Articles de revues sur le sujet « Aromatic amino acid decarboxylase »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Aromatic amino acid decarboxylase.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Aromatic amino acid decarboxylase ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Komori, Hirofumi, Yoko Nitta, Hiroshi Ueno et Yoshiki Higuchi. « Structural basis for the histamine synthesis by human histidine decarboxylase ». Acta Crystallographica Section A Foundations and Advances 70, a1 (5 août 2014) : C458. http://dx.doi.org/10.1107/s2053273314095412.

Texte intégral
Résumé :
Histamine is a bioactive amine responsible for a variety of physiological reactions, including allergy, gastric acid secretion, and neurotransmission. In mammals, histamine production from histidine is catalyzed by histidine decarboxylase (HDC). Mammalian HDC is a pyridoxal 5'-phosphate (PLP)-dependent decarboxylase and belongs to the same family as mammalian glutamate decarboxylase (GAD) and mammalian aromatic L-amino acid decarboxylase (AroDC). The decarboxylases of this family function as homodimers and catalyze the formation of physiologically important amines like GABA and dopamine via decarboxylation of glutamate and DOPA, respectively. Despite high sequence homology, both AroDC and HDC react with different substrates. For example, AroDC catalyzes the decarboxylation of several aromatic L-amino acids, but has little activity on histidine. Although such differences are known, the substrate specificity of HDC has not been extensively studied because of the low levels of HDC in the body and the instability of recombinant HDC, even in a well-purified form. However, knowledge about the substrate specificity and decarboxylation mechanism of HDC is valuable from the viewpoint of drug development, as it could help lead to designing of novel drugs to prevent histamine biosynthesis. We have determined the crystal structure of human HDC in complex with inhibitors, histidine methyl ester (HME) and alpha-fluoromethyl histidine (FMH). These structures showed the detailed features of the PLP-inhibitor adduct (external aldimine) in the active site of HDC. These data provided insight into the molecular basis for substrate recognition among the PLP-dependent L-amino acid decarboxylases.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sköldberg, Filip, Fredrik Rorsman, Jaakko Perheentupa, Mona Landin-Olsson, Eystein S. Husebye, Jan Gustafsson et Olle Kämpe. « Analysis of Antibody Reactivity against Cysteine Sulfinic Acid Decarboxylase, A Pyridoxal Phosphate-Dependent Enzyme, in Endocrine Autoimmune Disease ». Journal of Clinical Endocrinology & ; Metabolism 89, no 4 (1 avril 2004) : 1636–40. http://dx.doi.org/10.1210/jc.2003-031161.

Texte intégral
Résumé :
Abstract The structurally related group II pyridoxal phosphate (PLP)-dependent amino acid decarboxylases glutamic acid decarboxylase (GAD), aromatic l-amino acid decarboxylase (AADC), and histidine decarboxylase (HDC) are known autoantigens in endocrine disorders. We report, for the first time, the prevalence of serum autoantibody reactivity against cysteine sulfinic acid decarboxylase (CSAD), an enzyme that shares 50% amino acid identity with the 65- and 67-kDa isoforms of GAD (GAD-65 and GAD-67), in endocrine autoimmune disease. Three of 83 patients (3.6%) with autoimmune polyendocrine syndrome type 1 (APS1) were anti-CSAD positive in a radioimmunoprecipitation assay. Anti-CSAD antibodies cross-reacted with GAD-65, and the anti-CSAD-positive sera were also reactive with AADC and HDC. The low frequency of anti-CSAD reactivity is in striking contrast to the prevalence of antibodies against GAD-65, AADC, and HDC in APS1 patients, suggesting that different mechanisms control the immunological tolerance toward CSAD and the other group II decarboxylases. Moreover, CSAD may be a useful mold for the construction of recombinant chimerical antigens in attempts to map conformational epitopes on other group II PLP-dependent amino acid decarboxylases.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pons, R., B. Ford, C. A. Chiriboga, P. T. Clayton, V. Hinton, K. Hyland, R. Sharma et D. C. De Vivo. « Aromatic l-amino acid decarboxylase deficiency ». Neurology 62, no 7 (12 avril 2004) : 1058–65. http://dx.doi.org/10.1212/wnl.62.7.1058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lauweryns, J. M., et L. Van Ranst. « Immunocytochemical localization of aromatic L-amino acid decarboxylase in human, rat, and mouse bronchopulmonary and gastrointestinal endocrine cells. » Journal of Histochemistry & ; Cytochemistry 36, no 9 (septembre 1988) : 1181–86. http://dx.doi.org/10.1177/36.9.2900264.

Texte intégral
Résumé :
Aromatic L-amino acid decarboxylase (AADC) catalyzes the cellular decarboxylation of L-aromatic amino acids and is therefore involved in the synthesis of several biogenic amines. Application of the indirect immunoperoxidase method on human, rat, and mouse tissues using specific antibodies to AADC revealed all AADC-containing cells. Besides mast cells and adrenergic nerve fibers, the following cells were immunostained: neuroendocrine cells in the tracheobronchial epithelium; neuroepithelial bodies in the bronchopulmonary epithelium; Kultschitzky cells in the small intestine and appendix as well as adrenal chromaffin cells. All the latter cells belong to the so-called APUD system, the "D" in the acronym standing for the activity of the enzyme aromatic L-amino acid decarboxylase. Immunocytochemistry for AADC may become an additional tool not only to highlight APUD cells in tissue sections but also to differentiate the sites of cellular amine synthesis from those of amine storage.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hyland, K., et P. T. Clayton. « Aromatic L-Amino Acid Decarboxylase Deficiency : Diagnostic Methodology ». Clinical Chemistry 38, no 12 (1 décembre 1992) : 2405–10. http://dx.doi.org/10.1093/clinchem/38.12.2405.

Texte intégral
Résumé :
Abstract Aromatic L-amino acid decarboxylase (EC. 4.1.1.28) deficiency is a newly described inborn error of metabolism that affects serotonin and dopamine biosynthesis. The major biochemical markers for this disease are increases of L-dopa, 3-methoxytyrosine, and 5-hydroxytryptophan in urine, plasma, and cerebrospinal fluid together with decreased cerebrospinal fluid concentrations of homovanillic acid and 5-hydroxyindoleacetic acid. In addition, concentrations of vanillactic acid are increased in the urine. Specific HPLC and gas chromatography-mass spectrometry methods are described that permit the identification and measurement of these metabolites in the above body fluids. Simplified assays for human plasma L-dopa decarboxylase and liver L-dopa and 5-hydroxytryptophan decarboxylase, used to demonstrate the enzyme deficiency, are also reported.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hyland, K., et P. T. Clayton. « Aromatic amino acid decarboxylase deficiency in twins ». Journal of Inherited Metabolic Disease 13, no 3 (mai 1990) : 301–4. http://dx.doi.org/10.1007/bf01799380.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kang, Un Jung, et Tong H. Joh. « Deduced amino acid sequence of bovine aromatic l-amino acid decarboxylase : homology to other decarboxylases ». Molecular Brain Research 8, no 1 (juin 1990) : 83–87. http://dx.doi.org/10.1016/0169-328x(90)90013-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pal Chowdhury, Piyali, Soumik Basu, Arindam Dutta et Tapan K. Dutta. « Functional Characterization of a Novel Member of the Amidohydrolase 2 Protein Family, 2-Hydroxy-1-Naphthoic Acid Nonoxidative Decarboxylase from Burkholderia sp. Strain BC1 ». Journal of Bacteriology 198, no 12 (11 avril 2016) : 1755–63. http://dx.doi.org/10.1128/jb.00250-16.

Texte intégral
Résumé :
ABSTRACTThe gene encoding a nonoxidative decarboxylase capable of catalyzing the transformation of 2-hydroxy-1-naphthoic acid (2H1NA) to 2-naphthol was identified, recombinantly expressed, and purified to homogeneity. The putative gene sequence of the decarboxylase (hndA) encodes a 316-amino-acid protein (HndA) with a predicted molecular mass of 34 kDa. HndA exhibited high identity with uncharacterized amidohydrolase 2 proteins of variousBurkholderiaspecies, whereas it showed a modest 27% identity with γ-resorcylate decarboxylase, a well-characterized nonoxidative decarboxylase belonging to the amidohydrolase superfamily. Biochemically characterized HndA demonstrated strict substrate specificity toward 2H1NA, whereas inhibition studies with HndA indicated the presence of zinc as the transition metal center, as confirmed by atomic absorption spectroscopy. A three-dimensional structural model of HndA, followed by docking analysis, identified the conserved metal-coordinating and substrate-binding residues, while their importance in catalysis was validated by site-directed mutagenesis.IMPORTANCEMicrobial nonoxidative decarboxylases play a crucial role in the metabolism of a large array of carboxy aromatic chemicals released into the environment from a variety of natural and anthropogenic sources. Among these, hydroxynaphthoic acids are usually encountered as pathway intermediates in the bacterial degradation of polycyclic aromatic hydrocarbons. The present study reveals biochemical and molecular characterization of a 2-hydroxy-1-naphthoic acid nonoxidative decarboxylase involved in an alternative metabolic pathway which can be classified as a member of the small repertoire of nonoxidative decarboxylases belonging to the amidohydrolase 2 family of proteins. The strict substrate specificity and sequence uniqueness make it a novel member of the metallo-dependent hydrolase superfamily.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jung, M. J. « Substrates and inhibitors of aromatic amino acid decarboxylase ». Bioorganic Chemistry 14, no 4 (décembre 1986) : 429–43. http://dx.doi.org/10.1016/0045-2068(86)90007-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lee, Hsiu-Fen, Chi-Ren Tsai, Ching-Shiang Chi, Tung-Ming Chang et Huei-Jane Lee. « Aromatic l-amino acid decarboxylase deficiency in Taiwan ». European Journal of Paediatric Neurology 13, no 2 (mars 2009) : 135–40. http://dx.doi.org/10.1016/j.ejpn.2008.03.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

LATORRE-MORATALLA, M. L., S. BOVER-CID, R. TALON, T. AYMERICH, M. GARRIGA, E. ZANARDI, A. IANIERI et al. « Distribution of Aminogenic Activity among Potential Autochthonous Starter Cultures for Dry Fermented Sausages ». Journal of Food Protection 73, no 3 (1 mars 2010) : 524–28. http://dx.doi.org/10.4315/0362-028x-73.3.524.

Texte intégral
Résumé :
Any bacterial strain to be used as starter culture should have suitable characteristics, including a lack of amino acid decarboxylase activity. In this study, the decarboxylase activity of 76 bacterial strains, including lactic acid bacteria and gram-positive, catalase-positive cocci, was investigated. These strains were previously isolated from European traditional fermented sausages to develop autochthonous starter cultures. Of all the strains tested, 48% of the lactic acid bacteria strains and 13% of gram-positive, catalase-positive cocci decarboxylated one or more amino acids. Aminogenic potential was strain dependent, although some species had a higher proportion of aminogenic strains than did others. Thus, all Lactobacillus curvatus strains and 70% of Lactobacillus brevis strains had the capacity to produce tyramine and β-phenylethylamine. Some strains also produced other aromatic amines, such as tryptamine and the diamines putrescine and cadaverine. All the enterococcal strains tested were decarboxylase positive, producing high amounts of tyramine and considerable amounts of β-phenylethylamine. None of the staphylococcal strains had tyrosine-decarboxylase activity, but some produced other amines. From the aminogenic point of view, Lactobacillus plantarum, Lactobacillus sakei, and Staphylococcus xylosus strains would be the most suitable for use as autochthonous starter cultures for traditional fermented sausages.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Itskovitz, Harold D., Yih-Huey Chen et Charles T. Stier. « Reciprocal renal effects of dopamine and 5-hydroxytryptamine formed within the rat kidney ». Clinical Science 75, no 5 (1 novembre 1988) : 503–7. http://dx.doi.org/10.1042/cs0750503.

Texte intégral
Résumé :
1. Clearance of inulin and p-aminohippurate and excretion of water and sodium were measured for eight to 11 clearance periods of 20 min duration in anaesthetized, 3% volume-expanded rats, before and after intravenous infusions of the amino acids l-dopa (l-3,4-dihydroxyphenylalanine) and 5-hydroxytryptophan. During the final two clearance periods, the peripheral decarboxylase inhibitor, carbidopa (S-α-hydrazino-3,4-dihydroxy-α-methylbenzenepropanoic acid monohydrate), was infused additionally. 2. Renal formation of dopamine (3,4-dihydroxyphenethylamine) and 5-hydroxytryptamine was demonstrated during infusions of l-dopa and 5-hydroxytryptophan, respectively; carbidopa blocked the renal formation of these biogenic amines. 3. During infusion of dopa, a diuresis and a natriuresis were observed; during the infusion of 5-hydroxytryptophan, slight reductions in clearances of inulin and p-aminohippurate, but significant reductions in sodium and water excretion, were measured. 4. The addition of carbidopa diminished diuretic and natriuretic responses to dopa as renal dopamine excretion decreased; the infusion of carbidopa also ameliorated the antinatriuretic and antidiuretic effects of 5-hydroxytryptophan, as 5-hydroxytryptamine excretion decreased. 5. Although dopa and 5-hydroxytryptophan are substrates for the same enzyme, aromatic l-amino-acid decarboxylase, simultaneous infusions of both amino acids at comparable rates gave no evidence of competitive inhibition of amine synthesis. However, the infusion of dopa, after 5-hydroxytryptophan, decreased its antinatriuretic and antidiuretic effects. 6. These data raise the possibility that dopamine and 5-hydroxytryptamine are formed as reciprocal intrarenal hormones by the identical enzyme, aromatic l-amino-acid decarboxylase, which is located within cells of the renal tubule.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zwagerman, Nathan T., et R. Mark Richardson. « Gene Therapy for Aromatic L-Amino Acid Decarboxylase Deficiency ». Neurosurgery 71, no 4 (octobre 2012) : N10—N12. http://dx.doi.org/10.1227/01.neu.0000419706.72039.5c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Hwu, W. L., S. i. Muramatsu, S. H. Tseng, K. Y. Tzen, N. C. Lee, Y. H. Chien, R. O. Snyder, B. J. Byrne, C. H. Tai et R. M. Wu. « Gene Therapy for Aromatic L-Amino Acid Decarboxylase Deficiency ». Science Translational Medicine 4, no 134 (16 mai 2012) : 134ra61. http://dx.doi.org/10.1126/scitranslmed.3003640.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Anselm, Irina A., et Basil T. Darras. « Catecholamine Toxicity in Aromatic l-Amino Acid Decarboxylase Deficiency ». Pediatric Neurology 35, no 2 (août 2006) : 142–44. http://dx.doi.org/10.1016/j.pediatrneurol.2006.01.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Bratland, Eirik, Anette S. Bøe Wolff, Jan Haavik, Olle Kämpe, Filip Sköldberg, Jaakko Perheentupa, Geir Bredholt, Per M. Knappskog et Eystein S. Husebye. « Epitope mapping of human aromatic l-amino acid decarboxylase ». Biochemical and Biophysical Research Communications 353, no 3 (février 2007) : 692–98. http://dx.doi.org/10.1016/j.bbrc.2006.12.080.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kondakova, O. B., K. A. Kazakova, A. A. Lyalina, N. V. Lapshina, A. A. Pushkov, N. N. Mazanova, Yu I. Davydova, D. I. Grebenkin, I. V. Kanivets et K. V. Savostyanov. « Family case of aromatic L-amino acid decarboxylase deficiency ». Neuromuscular Diseases 12, no 4 (13 décembre 2022) : 88–98. http://dx.doi.org/10.17650/2222-8721-2022-12-4-88-98.

Texte intégral
Résumé :
Aromatic L‑amino acid decarboxylase (AADC) deficiency is rare autosomal recessive neurometabolic disorder. It caused by generalized combined deficiency of serotonin, dopamine, norepinephrine and adrenaline. This disorder is characterized by muscular hypotonia, motor development delay, oculogyric crises and impairment of the autonomic nervous system.Laboratory diagnostic of AADC deficiency in Russian Federation includes determination of the concentration of 3‑O‑methyldophamine in dried blood spots by tandem mass spectrometry and molecular analysis of the DDC gene by Sanger sequencing or next generation sequencing.Therapy of AADC deficiency includes combination of drugs which increase the formation of dopamine, inhibit its reuptake and increase the residual activity of the enzyme. The first‑line drugs are selective dopamine agonists, monoamine oxidase inhibitors of type B and vitamin B6 supplements.We present the case of management and treatment of patients with AADC deficiency. The patient’s condition was improved by using of combination therapy with pyridoxal‑5‑phosphate, pramipexole and selegiline. Significant positive dynamics was achieved on pyridoxal‑5‑phosphate therapy for the first time.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Marchese, Francesca, Elena Faedo, Maria Stella Vari, Patrizia Bergonzini, Michele Iacomino, Azzurra Guerra, Laura Franceschetti et al. « Atypical Presentation of Aromatic L-Amino Acid Decarboxylase Deficiency with Developmental Epileptic Encephalopathy ». Journal of Pediatric Epilepsy 10, no 03 (9 février 2021) : 124–27. http://dx.doi.org/10.1055/s-0041-1723768.

Texte intégral
Résumé :
AbstractAromatic L-amino acid decarboxylase (AADC) deficiency is an autosomal recessive metabolic disorder resulting from disease-causing pathogenic variants of the dopa decarboxylase (DDC) gene. The neurological features of AADC deficiency include early-onset hypotonia, oculogyric crises, ptosis, dystonia, hypokinesia, impaired development, and autonomic dysfunction. In this article, we reported a patient with genetically confirmed AADC deficiency presenting with developmental epileptic encephalopathy (DEE). Our patient was a boy with severe intractable epileptic spasms and DEE. The patient was evaluated for cognitive and neurologic impairment. Exome sequencing revealed a homozygous mutation (NM_000790.4:c.121C > A; p.Leu41Met) in the DDC gene. This case expands the clinical spectrum of AADC deficiency and strengthens the association between dopa decarboxylase deficiency and epilepsy. Additional studies are warranted to clarify the mechanisms linking dopa decarboxylase dysfunction to DEE.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Boomsma, F., J. D. Meerwaldt, A. J. Manin't Veld, A. Hovestadt et M. A. D. H. Schalekamp. « Induction of aromatic-l-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism ». Annals of Neurology 25, no 6 (juin 1989) : 624–28. http://dx.doi.org/10.1002/ana.410250616.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Tsai, Chi-Ren, Hsiu-Fen Lee, Ching-Shiang Chi, Ming-Te Yang et Chia-Chi Hsu. « Antisense oligonucleotides modulate dopa decarboxylase function in aromatic l -amino acid decarboxylase deficiency ». Human Mutation 39, no 12 (12 octobre 2018) : 2072–82. http://dx.doi.org/10.1002/humu.23659.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Dršata, Jaroslav, et Eliška Marklová. « Metabolism of Tryptophan in the Liver : Interference with Decarboxylation of Other Aromatic Amino Acids ». Acta Medica (Hradec Kralove, Czech Republic) 43, no 1 (2000) : 15–17. http://dx.doi.org/10.14712/18059694.2019.111.

Texte intégral
Résumé :
Decarboxylation of aromatic amino acid in mammalian tissues is catalyzed by aromatic amino acid decarboxylase (EC. 4.1.1.28, AAD). The enzyme differs in its affinity to individual aromatic amino acids, the best substrates being 3,4-dihydroxyphenylalanine (dopa) and 5-hydroxytryptophan. Surprisingly, AAD is abundant in the liver, where the substrates with rather low affinity to AAD as tryptophan, phenylalanine, and tyrosine are offered to decarboxylation. In the present paper, the possibility of interference of tryptophan with decarboxylation of phenylalanine, tyrosine as well as dopa in the liver was investigated. The AAD activity was measured radiometrically with 1-14C-labeled aromatic amino acid substrates using the rat liver enzyme. The influence of tryptophan on decarboxylation of tyrosine was formally competitive with Ki = 9.2 x 10-3 M, while the inhibition of decarboxylation of phenylalanine by tryptophan was non-competitive with Ki at 2.75 x 10-2 M. The effect of tryptophan on decarboxylation of dopa was small and it could not be expressed in terms of inhibition kinetics and inhibition constant. At physiological concentrations of aromatic amino acids in plasma, tryptophan does not seem to have remarkable effects on decarboxylation of phenylalanine, tyrosine, and dopa in the liver.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lindström, Per, et Janove Sehlin. « Effects of substrates for aromatic L-amino acid decarboxylase on insulin secretion ». Acta Endocrinologica 116, no 1 (septembre 1987) : 21–26. http://dx.doi.org/10.1530/acta.0.1160021.

Texte intégral
Résumé :
Abstract. It has been shown that substrates for aromatic L-amino acid decarboxylase potentiate glucose-induced insulin release. Microdissected islets of obesehyperglycemic mice (Umeå ob/ob) have now been used in a study of the effects of decarboxylase substrates on insulin release induced by secretagogues other than glucose. L-5-hydroxytryptophan (L-5-HTP) at 4 mmol/l potentiated the effect of 1 μmol/l glibenclamide, 20 mmol/l D,L-glyceraldehyde or 20 mmol/l K+, but not that of 50 μmol/l chloromercuribenzene-p-sulphonic acid. The potentiating effect of 4 mmol/l L-5-HTP, 4 mmol/l D,L-m-tyrosine, or 4 mmol/l D,L-o-tyrosine on insulin release induced by 20 mmol/l L-leucine was inhibited by 0.1 mmol/l benserazide. Benserazide did not reduce the effect of 10 mmol/l L-glutamine on L-leucine-induced insulin release. L-dihydroxyphenyl-alanine inhibited glucose-induced insulin secretion at 0.1 mmol/l with a tendency towards a reduction also at lower concentrations. The findings support the hypothesis that increased activity of aromatic L-amino acid decarboxylase can stimulate islet B cell function.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Montioli, Riccardo, et Carla Borri Voltattorni. « Aromatic Amino Acid Decarboxylase Deficiency : The Added Value of Biochemistry ». International Journal of Molecular Sciences 22, no 6 (19 mars 2021) : 3146. http://dx.doi.org/10.3390/ijms22063146.

Texte intégral
Résumé :
Aromatic amino acid decarboxylase (AADC) deficiency is a rare, autosomal recessive neurometabolic disorder caused by mutations in the DDC gene, leading to a deficit of AADC, a pyridoxal 5′-phosphate requiring enzyme that catalyzes the decarboxylation of L-Dopa and L-5-hydroxytryptophan in dopamine and serotonin, respectively. Although clinical and genetic studies have given the major contribution to the diagnosis and therapy of AADC deficiency, biochemical investigations have also helped the comprehension of this disorder at a molecular level. Here, we reported the steps leading to the elucidation of the functional and structural features of the enzyme that were useful to identify the different molecular defects caused by the mutations, either in homozygosis or in heterozygosis, associated with AADC deficiency. By revisiting the biochemical data available on the characterization of the pathogenic variants in the purified recombinant form, and interpreting them on the basis of the structure-function relationship of AADC, it was possible: (i) to define the enzymatic phenotype of patients harboring pathogenic mutations and at the same time to propose specific therapeutic managements, and (ii) to identify residues and/or regions of the enzyme relevant for catalysis and/or folding of AADC.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Drsata, Jaroslav, Jitka Ulrichová et Danela Walterová. « Sanguinarine and Chelerythrine as Inhibitors of Aromatic Amino Acid Decarboxylase ». Journal of Enzyme Inhibition 10, no 4 (janvier 1996) : 231–37. http://dx.doi.org/10.3109/14756369609036530.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Hayashi, M., Y. Yamaji, W. Kitajima et T. Saruta. « Aromatic L-amino acid decarboxylase activity along the rat nephron ». American Journal of Physiology-Renal Physiology 258, no 1 (1 janvier 1990) : F28—F33. http://dx.doi.org/10.1152/ajprenal.1990.258.1.f28.

Texte intégral
Résumé :
Extraneural dopamine is thought to be synthesized by an aromatic L-amino acid decarboxylase (L-AADC) activity in tubular cells. However, the previous histochemical studies of this enzyme's localization in the nephron were not consistent. To determine the localization of L-AADC and whether changes in Na intake regulate this enzyme, L-AADC was measured in microdissected nephron segments from rat kidneys. Dopamine formed by isolated tubules incubated with exogenous L-dopa was quantitated by high-performance liquid chromatography (HPLC) and with the more sensitive radioenzyme assay (REA). L-AADC activity was present only in proximal convoluted (PCT, 208 +/- 19 ng.cm-1.h-1) and proximal straight tubules (PST, 81 +/- 9 ng.cm-1.h-1), whereas no significant activity was detected in other nephron segments by either HPLC or REA. Maximal velocity (Vmax) of L-AADC in a low-salt diet group (246 +/- 4 ng.cm-1.h-1) showed a small but a significant decrease (P less than 0.05) compared with control and high-salt diet groups (311 +/- 6 and 293 +/- 4 ng.cm-1.h-1, respectively), whereas the apparent Michaelis constant (Km) was similar in these three groups. These results show that L-AADC is present only in the PCT and PST of the rat nephron, and suggest that the changes in L-AADC activity may contribute to the regulation of extraneural dopamine production in the kidney during low-salt intake.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Rosato, Nicola, Giampiero Mei, Alessandro Finazzi-Agrò, Brunella Tancini et Carla Borri-Voltattorni. « Time-resolved extrinsic fluorescence of aromatic-l-amino-acid decarboxylase ». Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 996, no 3 (juillet 1989) : 195–98. http://dx.doi.org/10.1016/0167-4838(89)90247-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Brust, Peter, Reinhard Bauer, Gerd Vorwieger, Bernd Walter, Ralf Bergmann, Frank Füchtner, Jörg Steinbach, Ullrich Zwiener et Bernd Johannsen. « Upregulation of the Aromatic Amino Acid Decarboxylase under Neonatal Asphyxia ». Neurobiology of Disease 6, no 2 (avril 1999) : 131–39. http://dx.doi.org/10.1006/nbdi.1998.0232.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Rossetti, Zvani, Dimitrij Krajnc, Norton H. Neff et Maria Hadjiconstantinou. « Modulation of Retinal Aromatic l-Amino Acid Decarboxylase via ?2Adrenoceptors ». Journal of Neurochemistry 52, no 2 (février 1989) : 647–52. http://dx.doi.org/10.1111/j.1471-4159.1989.tb09169.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Gilbert, Judith A., Lori A. Bates et Matthew M. Ames. « Elevated aromatic-l-amino acid decarboxylase in human carcinoid tumors ». Biochemical Pharmacology 50, no 6 (septembre 1995) : 845–50. http://dx.doi.org/10.1016/0006-2952(95)02006-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Zhu, M.-Y., et A. V. Juorio. « Aromatic l-amino acid decarboxylase : Biological characterization and functional role ». General Pharmacology : The Vascular System 26, no 4 (juillet 1995) : 681–96. http://dx.doi.org/10.1016/0306-3623(94)00223-a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ide, Shuhei, Masayuki Sasaki, Mitsuhiro Kato, Takashi Shiihara, Satoru Kinoshita, Jun-ya Takahashi et Yu-ichi Goto. « Abnormal glucose metabolism in aromatic l-amino acid decarboxylase deficiency ». Brain and Development 32, no 6 (juin 2010) : 506–10. http://dx.doi.org/10.1016/j.braindev.2009.05.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lindström, Per. « Aromatic-l-amino-acid decarboxylase activity in mouse pancreatic islets ». Biochimica et Biophysica Acta (BBA) - General Subjects 884, no 2 (novembre 1986) : 276–81. http://dx.doi.org/10.1016/0304-4165(86)90174-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Boomsma, Frans, Fred A. J. van der Hoorn et Maarten A. D. H. Schalekamp. « Determination of aromatic-l-amino acid decarboxylase in human plasma ». Clinica Chimica Acta 159, no 2 (septembre 1986) : 173–83. http://dx.doi.org/10.1016/0009-8981(86)90050-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kwiatkowska, Agnieszka, Magdalena Staniec, Agata Rocka, Dominika Psiuk, Emilia Nowak et Agata Filip. « Gene therapy in the treatment of aromatic L -amino acid decarboxylase deficiency ». Pediatria i Medycyna Rodzinna 17, no 4 (31 décembre 2021) : 315–17. http://dx.doi.org/10.15557/pimr.2021.0050.

Texte intégral
Résumé :
Aromatic L-amino acid decarboxylase deficiency is an autosomal recessive neurodevelopmental disorder caused by pathogenic variants of the DDC gene. The disease manifests already in newborns and infants. The presentation includes neurological symptoms, a significant delay in motor development and oculogyric crisis. Currently, gene therapy is successfully used in the treatment of aromatic L-amino acid decarboxylase deficiency. Until recently, no effective treatment for the disorder was known. The affected children died in the first decades of life. Gene therapy is a new and promising therapeutic strategy. The first genetic therapies for aromatic L-amino acid decarboxylase deficiency were implemented in the United States. The treated children recovered very quickly, began to sit up, stand, and even attempted to walk. For the first time in Europe, this method was used in 2019 in Poland, at the Interventional NeuroTherapy Centre at Bródno Hospital in Warsaw, with the involvement of a team of specialists under the leadership of Professor Mirosław Ząbek and Professor Krzysztof Bankiewicz. The therapy involves a real-time magnetic resonance imaging-guided introduction of a copy of the defective gene directly into the substantia nigra and the ventral tegmental area. Spectacular changes were observed in the first Polish patients treated with this innovative method. The children began to raise their heads soon after the procedure. Early accurate diagnosis and prompt implementation of appropriate treatment can minimise the consequences of deficient neurotransmitters in paediatric patients. This can be achieved with gene therapy, which is a chance for children affected by this rare disease.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Flores, Leo Garcia, Keiichi Kawai, Mamoru Nakagawa, Naoto Shikano, Seishi Jinnouchi, Shozo Tamura, Katsushi Watanabe et Akiko Kubodera. « A New Radiopharmaceutical for the Cerebral Dopaminergic Presynaptic Function : 6-Radioiodinated l-meta-Tyrosine ». Journal of Cerebral Blood Flow & ; Metabolism 20, no 1 (janvier 2000) : 207–12. http://dx.doi.org/10.1097/00004647-200001000-00026.

Texte intégral
Résumé :
Geometric isomers of radioiodinated l- meta-tyrosine, 6-[I-125]iodo-and 4-[I-125]iodo-l- meta-tyrosine (6-I-l-mTyr, 4-I-l-mTyr) were separated by high-performance liquid chromatography. Both 6-I- and 4-I-l-mTyr had high energy-dependent brain accumulation. 6-I- and 4-I-l-mTyr were also metabolically stable and were rapidly excreted through the urine. 6-I-l-mTyr had a predilection for the cerebral aromatic l-amino acid decarboxylase (DOPA decarboxylase), the final enzyme of dopamine biosynthesis. 6-Radioiodinated l-mTyr is a new radiopharmaceutical that can be both useful in assessing cerebral amino acid transport mechanism and quantifying metabolically active DOPA decarboxylase.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Torrens-Spence, Michael P., Ying-Chih Chiang, Tyler Smith, Maria A. Vicent, Yi Wang et Jing-Ke Weng. « Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins ». Proceedings of the National Academy of Sciences 117, no 20 (5 mai 2020) : 10806–17. http://dx.doi.org/10.1073/pnas.1920097117.

Texte intégral
Résumé :
Radiation of the plant pyridoxal 5′-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Lamers, Karel JB, et Ron A. Wevers. « Abnormalities of biogenic amines affecting the metabolism of serotonin and catecholamines ». Multiple Sclerosis Journal 4, no 1 (février 1998) : 37–38. http://dx.doi.org/10.1177/135245859800400109.

Texte intégral
Résumé :
This paper describes the relevance of measuring biogenic amine metabolites in cerebrospinal fluid in order to detect inborn errors affecting catecholamines and serotonin biosynthesis. Defects in tetrahydrobiopterin and a deficiency of aromatic L-amino acid decarboxylase, tyrosine hydroxylase or dopamine-b-hydroxylase are candidate inborn errors for neurotransmitter matabolites screening. This investigation has to be considered in any child with motor retardation and extrapyramidal signs.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Peracchi, Alessio, Andrea Mozzarelli, Gian Luigi Rossi, Paola Dominicit et Carla Borri Voltattornit. « Single Crystal Polarized Absorption Microspectrophotometry of Aromatic L-Amino Acid Decarboxylase ». Protein & ; Peptide Letters 1, no 2 (septembre 1994) : 98–105. http://dx.doi.org/10.2174/0929866501666220424132804.

Texte intégral
Résumé :
Microspectrophotometric measurements on single crystals of aromatic amino acid decarboxylase from pig kidney show that the enzyme -bound pyridoxal-5'-phosphate exhibits the same spectrum in the crystal as it does in solution. Substrates and substrate analogs diffuse into the crystal and bind at the active site giving rise to spectral changes similar to those previously observed for the enzyme in solution. These studies indicate that the crystallization of pig kidney AADC does not alter the properties of the active site.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Husebye, E. S., A. S. Bøe, F. Rorsman, O. Kämpe, A. Aakvaag, T. Rygh, T. Flatmark et J. Haavik. « Inhibition of aromatic l -amino acid decarboxylase activity by human autoantibodies ». Clinical & ; Experimental Immunology 120, no 3 (8 juin 2000) : 420–23. http://dx.doi.org/10.1046/j.1365-2249.2000.01250.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Swoboda, K. J., K. Hyland, D. S. Goldstein, K. C. K. Kuban, L. A. Arnold, C. S. Holmes et H. L. Levy. « Clinical and therapeutic observations in aromatic L-amino acid decarboxylase deficiency ». Neurology 53, no 6 (1 octobre 1999) : 1205. http://dx.doi.org/10.1212/wnl.53.6.1205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Tehranian, Roya, Susana E. Montoya, Amber D. Van Laar, Teresa G. Hastings et Ruth G. Perez. « Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells ». Journal of Neurochemistry 99, no 4 (novembre 2006) : 1188–96. http://dx.doi.org/10.1111/j.1471-4159.2006.04146.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Hoefig, Carolin S., Kostja Renko, Susanne Piehl, Thomas S. Scanlan, Mariarita Bertoldi, Thomas Opladen, Georg Friedrich Hoffmann et al. « Does the aromatic l-amino acid decarboxylase contribute to thyronamine biosynthesis ? » Molecular and Cellular Endocrinology 349, no 2 (février 2012) : 195–201. http://dx.doi.org/10.1016/j.mce.2011.10.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Taketoshi, Masato, Yoshiyuki Horio, Ikuo Imamura, Tatsuya Tanaka, Hiroyuki Fukui et Hiroshi Wada. « Molecular cloning of guinea-pig aromatic-L-amino acid decarboxylase cDNA ». Biochemical and Biophysical Research Communications 170, no 3 (août 1990) : 1229–35. http://dx.doi.org/10.1016/0006-291x(90)90525-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Brun, L., L. H. Ngu, W. T. Keng, G. S. Ch'ng, Y. S. Choy, W. L. Hwu, W. T. Lee et al. « Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency ». Neurology 75, no 1 (5 juillet 2010) : 64–71. http://dx.doi.org/10.1212/wnl.0b013e3181e620ae.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Neff, Norton H., Trina A. Wemlinger, Anne-Marie Duchemin et Maria Hadjiconstantinou. « Clozapine Modulates Aromatic l-Amino Acid Decarboxylase Activity in Mouse Striatum ». Journal of Pharmacology and Experimental Therapeutics 317, no 2 (13 janvier 2006) : 480–87. http://dx.doi.org/10.1124/jpet.105.097972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Duchemin, Anne-Marie, Norton H. Neff et Maria Hadjiconstantinou. « Aromatic l-amino acid decarboxylase phosphorylation and activation by PKGIαin vitro ». Journal of Neurochemistry 114, no 2 (29 avril 2010) : 542–52. http://dx.doi.org/10.1111/j.1471-4159.2010.06784.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Dominici, P., P. S. Moore et C. B. Voltattorni. « Modified Purification of L-Aromatic Amino Acid Decarboxylase from Pig Kidney ». Protein Expression and Purification 4, no 4 (août 1993) : 345–47. http://dx.doi.org/10.1006/prep.1993.1045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kitahama, Kunio, Michel Denoyer, Brigitte Raynaud, Carla Borri-Voltattorni, Michel Weber et Michel Jouvet. « Immunohistochemistry of aromatic L-amino acid decarboxylase in the cat forebrain ». Journal of Comparative Neurology 270, no 3 (15 avril 1988) : 337–53. http://dx.doi.org/10.1002/cne.902700304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Li, Xin-Min, Augusto V. Juorio, Jin Qi et Alan A. Boulton. « Amantadine increases aromatic 1L-amino acid decarboxylase mRNA in PC12 cells ». Journal of Neuroscience Research 53, no 4 (15 août 1998) : 490–93. http://dx.doi.org/10.1002/(sici)1097-4547(19980815)53:4<490 ::aid-jnr11>3.0.co;2-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Chang, Yuh Terng, Radhakant Sharma, J. Lawrence Marsh, John D. McPherson, Joey A. Bedell, Andreas Knust, Christa Bräutigam, Georg F. Hoffmann et Keith Hyland. « Levodopa-responsive aromaticL-amino acid decarboxylase deficiency ». Annals of Neurology 55, no 3 (20 février 2004) : 435–38. http://dx.doi.org/10.1002/ana.20055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie