Littérature scientifique sur le sujet « Articular cartilage »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Articular cartilage ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Articular cartilage"

1

Wardale, R. J., et V. C. Duance. « Quantification and immunolocalisation of porcine articular and growth plate cartilage collagens ». Journal of Cell Science 105, no 4 (1 août 1993) : 975–84. http://dx.doi.org/10.1242/jcs.105.4.975.

Texte intégral
Résumé :
The collagens of growth plate and articular cartilage from 5–6 month old commercial pigs were characterised. Growth plate cartilage was found to contain less total collagen than articular cartilage as a proportion of the dry weight. Collagen types I, II, VI, IX and XI are present in both growth plate and articular cartilage whereas type X is found exclusively in growth plate cartilage. Types III and V collagen could not be detected in either cartilage. Type I collagen makes up at least 10% of the collagenous component of both cartilages. There are significant differences in the ratios of the quantifiable collagen types between growth plate and articular cartilage. Collagen types I, II, and XI were less readily extracted from growth plate than from articular cartilage following pepsin treatment, although growth plate cartilage contains less of the mature collagen cross-links, hydroxylysyl-pyridinoline and lysyl-pyridinoline. Both cartilages contain significant amounts of the divalent reducible collagen cross-links, hydroxylysyl-ketonorleucine and dehydro-hydroxylysinonorleucine. Immunofluorescent localisation indicated that type I collagen is located predominantly at the surface of articular cartilage but is distributed throughout the matrix in growth plate. Types II and XI are located in the matrix of both cartilages whereas type IX is predominantly pericellular in the calcifying region of articular cartilage and the hypertrophic region of the growth plate. Collagen type VI is located primarily as a diffuse area at the articular surface.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wardale, R. J., et V. C. Duance. « Characterisation of articular and growth plate cartilage collagens in porcine osteochondrosis ». Journal of Cell Science 107, no 1 (1 janvier 1994) : 47–59. http://dx.doi.org/10.1242/jcs.107.1.47.

Texte intégral
Résumé :
The articular and growth plate cartilages of osteochondrotic pigs were examined and compared with those from clinically normal animals. Both types of osteochondrotic cartilage showed considerable localised thickening apparently due to a lack of ossification. Histological examination of cartilage lesions demonstrated a breakdown in the normal pattern of chondrocyte maturation. Articular cartilage lesions lacked mature clones of chondrocytes in the calcifying region. Growth plate cartilage showed an accumulation of disorganised hypertrophic chondrocytes rather than the well-defined columns seen in normal tissue. The overall percentages of collagen in osteochondrotic lesions from both articular and growth plate cartilage were significantly reduced compared with levels in unaffected cartilage. There were substantial increases in the proportion of type I collagen in lesions from both osteochondrotic articular and growth plate cartilages and a reduction in the proportion of type II collagen. Type X collagen was detected in osteochondrotic but not normal articular cartilage. The proportion of type X collagen was unchanged in osteochondrotic growth plate cartilage. The levels of the collagen cross-links, hydroxylysylpyridinoline, hydroxylysyl-ketonorleucine and dehydrohydroxylysinonorleucine were radically reduced in samples from osteochondrotic growth-plate cartilage lesions when compared with normal tissue. Less dramatic changes were observed in articular cartilage although there was a significant decrease in the level of hydroxylysylketonorleucine in osteochondrotic lesions. Immunofluorescence examination of osteochondrotic lesions showed a considerable disruption of the organisation of the collagenous components within both articular and growth-plate cartilages. Normal patterns of staining of types I and VI collagen seen at the articular surface in unaffected tissue were replaced by a disorganised, uneven stain in osteochondrotic articular cartilage lesions. Incomplete removal of cartilage at the ossification front of osteochondrotic growth plate was demonstrated by immunofluorescence staining of type IX collagen. Type X collagen was produced in the matrix of the calcifying region of osteochondrotic articular cartilage by small groups of hypertrophic chondrocytes, but was not detected in normal articular cartilage. The distribution of type X collagen was unchanged in osteochondrotic growth plate cartilage.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gong, Huchen, Yutao Men, Xiuping Yang, Xiaoming Li et Chunqiu Zhang. « Experimental Study on Creep Characteristics of Microdefect Articular Cartilages in the Damaged Early Stage ». Journal of Healthcare Engineering 2019 (13 novembre 2019) : 1–9. http://dx.doi.org/10.1155/2019/8526436.

Texte intégral
Résumé :
Traumatic joint injury is known to cause cartilage deterioration and osteoarthritis. In order to study the mechanical mechanism of damage evolution on articular cartilage, taking the fresh porcine articular cartilage as the experimental samples, the creep experiments of the intact cartilages and the cartilages with different depth defect were carried out by using the noncontact digital image correlation technology. And then, the creep constitutive equations of cartilages were established. The results showed that the creep curves of different layers changed exponentially and were not coincident for the cartilage sample. The defect affected the strain values of the creep curves. The creep behavior of cartilage was dependent on defect depth. The deeper the defect was, the larger the strain value was. The built three-parameter viscoelastic constitutive equation had a good correlation with the experimental results and could predict the creep performance of the articular cartilage. The creep values of the microdefective cartilage in the damaged early stage were different from the diseased articular cartilage. These findings pointed out that defect could accelerate the damage of cartilage. It was helpful to study the mechanical mechanism of damage evolution.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sharifi, Ali Mohammad, Ali Moshiri et Ahmad Oryan. « Articular cartilage ». Current Orthopaedic Practice 27, no 6 (2016) : 644–65. http://dx.doi.org/10.1097/bco.0000000000000425.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

McCarty, Eric C. « Articular Cartilage ». Clinics in Sports Medicine 36, no 3 (juillet 2017) : i. http://dx.doi.org/10.1016/s0278-5919(17)30039-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rodkey, William G. « Articular cartilage ». Journal of Equine Veterinary Science 17, no 2 (février 1997) : 80. http://dx.doi.org/10.1016/s0737-0806(97)80334-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Miller, Mark D. « Articular Cartilage ». Clinics in Sports Medicine 36, no 3 (juillet 2017) : xiii—xiv. http://dx.doi.org/10.1016/j.csm.2017.04.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gradisar, Ivan A., et James A. Porterfield. « Articular cartilage ». Topics in Geriatric Rehabilitation 4, no 3 (avril 1989) : 1–9. http://dx.doi.org/10.1097/00013614-198904000-00004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lees, Deborah, et Paul Partington. « Articular cartilage ». Orthopaedics and Trauma 30, no 3 (juin 2016) : 265–72. http://dx.doi.org/10.1016/j.mporth.2016.04.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Simon, Timothy M., et Douglas W. Jackson. « Articular Cartilage ». Sports Medicine and Arthroscopy Review 26, no 1 (mars 2018) : 31–39. http://dx.doi.org/10.1097/jsa.0000000000000182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Articular cartilage"

1

Getgood, Alan Martin John. « Articular cartilage tissue engineering ». Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608764.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gratz, Kenneth R. « Biomechanics of articular cartilage defects ». Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3284116.

Texte intégral
Résumé :
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed January 9, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Arkill, Kenton Paul. « Mass transport in articular cartilage ». Thesis, University of Exeter, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421565.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Burgin, Leanne Victoria. « Impact loading of articular cartilage ». Thesis, University of Aberdeen, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288339.

Texte intégral
Résumé :
Impact loads have been implicated in the initiation of secondary osteoarthritis but in the absence of defined injury this is difficult to rest rigorously.  The response to controlled impacts of samples of cartilage and bone in isolation and together, may yield valuable insights into how tissue properties may influence degenerative changes associated with osteoarthritis. A rigid instrumented drop tower was constructed and interfaced to a LabVIEW software oscilloscope modified to capture and store data to disk.  Controlled impact loads were applied to cores of articular cartilage, both isolated and in situ on the underlying bone or bonded to substrates of different material properties.  Bovine tissue from the carpometacarpal joint and human cartilage from elderly femoral heads was used.  The response of the samples was investigated in terms of a dynamic stiffness, energy absorbed and coefficient of restitution.  In addition the quasistatic modulus was measured from compression tests in order to compare the values for the stiffness of cartilage and bone at different rates of stress and strain.  Composition analysis was then performed on human cartilage samples to investigate if there was any correlation between the biochemical constituents and mechanical factors. The dynamic stiffness of the cartilage samples was governed by peak stress and did not show a high sensitivity to strain rate.  Cartilage had good force attenuating properties in situ on bone and the substrates.  The greater volume of the stiffer underlying substrate dominated the response of the composite samples.  For the human cartilage samples the dynamic stiffness was most correlated to percentage collagen whereas the quasistatic modulus was most correlated with water content.  Overall the biochemical composition was a poor predictor of stiffness which indicates the importance of interactions between the matrix constituents in the tissue response to an applied load.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rowles, Christopher. « Visualisation of Articular Cartilage Microstructure ». Thesis, Curtin University, 2016. http://hdl.handle.net/20.500.11937/52984.

Texte intégral
Résumé :
This thesis developed image processing techniques enabling the detection and segregation of biological three dimensional images into its component features based upon shape and relative size of the features detected. The work used articular cartilage images and separated fibrous components from the cells and background noise. Measurement of individual components and their recombination into a composite image are possible. Developed software was used to analyse the development of hyaline cartilage in developing sheep embryos.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Girdler, N. M. « The role of mandibular condylar cartilage in articular cartilage repair ». Thesis, King's College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chan, Alex Dart Ming. « Neurogenic modulation of articular cartilage degeneration ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ41123.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Covert, Rebeccah Jean. « Durability evaluation of articular cartilage prostheses ». Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/17596.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Goldsmith, Andrew Alan John. « Biphasic modelling of synthetic articular cartilage ». Thesis, University of Bath, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321846.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ardill, Jennifer Maureen. « Optical measurement of articular cartilage roughness ». Thesis, Queen's University Belfast, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241325.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Articular cartilage"

1

Smith, David W., Bruce S. Gardiner, Lihai Zhang et Alan J. Grodzinsky. Articular Cartilage Dynamics. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1474-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cole, Brian J., et M. Mike Malek. Articular Cartilage Lesions. New York, NY : Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-21553-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Workshop Conference Hoechst-Werk Albert (1985 Wiesbaden, Germany). Articular cartilage biochemistry. Sous la direction de Kuettner Klaus E, Schleyerbach Rudolf et Hascall Vincent C. New York : Raven Press, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Athanasiou, K. A. Articular cartilage tissue engineering. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gahunia, Harpal K., Allan E. Gross, Kenneth P. H. Pritzker, Paul S. Babyn et Lucas Murnaghan, dir. Articular Cartilage of the Knee. New York, NY : Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4939-7587-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Argatov, Ivan, et Gennady Mishuris. Contact Mechanics of Articular Cartilage Layers. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20083-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rodrìguez-Merchán, E. Carlos, dir. Articular Cartilage Defects of the Knee. Milano : Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2727-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

1964-, Hendrich Christian, Nöth Ulrich 1967- et Eulert Jochen, dir. Cartilage surgery and future perspectives. Berlin : Springer, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

D, Brandt Kenneth, dir. Cartilage changes in osteoarthritis. Indianapolis, Ind : Indiana University School of Medicine, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tos, Mirko. Cartilage tympanoplasty. Stuttgart : Thieme, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Articular cartilage"

1

Flik, Kyle R., Nikhil Verma, Brian J. Cole et Bernard R. Bach. « Articular Cartilage ». Dans Cartilage Repair Strategies, 1–12. Totowa, NJ : Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-343-1_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pavelka, Margit, et Jürgen Roth. « Articular Cartilage ». Dans Functional Ultrastructure, 294–95. Vienna : Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99390-3_151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Smith, David W., Bruce S. Gardiner, Lihai Zhang et Alan J. Grodzinsky. « Cartilage Tissue Homeostasis ». Dans Articular Cartilage Dynamics, 65–243. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Smith, David W., Bruce S. Gardiner, Lihai Zhang et Alan J. Grodzinsky. « Cartilage Tissue Dynamics ». Dans Articular Cartilage Dynamics, 245–309. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shah, Nehal, et Hiroshi Yoshioka. « Imaging of Articular Cartilage ». Dans Cartilage Restoration, 17–37. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-0427-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Smith, David W., Bruce S. Gardiner, Lihai Zhang et Alan J. Grodzinsky. « Introduction to Articular Cartilage ». Dans Articular Cartilage Dynamics, 1–63. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Smith, David W., Bruce S. Gardiner, Lihai Zhang et Alan J. Grodzinsky. « Lubrication, Friction, and Wear in Diarthrodial Joints ». Dans Articular Cartilage Dynamics, 311–59. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Smith, David W., Bruce S. Gardiner, Lihai Zhang et Alan J. Grodzinsky. « A Systems Approach to Articular Cartilage ». Dans Articular Cartilage Dynamics, 361–428. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Smith, David W., Bruce S. Gardiner, Lihai Zhang et Alan J. Grodzinsky. « Osmotic Pressure, Solid Stress, and the Diffuse Double Layer ». Dans Articular Cartilage Dynamics, 429–67. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Smith, David W., Bruce S. Gardiner, Lihai Zhang et Alan J. Grodzinsky. « Theory for Modeling Articular Cartilage ». Dans Articular Cartilage Dynamics, 469–560. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Articular cartilage"

1

Goyal, Neeru, et Madhur Gupta. « A Study of Osteoarthritic Human Femoral Articular Cartilage Osteoarthritic Femoral Articular Cartilage ». Dans Annual International Conference on Microscopic and Macroscopic Anatomy. Global Science & Technology Forum (GSTF), 2014. http://dx.doi.org/10.5176/2382-6096_cmma14.10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zueger, Benno J., Beat Ott, P. M. Mainil-Varlet, Thomas Schaffner, Jean-Francois Clemence, Heinz P. Weber et Martin Frenz. « Laser soldering of articular cartilage ». Dans BiOS 2001 The International Symposium on Biomedical Optics, sous la direction de R. Rox Anderson, Kenneth E. Bartels, Lawrence S. Bass, C. Gaelyn Garrett, Kenton W. Gregory, Abraham Katzir, Nikiforos Kollias et al. SPIE, 2001. http://dx.doi.org/10.1117/12.427791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yang, Xiao-Hong, Timon Cheng-Yi Liu, Shao-Jie Liu, Jian-Rong Tan, Yan Shen et Pie-Hong Liang. « Photobiomodulation on Articular Cartilage Repair ». Dans 2007 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iccme.2007.4381919.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Murakami, Teruo, Nobuo Sakai, Yoshinori Sawae, Itaru Ishikawa, Natsuko Hosoda, Emiko Suzuki et Jun Honda. « Biomechanical Aspects of Natural Articular Cartilage and Regenerated Cartilage ». Dans In Commemoration of the 1st Asian Biomaterials Congress. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835758_0028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Melas, I. N., A. D. Chairakaki, A. Mitsos, Z. Dailiana, C. G. Provatidis et L. G. Alexopoulos. « Modeling signaling pathways in articular cartilage ». Dans 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6090630.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ardill, Jennifer M., N. J. Barton, W. G. Kernohan et R. A. B. Mollan. « Quantitative assessment of articular cartilage roughness ». Dans OE/LASE'93 : Optics, Electro-Optics, & Laser Applications in Science& Engineering, sous la direction de Halina Podbielska. SPIE, 1993. http://dx.doi.org/10.1117/12.155722.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kumar, Rajesh, Catharina Davies, Jon Drogset et Magnus Lilledahl. « Multiphoton microscopy of osteoarthritic articular cartilage ». Dans Novel Techniques in Microscopy. Washington, D.C. : OSA, 2017. http://dx.doi.org/10.1364/ntm.2017.nw4c.4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rennie, A. C., et W. G. Sawyer. « Tribological Investigation of Porcine Articular Cartilage ». Dans World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64382.

Texte intégral
Résumé :
This poster examines the tribological properties and effective elastic modulus of porcine articular cartilage plugs. Two methods of obtaining an effective elastic modulus are explored for the different initial material conditions during the indentation loading and unloading. The average values of coefficient of friction varied from 0.04–0.14, but ended with a steady-state average of 0.06. It was validated that increasing pressure during sliding produces an increase in friction coefficient. From a contact model fit to the loading region of the indentation curve, effective elastic modulus had an average value of 300 MPa, which agrees with existing literature. From an examination of the linear portion of the unloading region of the indentation curve, the effective elastic modulus was an average of 8.9 MPa. A preliminary explanation for this is that before loading, a bulk material is present, but pressure effects could evacuate some of the interstitial fluid, leaving in the unloading curve an effective matrix without fluid.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Folkesson, Jenny, Erik Dam, Paola Pettersen, Ole F. Olsen, Mads Nielsen et Claus Christiansen. « Locating articular cartilage in MR images ». Dans Medical Imaging, sous la direction de J. Michael Fitzpatrick et Joseph M. Reinhardt. SPIE, 2005. http://dx.doi.org/10.1117/12.595665.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Smith, Robert Lane. « Mechanical Loading and Articular Cartilage Metabolism ». Dans ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2520.

Texte intégral
Résumé :
Abstract Articular cartilage provides diarthrodial joints with a loading-bearing surface that ensures functional motility. The physical characteristics of articular cartilage originate with the highly organized matrix of extracellular macromolecules that provide structural elements to the tissue. The matrix specialization rests with specific proteins produced by the cartilage cells, the chondrocytes that undergo extensive post-translational modification through addition of sulfated glycosaminoglycan and oligosaccharides. The matrix proteins fall into three major categories, the collagens, the proteoglycans and the glycoproteins, with each group contributing unique properties to cartilage form and function.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Articular cartilage"

1

Huard, Johnny. Articular Cartilage Repair Through Muscle Cell-Based Tissue Engineering. Fort Belvoir, VA : Defense Technical Information Center, mars 2011. http://dx.doi.org/10.21236/ada552048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

de Sousa, Eduardo, Renata Matsui, Leonardo Boldrini, Leandra Baptista et José Mauro Granjeiro. Mesenchymal stem cells for the treatment of articular cartilage defects of the knee : an overview of systematic reviews. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, décembre 2022. http://dx.doi.org/10.37766/inplasy2022.12.0114.

Texte intégral
Résumé :
Review question / Objective: Population: adults (aged between 18 and 50 years) with traumatic knee lesions who underwent treatment with mesenchymal stem cells; Intervention: defined by the treatment with mesenchymal stem cells; The comparison group: treatment with autologous chondrocytes or microfracture treatments; Primary outcome: formation of cartilage neo tissue in the defect area, determined by magnetic resonance imaging (MRI) or by direct visualization in second-look knee arthroscopy.; Secondary outcomes: based on clinical scores such as visual analog scale (VAS) for pain, Western Ontario and McMaster universities score (WOMAC), knee society score (KSS), Tegner and Lysholm.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie