Due to a gradual reduction of sea ice in the 1990s, the vertical stratification of waters in theWesternNansenBasinhas changed. As a result, the potential for penetration of vertical thermal convection into the warm and saline Atlantic layer and the consumption of heat and salt content of this layer for warming and salinification of the overlying waters increased, thus leading to additional loss of sea ice in winter.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Weydmann-Zwolicka, Agata, Paula Prątnicka, Magdalena Łącka, Sanna Majaneva, Finlo Cottier et Jørgen Berge. « Zooplankton and sediment fluxes in two contrasting fjords reveal Atlantification of the Arctic ». Science of The Total Environment 773 (juin 2021) : 145599. http://dx.doi.org/10.1016/j.scitotenv.2021.145599.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Belter, H. Jakob, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks et al. « Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification ». Cryosphere 15, no 6 (15 juin 2021) : 2575–91. http://dx.doi.org/10.5194/tc-15-2575-2021.

Texte intégral
Résumé :
Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exiting the Arctic Ocean does so through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated summer (July–August) time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison of this time series with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years at the end of the Transpolar Drift. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate for the impact processes, such as Atlantification, have on sea ice thickness in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea-ice-covered Arctic.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ahme, Antonia, Anabel Von Jackowski, Rebecca A. McPherson, Klara K. E. Wolf, Mario Hoppmann, Stefan Neuhaus et Uwe John. « Winners and Losers of Atlantification : The Degree of Ocean Warming Affects the Structure of Arctic Microbial Communities ». Genes 14, no 3 (1 mars 2023) : 623. http://dx.doi.org/10.3390/genes14030623.

Texte intégral
Résumé :
Arctic microbial communities (i.e., protists and bacteria) are increasingly subjected to an intrusion of new species via Atlantification and an uncertain degree of ocean warming. As species differ in adaptive traits, these oceanic conditions may lead to compositional changes with functional implications for the ecosystem. In June 2021, we incubated water from the western Fram Strait at three temperatures (2 °C, 6 °C, and 9 °C), mimicking the current and potential future properties of the Arctic Ocean. Our results show that increasing the temperature to 6 °C only minorly affects the community, while an increase to 9 °C significantly lowers the diversity and shifts the composition. A higher relative abundance of large hetero- and mixotrophic protists was observed at 2 °C and 6 °C compared to a higher abundance of intermediate-sized temperate diatoms at 9 °C. The compositional differences at 9 °C led to a higher chlorophyll a:POC ratio, but the C:N ratio remained similar. Our results contradict the common assumption that smaller organisms and heterotrophs are favored under warming and strongly indicate a thermal limit between 6 °C and 9 °C for many Arctic species. Consequently, the magnitude of temperature increase is a crucial factor for microbial community reorganization and the ensuing ecological consequences in the future Arctic Ocean.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Freer, Jennifer J., Malin Daase et Geraint A. Tarling. « Modelling the biogeographic boundary shift of Calanus finmarchicus reveals drivers of Arctic Atlantification by subarctic zooplankton ». Global Change Biology 28, no 2 (27 octobre 2021) : 429–40. http://dx.doi.org/10.1111/gcb.15937.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mańko, Maciej K., Marta Gluchowska et Agata Weydmann-Zwolicka. « Footprints of Atlantification in the vertical distribution and diversity of gelatinous zooplankton in the Fram Strait (Arctic Ocean) ». Progress in Oceanography 189 (novembre 2020) : 102414. http://dx.doi.org/10.1016/j.pocean.2020.102414.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Atlantification"

1

Bertosio, Cécilia. « On the evolution of the halocline in the upper Arctic Ocean since 2007 ». Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS423.

Texte intégral
Résumé :
Dans l'océan Arctique, la stratification est déterminée par la salinité, contrairement aux océans des latitudes moyennes qui sont stratifiés par la température. En d'autres termes, en Arctique, les eaux salées se retrouvent au fond, même si elles sont plus chaudes. La halocline de l'océan Arctique correspond à une couche épaisse de 100-200m avec de forts gradients verticaux de salinité et est située entre 100 et 350m de profondeur. Elle s'insère entre la glace de mer située en surface et la couche relativement chaude des eaux Atlantiques. La halocline isole ainsi la glace du réservoir de chaleur contenu dans la couche Atlantique sous-jacente, et constitue un élément clé pour le maintien de la couverture de glace de mer. Durant cette thèse, nous avons étudié l'évolution de la halocline de l'océan Arctique depuis 2007, en utilisant plusieurs outils : des mesures hydrographiques obtenues à partir de plateformes dérivantes autonomes ou de campagnes en mer, et les simulations du modèle numérique de haute résolution spatiale (« PSY4 »)
In the Arctic Ocean, stratification is determined by salinity, unlike the mid-latitude oceans which are stratified by temperature. In other words, in the Arctic, salty water ends up at the bottom, even if it is warmer. The halocline of the Arctic Ocean is a 100-200m thick layer with strong vertical salinity gradients and is located between 100 and 350m depth. The halocline lies between the sea ice at the surface and the relatively warm Atlantic water. The halocline thus insulates the ice from the heat reservoir contained in the underlying Atlantic layer, and is a key element for the maintenance of the sea ice cover. During this thesis, we studied the evolution of the Arctic Ocean halocline since 2007, using several tools: hydrographic measurements obtained from autonomous drifting platforms or from sea campaigns, and high spatial resolution numerical model simulations ("PSY4")
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Atlantification"

1

Lein, A. Yu, M. D. Kravchishina, G. A. Pavlova, A. L. Chultsova, A. N. Novigatsky, A. A. Klyuvitkin et A. S. Savvichev. « Salt composition and biogenic elements in modern pore waters of the Barents Sea (1997–2019) ». Dans THE BARENTS SEA SYSTEM, 370–98. Shirshov Institute of Oceanology Publishing House, 2021. http://dx.doi.org/10.29006/978-5-6045110-0-8/(28).

Texte intégral
Résumé :
The data (Cl-, SO42-, Ca2+ Alk and biogenic elements) on the salt composition of pore water and the isotopic organic carbon composition of suspended particulate matter, fluffy layer and surface layers (0–30 cm) of bottom sediments in the Barents and Norwegian seas are discussed during the period of the supposed maximum warming in the Arctic region in the 21st century associated with the “atlantification” of the Arctic Ocean.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pautova, L. A. « Phytoplankton of the Вarents sea ». Dans THE BARENTS SEA SYSTEM, 317–30. Shirshov Institute of Oceanology Publishing House, 2021. http://dx.doi.org/10.29006/978-5-6045110-0-8/(25).

Texte intégral
Résumé :
On the basis of the analysis of summer plankton phytocenosis structure, 4 areas representing various stages of a succession cycle are allocated for water areas of the Barents Sea. In the most productive places of the water area the level of phytoplankton growth corresponded to indicators of mesotrophic-eutrophic waters and was maximum in the northern area. Concentration of phosphates was the main regulator of bloom of coccolithophore Emilianiahuxleyi, besides water temperature. The presence in the modern plankton phytoсenosis structure in the northern part of sea (80ºN) of the Atlantic species, along with annual bloom of E. huxleyi in the southwest part of the sea, are the indicators of increased «atlantification» of the Arctic Region.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie