Littérature scientifique sur le sujet « Astrophysical ices »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Astrophysical ices ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Astrophysical ices"
Palumbo, M. E., G. A. Baratta, D. Fulvio, M. Garozzo, O. Gomis, G. Leto, F. Spinella et G. Strazzulla. « Ion irradiation of astrophysical ices ». Journal of Physics : Conference Series 101 (1 février 2008) : 012002. http://dx.doi.org/10.1088/1742-6596/101/1/012002.
Texte intégralPalumbo, M. E., G. A. Baratta, G. Leto et G. Strazzulla. « H bonds in astrophysical ices ». Journal of Molecular Structure 972, no 1-3 (mai 2010) : 64–67. http://dx.doi.org/10.1016/j.molstruc.2009.12.017.
Texte intégralBoduch, Philippe, Emmanuel Dartois, Ana L. F. de Barros, Enio F. da Silveira, Alicja Domaracka, Xue-Yang Lv, Maria Elisabetta Palumbo et al. « Radiation effects in astrophysical ices ». Journal of Physics : Conference Series 629 (13 juillet 2015) : 012008. http://dx.doi.org/10.1088/1742-6596/629/1/012008.
Texte intégralStrazzulla, G., A. C. Castorina et M. E. Palumbo. « Ion irradiation of astrophysical ices ». Planetary and Space Science 43, no 10-11 (octobre 1995) : 1247–51. http://dx.doi.org/10.1016/0032-0633(95)00040-c.
Texte intégralFarenzena, L. S., P. Iza, R. Martinez, F. A. Fernandez-Lima, E. Seperuelo Duarte, G. S. Faraudo, C. R. Ponciano et al. « Electronic Sputtering Analysis of Astrophysical Ices ». Earth, Moon, and Planets 97, no 3-4 (décembre 2005) : 311–29. http://dx.doi.org/10.1007/s11038-006-9081-y.
Texte intégralGolikov, O., D. Yerezhep, A. Akylbayeva, D. Sokolov, E. Korshikov et A. Aldiyarov. « Cryovacuum facilities for studying astrophysical ices ». Low Temperature Physics 50, no 1 (1 janvier 2024) : 66–72. http://dx.doi.org/10.1063/10.0023894.
Texte intégralMoore, Marla H., et Reggie L. Hudson. « Production of Complex Molecules in Astrophysical Ices ». Proceedings of the International Astronomical Union 1, S231 (21 mars 2006) : 247. http://dx.doi.org/10.1017/s1743921306007241.
Texte intégralRocard, F., J. Bénit, J.-P. Bibrtng, D. Ledu et R. Meunier. « Erosion of ices : Physical and astrophysical discussion ». Radiation Effects 99, no 1-4 (septembre 1986) : 97–104. http://dx.doi.org/10.1080/00337578608209617.
Texte intégralStrazzulla, G. « Crystalline and amorphous structure of astrophysical ices ». Low Temperature Physics 39, no 5 (mai 2013) : 430–33. http://dx.doi.org/10.1063/1.4807045.
Texte intégralFörstel, M., P. Maksyutenko, B. M. Jones, B. J. Sun, A. H. H. Chang et R. I. Kaiser. « Synthesis of urea in cometary model ices and implications for Comet 67P/Churyumov–Gerasimenko ». Chemical Communications 52, no 4 (2016) : 741–44. http://dx.doi.org/10.1039/c5cc07635h.
Texte intégralThèses sur le sujet "Astrophysical ices"
Dissly, Richard W. Anicich Vincent G. Anicich Vincent G. Allen Mark Andrew. « Laboratory studies of astrophysical ices / ». Diss., Pasadena, Calif. : California Institute of Technology, 1995. http://resolver.caltech.edu/CaltechETD:etd-10312007-083146.
Texte intégralDawes, Anita. « Spectroscopic study of photon, ion and electron stimulated molecular synthesis in astrophysical ices ». Thesis, University College London (University of London), 2003. http://oro.open.ac.uk/40046/.
Texte intégralBychkova, Anna. « Energetic iοn prοcessing οf arοmatic mοlecules in the sοlid phase ». Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC236.
Texte intégralFormed in the dense clouds, icy mantles are condensates of small molecules on solid grains. These icy mantles are promising sites for rich chemical processes, where complex organic molecules can form, as these mantles are continuously exposed to ionizing radiation. Once dense clouds transform into an accretion disc and eventually into a planetary system, these icy mantles may potentially contribute to the reservoir of the complex molecules of the planets.In this thesis, the effects of ion irradiation on two aromatic molecules, pyridine and pyrene were investigated. The samples were exposed to ion irradiation at the GANIL (Caen, France) and ATOMKI (Debrecen, Hungary) ion beam facilities. Their evolution was monitored using in-situ infrared spectroscopy. It was found that the initial structure (amorphous or crystalline) and the irradiation temperature do not affect the destruction cross section of pure pyridine. Additionally, it was observed that the local dose is not a key parameter as previously assumed. Indeed, since the destruction of pyrene caused by heavy ions, starting from C, is significantly greater than that caused by lighter ions such as H and He for the same deposited local dose. For both molecules, a significant increase in the destruction cross section was observed for decreasing molecule concentration in the water matrix. The half-life time of pyridine and pyrene in dense clouds was estimated to be around 13 and 20 millions of years, respectively. This suggests that once formed in these environments, they could survive and contribute to planetary formation
Holtom, Philip Derek. « Irradiation studies of astrophysical ice analogues ». Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1444790/.
Texte intégralKorsmeyer, Julie. « Anthracroronene in Astrophysical Water-Ice Analogs ». Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/scripps_theses/1413.
Texte intégralDing, Jing-Jie. « Irradiation of water ice and astrophysical implication ». Caen, 2014. http://www.theses.fr/2014CAEN2056.
Texte intégralIces can exist in our solar system for example on comets, the moons of Jupiter and Saturn, and trans-Neptunian objects. In the cold interstellar medium, they form thin layers on dust grains. Water (H2O) is the most abundant molecules in those ices, which are continuously exposed to the irradiation by cosmic rays, solar wind, and ions trapped in the magnetosphere of the giant planets. Simulation in the laboratory compared to telescopic observations can provide information to understand the large variety of radiation induced physicochemical processes. Therefore, we simulated the effects of swift heavy ion (cosmic ray analogs) and slow ion (solar wind, magnetosphere ions) irradiation of water ice at different beam lines of the GANIL accelerator facility. Fourier transform infrared spectroscopy (FTIR) was used to analyze the ices. The irradiation induced structural changes of water ice such as amorphization and compaction were studied. The efficiency to amorphize and compact the ice was established as a function of projectile stopping power with several swift heavy ions. Furthermore, by implantation of sulfur ions in water ice, the formation yield of sulfuric acid was measured and found to increase with projectile energy. From comparison to measure sulfur ion fluxes and sulfuric acid concentrations by the Galileo spacecraft, strong evidence was found that H2SO4 on Europa’s surface can be formed by sulfur ion implantation of magnetosphere ions in water ice. Finally, we also performed a first preliminary experiment to study the radiation induced chemistry with a carbonaceous solid substrate covered with a NH3+H2O ice mantle
SanfeÌlix, Maria Jose Cabrera. « Molecular modelling of water ice in atmospheric and astrophysical environments ». Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415664.
Texte intégralHettlage, Christian. « Lepton production in ice by scattering of astrophysical neutrinos at high energies ». Doctoral thesis, [S.l.] : [s.n.], 2005. http://webdoc.sub.gwdg.de/diss/2005/hettlage.
Texte intégralMuntean, E. A. « Low energy ion irradiation of astrophysical ice analogues : sputtering and molecule formation ». Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.680064.
Texte intégralDupuy, Rémi. « Photon and electron induced desorption from molecular ices Spectrally-resolved UV photodesorption of CH4 in pure and layered ices The efficient photodesorption of nitric oxide (NO) ices : a laboratory astrophysics study X-ray photodesorption from water ice in protoplanetary disks and X-ray-dominated regions ». Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS068.
Texte intégralThe deposition of energy in the form of electronic excitations in molecules condensed on cold surfaces (10-100 K) can lead to the desorption of some of these molecules. This basic surface science process has consequences in a variety of fields, two of which are of concern here : astrochemistry and vacuum dynamics. Photon and Electron-Induced desorption are studied in this manuscript for thin films of condensed molecules (ices), e.g. CO, H2O, NO or CH4. The first objective is to obtain a quantification of the desorption of the various desorbing species, and to look for the parameters that affect the efficiency of the process. The second objective is to understand the mechanisms of evolution and relaxation of the initial electronic excitations that lead to desorption. Photon-induced desorption is studied at LERMA using synchrotron radiation in the VUV range (5-14 eV) and soft X-ray range (520-600 eV). This allows to obtain spectrally-resolved information, which is crucial both for model implementation and fundamental understanding of the mechanisms. Electron-induced desorption is studied at CERN in the 150-2000 eV range. The results expand the available data on UV photodesorption and allow to determine the relevance of electron or X-ray desorption for astrochemistry. Progress has also been made on the understanding of mechanisms, particularly on the role of energy or particle transport from the bulk to the surface of the ice, on indirect desorption, or on the desorption of ions in the soft X-ray range. A new experimental set-up has also been developed at LERMA for laser desorption and laser spectroscopy experiments, allowing quantum-state and kinetic energy resolved measurements of desorbed molecules
Livres sur le sujet "Astrophysical ices"
1939-, Klinger Jürgen, et North Atlantic Treaty Organization. Scientific Affairs Division., dir. Ices in the solar system. Dordrecht : D. Reidel, 1985.
Trouver le texte intégralB, Schmitt, Bergh C. de et Festou M, dir. Solar system ices : Based on reviews presented at the international symposium "solar system ices" held in Toulouse, France, on March 27-30, 1995. Boston, MA : Kluwer Academic Publishers, 1998.
Trouver le texte intégralGudipati, Murthy S. The Science of Solar System Ices. New York, NY : Springer New York, 2013.
Trouver le texte intégralCalif.) The Science of Solar System Ices Workshop (2008 Oxnard. The Science of Solar System Ices (ScSSI) : A cross-disciplinary workshop, May 5-8, 2008, Oxnard, California. Houston, Tex : Lunar and Planetary Institute, 2008.
Trouver le texte intégralPoinsatte, Philip E. Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis icing research tunnel. [Washington, D.C.] : NASA, 1990.
Trouver le texte intégralPoinsatte, Philip E. Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis icing research tunnel. [Washington, D.C.] : NASA, 1990.
Trouver le texte intégral(Editor), B. Schmitt, C. de Bergh (Editor) et M. Festou (Editor), dir. Solar System Ices (Astrophysics and Space Science Library). Springer, 2007.
Trouver le texte intégralGudipati, Murthy S., et Julie Castillo-Rogez. Science of Solar System Ices. Springer New York, 2012.
Trouver le texte intégralGudipati, Murthy S., et Julie Castillo-Rogez. The Science of Solar System Ices. Springer, 2014.
Trouver le texte intégralGudipati, Murthy S., et Julie Castillo-Rogez. The Science of Solar System Ices. Springer, 2012.
Trouver le texte intégralChapitres de livres sur le sujet "Astrophysical ices"
Satorre, Miguel Ángel, Ramón Luna, Carlos Millán, Manuel Domingo et Carmina Santonja. « Density of Ices of Astrophysical Interest ». Dans Laboratory Astrophysics, 51–69. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90020-9_4.
Texte intégralMuñoz Caro, Guillermo M., et Rafael Martín Doménech. « Photon-Induced Desorption Processes in Astrophysical Ices ». Dans Laboratory Astrophysics, 133–47. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90020-9_9.
Texte intégralSatorre, M. A., G. Blanes, M. A. Hernández, C. Millán, M. Domingo et M. C. Santonja. « An Experimental Setup for the Characterization of Ices of Astrophysical Interest ». Dans Highlights of Spanish Astrophysics II, 401. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1776-2_125.
Texte intégralLuna, R., M. A. Satorre, G. Blanes, M. C. Santonja, M. Domingo et O. Gomis. « Density Determination of Ices of Astrophysical Interest by Double-Laser Interferometry ». Dans Highlights of Spanish Astrophysics III, 489. Dordrecht : Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-1778-6_132.
Texte intégralPirronello, Valerio. « Physical and Chemical Effects Induced by Fast Ions in Ices of Astrophysical Interest ». Dans Chemistry in Space, 263–303. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-009-0695-2_10.
Texte intégralSchutte, W. A., L. J. Allamandola et S. A. Sandford. « Formation of Organic Molecules by Formaldehyde Reactions in Astrophysical Ices at Very Low Temperatures ». Dans Astrochemistry of Cosmic Phenomena, 29–30. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2761-5_11.
Texte intégralSamuelson, Robert. « Atmospheric Ices ». Dans Astrophysics and Space Science Library, 749–72. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5252-5_31.
Texte intégralSalama, Farid. « UV Photochemistry of Ices ». Dans Astrophysics and Space Science Library, 259–79. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5252-5_11.
Texte intégralDurham, W. B., S. H. Kirby et L. A. Stern. « Rheology of Planetary Ices ». Dans Astrophysics and Space Science Library, 63–78. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5252-5_3.
Texte intégralBallering, Nicholas P., L. Ilsedore Cleeves et Dana E. Anderson. « Simulating Protoplanetary Disk Ices ». Dans European Conference on Laboratory Astrophysics ECLA2020, 253–57. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29003-9_29.
Texte intégralActes de conférences sur le sujet "Astrophysical ices"
Gavdush, A. A., F. Kruczkiewicz, B. M. Giuliano, B. Muller, G. A. Komandin, K. I. Zaytsev, A. V. Ivlev et P. Caselli. « THZ-IR DIELECTRIC SPECTROSCOPY OF ASTROPHYSICAL ICES : RECENT ACHIEVEMENTS AND CHALLENGES ». Dans Terahertz and Microwave Radiation : Generation, Detection and Applications (ТЕRА-2023). Moscow : Our Style, 2023. http://dx.doi.org/10.59043/9785604953914_106.
Texte intégralWoon, David E. « Ab Initio Quantum Chemical Studies of Reactions in Astrophysical Ices — Reactions Involving CH3OH, CO2, CO, and HNCO in H2CO/NH3/H2O Ices ». Dans ASTROCHEMISTRY : From Laboratory Studies to Astronomical Observations. AIP, 2006. http://dx.doi.org/10.1063/1.2359569.
Texte intégralGargouri, Yosra, Herve Petit, Patrick Loumeau, Baptiste Cecconi et Patricia Desgreys. « Compressed sensing for astrophysical signals ». Dans 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2016. http://dx.doi.org/10.1109/icecs.2016.7841195.
Texte intégral