Articles de revues sur le sujet « Arabinoxylooligosaccharide »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Arabinoxylooligosaccharide.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 24 meilleurs articles de revues pour votre recherche sur le sujet « Arabinoxylooligosaccharide ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Yamada, Hideaki, Kiwamu Shiiba, Hiroyuki Hara, Nobuaki Ishida, Takashi Sasaki et Hajime Taniguchi. « Preparation of a New Arabinoxylooligosaccharide from Wheat Bran Hemicellulose and Its Structure ». Bioscience, Biotechnology, and Biochemistry 58, no 2 (janvier 1994) : 288–92. http://dx.doi.org/10.1271/bbb.58.288.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fushinobu, Shinya, et Maher Abou Hachem. « Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes ». Biochemical Society Transactions 49, no 2 (5 mars 2021) : 563–78. http://dx.doi.org/10.1042/bst20200163.

Texte intégral
Résumé :
Bifidobacteria have attracted significant attention because they provide health-promoting effects in the human gut. In this review, we present a current overview of the three-dimensional structures of bifidobacterial proteins involved in carbohydrate uptake, degradation, and metabolism. As predominant early colonizers of the infant's gut, distinct bifidobacterial species are equipped with a panel of transporters and enzymes specific for human milk oligosaccharides (HMOs). Interestingly, Bifidobacterium bifidum and Bifidobacterium longum possess lacto-N-biosidases with unrelated structural folds to release the disaccharide lacto-N-biose from HMOs, suggesting the convergent evolution of this activity from different ancestral proteins. The crystal structures of enzymes that confer the degradation of glycans from the mucin glycoprotein layer provide a structural basis for the utilization of this sustainable nutrient in the gastrointestinal tract. The utilization of several plant dietary oligosaccharides has been studied in detail, and the prime importance of oligosaccharide-specific ATP-binding cassette (ABC) transporters in glycan utilisations by bifidobacteria has been revealed. The structural elements underpinning the high selectivity and roles of ABC transporter binding proteins in establishing competitive growth on preferred oligosaccharides are discussed. Distinct ABC transporters are conserved across several bifidobacterial species, e.g. those targeting arabinoxylooligosaccharide and α-1,6-galactosides/glucosides. Less prevalent transporters, e.g. targeting β-mannooligosaccharides, may contribute to the metabolic specialisation within Bifidobacterium. Some bifidobacterial species have established symbiotic relationships with humans. Structural studies of carbohydrate-utilizing systems in Bifidobacterium have revealed the interesting history of molecular coevolution with the host, as highlighted by the early selection of bifidobacteria by mucin and breast milk glycans.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Leschonski, Kai P., Svend G. Kaasgaard, Nikolaj Spodsberg, Kristian B. R. M. Krogh et Mirjam A. Kabel. « Two Subgroups within the GH43_36 α-l-Arabinofuranosidase Subfamily Hydrolyze Arabinosyl from Either Mono-or Disubstituted Xylosyl Units in Wheat Arabinoxylan ». International Journal of Molecular Sciences 23, no 22 (9 novembre 2022) : 13790. http://dx.doi.org/10.3390/ijms232213790.

Texte intégral
Résumé :
Fungal arabinofuranosidases (ABFs) catalyze the hydrolysis of arabinosyl substituents (Ara) and are key in the interplay with other glycosyl hydrolases to saccharify arabinoxylans (AXs). Most characterized ABFs belong to GH51 and GH62 and are known to hydrolyze the linkage of α-(1→2)-Ara and α-(1→3)-Ara in monosubstituted xylosyl residues (Xyl) (ABF-m2,3). Nevertheless, in AX a substantial number of Xyls have two Aras (i.e., disubstituted), which are unaffected by ABFs from GH51 and GH62. To date, only two fungal enzymes have been identified (in GH43_36) that specifically release the α-(1→3)-Ara from disubstituted Xyls (ABF-d3). In our research, phylogenetic analysis of available GH43_36 sequences revealed two major clades (GH43_36a and GH43_36b) with an expected substrate specificity difference. The characterized fungal ABF-d3 enzymes aligned with GH43_36a, including the GH43_36 from Humicola insolens (HiABF43_36a). Hereto, the first fungal GH43_36b (from Talaromyces pinophilus) was cloned, purified, and characterized (TpABF43_36b). Surprisingly, TpABF43_36b was found to be active as ABF-m2,3, albeit with a relatively low rate compared to other ABFs tested, and showed minor xylanase activity. Novel specificities were also discovered for the HiABF43_36a, as it also released α-(1→2)-Ara from a disubstitution on the non-reducing end of an arabinoxylooligosaccharide (AXOS), and it was active to a lesser extent as an ABF-m2,3 towards AXOS when the Ara was on the second xylosyl from the non-reducing end. In essence, this work adds new insights into the biorefinery of agricultural residues.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dotsenko, Gleb, Michael Krogsgaard Nielsen et Lene Lange. « Statistical model semiquantitatively approximates arabinoxylooligosaccharides' structural diversity ». Carbohydrate Research 426 (mai 2016) : 9–14. http://dx.doi.org/10.1016/j.carres.2016.03.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Swennen, Katrien, Christophe M. Courtin, Geert CJE Lindemans et Jan A. Delcour. « Large-scale production and characterisation of wheat bran arabinoxylooligosaccharides ». Journal of the Science of Food and Agriculture 86, no 11 (2006) : 1722–31. http://dx.doi.org/10.1002/jsfa.2470.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Eeckhaut, V., F. Van Immerseel, J. Dewulf, F. Pasmans, F. Haesebrouck, R. Ducatelle, C. M. Courtin, J. A. Delcour et W. F. Broekaert. « Arabinoxylooligosaccharides from Wheat Bran Inhibit Salmonella Colonization in Broiler Chickens ». Poultry Science 87, no 11 (novembre 2008) : 2329–34. http://dx.doi.org/10.3382/ps.2008-00193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Courtin, Christophe M., Katrien Swennen, Priscilla Verjans et Jan A. Delcour. « Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides ». Food Chemistry 112, no 4 (15 février 2009) : 831–37. http://dx.doi.org/10.1016/j.foodchem.2008.06.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

SWENNEN, K., C. COURTIN, B. VANDERBRUGGEN, C. VANDECASTEELE et J. DELCOUR. « Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures ». Carbohydrate Polymers 62, no 3 (1 décembre 2005) : 283–92. http://dx.doi.org/10.1016/j.carbpol.2005.08.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Courtin, Christophe M., Willem F. Broekaert, Katrien Swennen, Olivier Lescroart, Okanlawon Onagbesan, Johan Buyse, Eddy Decuypere et al. « Dietary Inclusion of Wheat Bran Arabinoxylooligosaccharides Induces Beneficial Nutritional Effects in Chickens ». Cereal Chemistry Journal 85, no 5 (septembre 2008) : 607–13. http://dx.doi.org/10.1094/cchem-85-5-0607.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Van Craeyveld, Valerie, Katrien Swennen, Emmie Dornez, Tom Van de Wiele, Massimo Marzorati, Willy Verstraete, Yasmine Delaedt et al. « Structurally Different Wheat-Derived Arabinoxylooligosaccharides Have Different Prebiotic and Fermentation Properties in Rats ». Journal of Nutrition 138, no 12 (1 décembre 2008) : 2348–55. http://dx.doi.org/10.3945/jn.108.094367.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Scarpellini, E., E. Deloose, R. Vos, I. Francois, J. A. Delcour, W. F. Broekaert, K. Verbeke et J. Tack. « The effect of arabinoxylooligosaccharides on upper gastroduodenal motility and hunger ratings in humans ». Neurogastroenterology & ; Motility 30, no 7 (13 février 2018) : e13306. http://dx.doi.org/10.1111/nmo.13306.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Gullón, Beatriz, Patricia Gullón, Freni Tavaria, Manuela Pintado, Ana Maria Gomes, José Luis Alonso et Juan Carlos Parajó. « Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran ». Journal of Functional Foods 6 (janvier 2014) : 438–49. http://dx.doi.org/10.1016/j.jff.2013.11.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Scarpellini, E., E. Deloose, R. Vos, I. E. J. A. Francois, J. A. Delcour, W. F. Broekaert, K. Verbeke et J. Tack. « The effect of arabinoxylooligosaccharides on gastric sensory-motor function and nutrient tolerance in man ». Neurogastroenterology & ; Motility 28, no 8 (20 mai 2016) : 1194–203. http://dx.doi.org/10.1111/nmo.12819.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Mendis, Mihiri, Eric C. Martens et Senay Simsek. « How Fine Structural Differences of Xylooligosaccharides and Arabinoxylooligosaccharides Regulate Differential Growth of Bacteroides Species ». Journal of Agricultural and Food Chemistry 66, no 31 (4 juin 2018) : 8398–405. http://dx.doi.org/10.1021/acs.jafc.8b01263.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Bouiche, Cilia, Nawel Boucherba, Said Benallaoua, Josefina Martinez, Pilar Diaz, F. I. Javier Pastor et Susana V. Valenzuela. « Differential antioxidant activity of glucuronoxylooligosaccharides (UXOS) and arabinoxylooligosaccharides (AXOS) produced by two novel xylanases ». International Journal of Biological Macromolecules 155 (juillet 2020) : 1075–83. http://dx.doi.org/10.1016/j.ijbiomac.2019.11.073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Rose, Devin J., et George E. Inglett. « Two-Stage Hydrothermal Processing of Wheat (Triticum aestivum) Bran for the Production of Feruloylated Arabinoxylooligosaccharides ». Journal of Agricultural and Food Chemistry 58, no 10 (26 mai 2010) : 6427–32. http://dx.doi.org/10.1021/jf100058v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Falck, Peter, Javier A. Linares-Pastén, Eva Nordberg Karlsson et Patrick Adlercreutz. « Arabinoxylanase from glycoside hydrolase family 5 is a selective enzyme for production of specific arabinoxylooligosaccharides ». Food Chemistry 242 (mars 2018) : 579–84. http://dx.doi.org/10.1016/j.foodchem.2017.09.048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Cloetens, Lieselotte, Vicky De Preter, Katrien Swennen, Willem F. Broekaert, Christophe M. Courtin, Jan A. Delcour, Paul Rutgeerts et Kristin Verbeke. « Dose-Response Effect of Arabinoxylooligosaccharides on Gastrointestinal Motility and on Colonic Bacterial Metabolism in Healthy Volunteers ». Journal of the American College of Nutrition 27, no 4 (août 2008) : 512–18. http://dx.doi.org/10.1080/07315724.2008.10719733.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Gómez, Belén, Beatriz Míguez, Adán Veiga, Juan Carlos Parajó et José Luís Alonso. « Production, Purification, and in Vitro Evaluation of the Prebiotic Potential of Arabinoxylooligosaccharides from Brewer’s Spent Grain ». Journal of Agricultural and Food Chemistry 63, no 38 (15 septembre 2015) : 8429–38. http://dx.doi.org/10.1021/acs.jafc.5b03132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Gruska, Radosław Michał, Andrzej Baryga, Alina Kunicka-Styczyńska, Stanisław Brzeziński, Justyna Rosicka-Kaczmarek, Karolina Miśkiewicz et Teresa Sumińska. « Fresh and Stored Sugar Beet Roots as a Source of Various Types of Mono- and Oligosaccharides ». Molecules 27, no 16 (11 août 2022) : 5125. http://dx.doi.org/10.3390/molecules27165125.

Texte intégral
Résumé :
Although sugar beets are primarily treated as a source of sucrose, due to their rich chemical composition, they can also be a source of other carbohydrates, e.g., mono- and oligosaccharides. The study focused on both fresh beet roots and those stored in mounds. Our studies have shown that, in addition to sucrose, sugar beet tissue also comprises other carbohydrates: kestose (3.39%) and galactose (0.65%) and, in smaller amounts, glucose, trehalose and raffinose. The acidic hydrolysis of the watery carbohydrates extracts resulted in obtaining significant amounts of glucose (8.37%) and arabinose (3.11%) as well as xylose and galactose and, in smaller amounts, mannose. An HPSEC liquid chromatography study of the molecular mass profile of the carbohydrate compounds present in the beet roots showed alongside the highest percentage (96.53–97.43%) of sucrose (0.34 kDa) the presence of pectin compounds from the araban group and arabinoxylooligosaccharides (5–9 kDa) with a percentage share of 0.61 to 1.87%. On the basis of our research, beet roots can be considered a potential source of carbohydrates, such as kestose, which is classified as fructooligosaccharide (FOS). The results of this study may be helpful in evaluating sugar beets as a direct source of various carbohydrates, or as a raw material for the biosynthesis of fructooligosaccharides (FOS) or galactooligosaccharides (GOS).
Styles APA, Harvard, Vancouver, ISO, etc.
21

Mathew, Sindhu, Anna Aronsson, Eva Nordberg Karlsson et Patrick Adlercreutz. « Xylo- and arabinoxylooligosaccharides from wheat bran by endoxylanases, utilisation by probiotic bacteria, and structural studies of the enzymes ». Applied Microbiology and Biotechnology 102, no 7 (14 février 2018) : 3105–20. http://dx.doi.org/10.1007/s00253-018-8823-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Sawhney, Neha, et James F. Preston. « GH51 Arabinofuranosidase and Its Role in the Methylglucuronoarabinoxylan Utilization System in Paenibacillus sp. Strain JDR-2 ». Applied and Environmental Microbiology 80, no 19 (25 juillet 2014) : 6114–25. http://dx.doi.org/10.1128/aem.01684-14.

Texte intégral
Résumé :
ABSTRACTMethylglucuronoarabinoxylan (MeGAXn) from agricultural residues and energy crops is a significant yet underutilized biomass resource for production of biofuels and chemicals. Mild thermochemical pretreatment of bagasse yields MeGAXnrequiring saccharifying enzymes for conversion to fermentable sugars. A xylanolytic bacterium,Paenibacillussp. strain JDR-2, produces an extracellular cell-associated GH10 endoxylanse (XynA1) which efficiently depolymerizes methylglucuronoxylan (MeGXn) from hardwoods coupled with assimilation of oligosaccharides for further processing by intracellular GH67 α-glucuronidase, GH10 endoxylanase, and GH43 β-xylosidase. This process has been ascribed to genes that comprise a xylan utilization regulon that encodes XynA1and includes a gene cluster encoding transcriptional regulators, ABC transporters, and intracellular enzymes that convert assimilated oligosaccharides to fermentable sugars. Here we show thatPaenibacillussp. JDR-2 utilized MeGAXnwithout accumulation of oligosaccharides in the medium. ThePaenibacillussp. JDR-2 growth rate on MeGAXnwas 3.1-fold greater than that on oligosaccharides generated from MeGAXnby XynA1. Candidate genes encoding GH51 arabinofuranosidases with potential roles were identified. Following growth on MeGAXn, quantitative reverse transcription-PCR identified a cluster of genes encoding a GH51 arabinofuranosidase (AbfB) and transcriptional regulators which were coordinately expressed along with the genes comprising the xylan utilization regulon. The action of XynA1on MeGAXngenerated arabinoxylobiose, arabinoxylotriose, xylobiose, xylotriose, and methylglucuronoxylotriose. Recombinant AbfB processed arabinoxylooligosaccharides to xylooligosaccharides and arabinose. MeGAXnprocessing byPaenibacillussp. JDR-2 may be achieved by extracellular depolymerization by XynA1coupled to assimilation of oligosaccharides and further processing by intracellular enzymes, including AbfB.Paenibacillussp. JDR-2 provides a GH10/GH67 system complemented with genes encoding intracellular GH51 arabinofuranosidases for efficient utilization of MeGAXn.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Fuhren, Jori, Christiane Rösch, Maud ten Napel, Henk A. Schols et Michiel Kleerebezem. « Synbiotic Matchmaking in Lactobacillus plantarum : Substrate Screening and Gene-Trait Matching To Characterize Strain-Specific Carbohydrate Utilization ». Applied and Environmental Microbiology 86, no 18 (17 juillet 2020). http://dx.doi.org/10.1128/aem.01081-20.

Texte intégral
Résumé :
ABSTRACT Synbiotics are food supplements that combine probiotics and prebiotics to synergistically elicit a health effect in humans. Lactobacillus plantarum exhibits remarkable genetic and phenotypic diversity, in particular in strain-specific carbohydrate utilization capacities, and several strains are marketed as probiotics. We have screened 77 L. plantarum strains for their abilities to utilize specific prebiotic fibers, revealing variable and strain-specific growth efficiencies on isomalto- and galactooligosaccharides. We identified a single strain within the screening panel that was able to effectively utilize inulin and fructooligosaccharides (FOS), which did not support efficient growth of the rest of the strains. In the panel we tested, we did not find strains that could utilize arabinoxylooligosaccharides or sulfated fucoidan. The strain-specific growth phenotype on isomaltooligosaccharides was further analyzed using high-performance anion-exchange chromatography, which revealed distinct substrate utilization phenotypes within the strain panel. The strain-specific phenotypes could be linked to the strains’ genotypes by identifying gene clusters coding for carbohydrate membrane transport systems that are predicted to be involved in the utilization of isomaltose and other (unidentified) oligosaccharides in the isomaltooligosaccharide substrate. IMPORTANCE Synbiotics combine prebiotics and probiotics to synergistically enhance the health benefits associated with these ingredients. Lactobacillus plantarum is encountered as a natural inhabitant of the gastrointestinal tract, and specific strains are marketed as probiotics based on their strain-specific health-promoting activities. Strain-specific stimulation of growth through prebiotic substrates could enhance the persistence and/or activity of L. plantarum in situ. Our study establishes a high-throughput screening model for prebiotic substrate utilization by individual strains of bacteria, which can be readily employed for synbiotic matchmaking approaches that aim to enhance the intestinal delivery of probiotics through strain-specific, selective growth stimulation.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Saito, Yuki, Akira Shigehisa, Yohei Watanabe, Naoki Tsukuda, Kaoru Moriyama-Ohara, Taeko Hara, Satoshi Matsumoto, Hirokazu Tsuji et Takahiro Matsuki. « Multiple Transporters and Glycoside Hydrolases Are Involved in Arabinoxylan-Derived Oligosaccharide Utilization in Bifidobacterium pseudocatenulatum ». Applied and Environmental Microbiology 86, no 24 (9 octobre 2020). http://dx.doi.org/10.1128/aem.01782-20.

Texte intégral
Résumé :
ABSTRACT Arabinoxylan hydrolysates (AXH) are the hydrolyzed products of the major components of the dietary fiber arabinoxylan. AXH include diverse oligosaccharides varying in xylose polymerization and side residue modifications with arabinose at the O-2 and/or O-3 position of the xylose unit. Previous studies have reported that AXH exhibit prebiotic properties on gut bifidobacteria; moreover, several adult-associated bifidobacterial species (e.g., Bifidobacterium adolescentis and Bifidobacterium longum subsp. longum) are known to utilize AXH. In this study, we tried to elucidate the molecular mechanisms of AXH utilization by Bifidobacterium pseudocatenulatum, which is a common bifidobacterial species found in adult feces. We performed transcriptomic analysis of B. pseudocatenulatum YIT 4072T, which identified three upregulated gene clusters during AXH utilization. The gene clusters encoded three sets of ATP-binding cassette (ABC) transporters and five enzymes belonging to glycoside hydrolase family 43 (GH43). By characterizing the recombinant proteins, we found that three solute-binding proteins of ABC transporters showed either broad or narrow specificity, two arabinofuranosidases hydrolyzed either single- or double-decorated arabinoxylooligosaccharides, and three xylosidases exhibited functionally identical activity. These data collectively suggest that the transporters and glycoside hydrolases, encoded in the three gene clusters, work together to utilize AXH of different sizes and with different side residue modifications. Thus, our study sheds light on the overall picture of how these proteins collaborate for the utilization of AXH in B. pseudocatenulatum and may explain the predominance of this symbiont species in the adult human gut. IMPORTANCE Bifidobacteria commonly reside in the human intestine and possess abundant genes involved in carbohydrate utilization. Arabinoxylan hydrolysates (AXH) are hydrolyzed products of arabinoxylan, one of the most abundant dietary fibers, and they include xylooligosaccharides and those decorated with arabinofuranosyl residues. The molecular mechanism by which B. pseudocatenulatum, a common bifidobacterial species found in adult feces, utilizes structurally and compositionally variable AXH has yet to be extensively investigated. In this study, we identified three gene clusters (encoding five GH43 enzymes and three solute-binding proteins of ABC transporters) that were upregulated in B. pseudocatenulatum YIT 4072T during AXH utilization. By investigating their substrate specificities, we revealed how these proteins are involved in the uptake and degradation of AXH. These molecular insights may provide a better understanding of how resident bifidobacteria colonize the colon.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie