Littérature scientifique sur le sujet « Aqueous and non-aqueous »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Aqueous and non-aqueous ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Aqueous and non-aqueous"

1

Majidzade, V. A. « ELECTROREDUCTION OF THIOSULPHATE IONS FROM NON-AQUEOUS SOLUTIONS ». Azerbaijan Chemical Journal, no 2 (18 juin 2020) : 61–66. http://dx.doi.org/10.32737/0005-2531-2020-2-61-66.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Voronina, Yuliya, Yuliya Krylova et Anastasiya Tereshko. « Development of aqueous phase formulation for non-toxic paints ». From Chemistry Towards Technology Step-By-Step 4, no 2 (23 juin 2023) : 77–81. http://dx.doi.org/10.52957/2782-1900-2024-4-2-77-81.

Texte intégral
Résumé :
The paper presents a well-proven formulation for the production of aqueous phase for non-toxic paints. The authors investigated the rheological properties of the aqueous phase depending on the ratio of the components. The authors studied the effect of a thickener (FLOGEL 700) on the rheological characteristics of the aqueous phase and estimated the best pH value of the aqueous phase
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ashokkumar, Muthupandian, et Franz Grieser. « Sonophotoluminescence from aqueous and non-aqueous solutions ». Ultrasonics Sonochemistry 6, no 1-2 (mars 1999) : 1–5. http://dx.doi.org/10.1016/s1350-4177(98)00038-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dordick, Jonathan S. « Non-aqueous enzymology ». Current Opinion in Biotechnology 2, no 3 (juin 1991) : 401–7. http://dx.doi.org/10.1016/s0958-1669(05)80146-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Quitmeyer, Joann. « pH Measurement in aqueous and non-aqueous solutions ». Metal Finishing 106, no 10 (octobre 2008) : 21–24. http://dx.doi.org/10.1016/s0026-0576(08)00036-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Marcus, Yizhak. « Tetraalkylammonium Ions in Aqueous and Non-aqueous Solutions ». Journal of Solution Chemistry 37, no 8 (6 juin 2008) : 1071–98. http://dx.doi.org/10.1007/s10953-008-9291-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Huang, Jianhang, Xiaoli Dong, Nan Wang et Yonggang Wang. « Building low-temperature batteries : Non-aqueous or aqueous electrolyte ? » Current Opinion in Electrochemistry 33 (juin 2022) : 100949. http://dx.doi.org/10.1016/j.coelec.2022.100949.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sirén, Heli, Tarja Hiissa et Yuan Min. « Aqueous and non-aqueous capillary electrophoresis of polar drugs ». Analyst 125, no 9 (2000) : 1561–68. http://dx.doi.org/10.1039/a910305h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Callaghan, I. C., F. T. Lawrence et P. M. Melton. « An equation describing aqueous and non-aqueous foam collapse ». Colloid & ; Polymer Science 264, no 5 (mai 1986) : 423–34. http://dx.doi.org/10.1007/bf01419546.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tager, A. A., et A. P. Safronov. « Complexing in aqueous and non-aqueous solutions of polyvinylazoles ». Polymer Science U.S.S.R. 33, no 1 (janvier 1991) : 66–73. http://dx.doi.org/10.1016/0032-3950(91)90271-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Aqueous and non-aqueous"

1

Arslanargin, Ayse. « Ion solvation in aqueous and non-aqueous solvents ». University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439281594.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bakri, Ridla. « Non-aqueous polyvanadate chemistry ». Thesis, University of Newcastle Upon Tyne, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Seguin, Caroline MicheÌ€le Pascale. « Surfactant behavior in aqueous and non-aqueous glycol solvent mixtures ». Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439959.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dave, Hiteshkumar Rajeshkumar. « Self Assembly In Aqueous And Non-aqueous Sugar-Oil Mixtures ». University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1229737030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Movaghgharnezhad, Shirin. « Electrodeposition of CuGaS2 from Aqueous and Non-aqueous Electrolyte Mixtures ». OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2251.

Texte intégral
Résumé :
Shirin Movaghgharnezhad for the master of science degree in mechanical engineering, presented on November 6, 2017, at Southern Illinois University Carbondale. TITLE: Electrodeposition of CuGaS2 from Aqueous and Non-Aqueous Electrolyte Mixtures MAJOR PROFESSOR: Dr. Ian I. Suni Electrodeposition of CuGaS2 from aqueous and non-aqueous electrolyte mixtures is reported in this work. Acetonitrile complexation is used to shift the reduction potential of Cu (II) in the cathodic direction. With the presence of 50% acetonitrile, the difference between the peak reduction currents of Cu (II) and Ga (III) during cyclic voltammetry is only 140 mV, whereas the standard reduction potentials of the individual components in aqueous electrolytes differ by 870 mV. When all components are present in the electrolyte, a new reduction peak obtained in cyclic voltammograms at −260 mV and pH 2.7 that is anodically shifted relative to the cathodic peaks when only one component is present. According to the composition, and morphology analysis at deposition potential -260 mV vs. Ag/AgCl for 15 minutes from aqueous and non-aqueous solutions of 10 mM Ga(NO3)3, 0.5 CuSO4, 1 mM Na2S, 100 mM LiClO4 and a 50-50 mixture of water and acetonitrile at pH 2.7 was found to be the optimum condition to obtain stoichiometric CuGaS2 thin films. In addition, oxygen incorporation in the electrodeposit is observed, because electrodeposition of stoichiometric CuGaS2 appears to be immediately followed by Ga oxidation. The sample were annealed at temperature 300°C in Ar atmosphere for 2 hours to improve crystallinity and reduce the extent of oxidation. Thin film analysis by EDX, top-view SEM, and also cross-sectional SEM were also performed to determine the elemental ratio of Cu:Ga:S, thin film morphology, and thin film thickness, respectively. This material has potential application in solar cells. The EDX analysis of copper gallium sulfide thin films at different potentials and different gallium solution phase concentration were also performed.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Banerjee, Ashis. « Rheological and thermodynamic investigation of some properties prevailing in aqueous and non-aqueous system ». Thesis, University of North Bengal, 2009. http://hdl.handle.net/123456789/1357.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Johnson, Anthony. « Aqueous & ; non-aqueous phase tracer migration through differing soil textures ». Thesis, University of Plymouth, 2004. http://hdl.handle.net/10026.1/2212.

Texte intégral
Résumé :
The National Grid Transco Company sponsored this project in order to promote the understanding of NAPL migration through b-horizon soils and retarding effects upon non aqueous species migration. Soil structure and texture was also studied using conservative (Bromide) and non-conservative (Phosphate) tracers. Experimental data was produced using a laboratory ½ metre scale automated lysimeter designed and constn1cted at Plymouth. The tracers were compared before oil injection, to calibrate differences in soil texture, and after oil injection to detect any changes in the flow patterns caused by the oil injection. It was found that the Crediton, Sollom and Conway soils respectively offered least resistance to the tracers with the non-conservative tracer behaving much more unpredictably than the conservative tracer. After oil injection it could be seen that the oil had heavily retarded the ability of the tracers to migrate from the injection site. This retardation was identified as analogous to perturbations of the soil structure. Statistical analysis of the data showed that the experiments were all internally self consistent and visible patterns could be seen in the corrected data caused by inclusion of oil in the injection site. Methods of dispersal for the oil and tracer are suggested in the concluding chapter with references to the work of previous authors. Development of a hazard assessment framework was facilitated by the simulation of soil structures using a pedo transfer function developed at the National Soils Resource Institute. To allow the modelling of soils the Pore-Cor software had an annealed simplex algorithm integrated into the data inversion engine to allow the simulation of 3-D soil structures using 2-D data from pedo transfer functions or experimentally derived water retention curves. An extensive sensitivity analysis upon the model highlighted limitations, due to the data set the current pedo transfer function is based upon. It was suggested that inclusion of choices of different pedo transfer functions could be used to overcome this problem. A suitable framework was derived for the identification of priority soils using a validated computer model. Experimental data was compared to the simulated data in order to try and develop an understanding of practical upscaling of the data. The use of the "Scaleway" method is discussed in the concluding Chapter.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dixon, S. M. « Lyoluminescence of irradiated organic compounds in aqueous and non-aqueous solvents ». Thesis, University of Aberdeen, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377610.

Texte intégral
Résumé :
Lyoluminescence (LL) of the phosphors glutamine and mannose was used to determine instrument stability, reproducibility of readings, sensitivity and lowest detectable dose in order to evaluate the performance of the Aberdeen LL Research Reader (before and after modifications) and compare it with commercially available luminometers. The dependence of the LL yield on mass of dissolved glutamine, the sample's irradiation temperature, and solvent temperature were investigated and correction factors determined. Heat treatment was found to remove the dependence on pre- and post-irradiation storage time. Using aqueous LL dosimetry of glutamine, unknown doses in the range 10Gy to 3kGy were determined with overall accuracy and precision of 2% and 5% respectively during the 1982 IAEA Dose Intercomparison trials. Factors affecting the LL of mannose in water and methanol were compared, and a 20-fold increase in LL yield was reported using the latter solvent. Various attempts to enhance the LL yield from glutamine and mannose were made: Enhancements, of up to 105 times, caused by the oxidation of luminol, lucigenin, lophine and trichlorophenol oxalate by the primary species in LL were observed, but increased background readings due to self-glow caused there to be no advantage in overall sensitivity. Enhancement factors (EF) up to 100 were obtained using glutamine LL in free and chelated rare earth ion solutions, as a result of intermolecular energy transfer from excited organic molecules in solution. However, the enhancement was found to be dose dependent. By employing dibromoanthracene sulphonate, rubrene, eosin and reduced lucigenin, all of which respond to singlet oxygen, EF of up to 10 were achieved in LL of mannose. Finally, as the use of aqueous solutions was found to severely limit the possible phosphor/enhancer combinations, the LL of some carboxylic acids in alcoholic media was investigated. These were found to be less sensitive LL phosphors than either mannose or glutamine.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Rajaeian, Babak. « Synthesis of polymeric nanocomposite membranes for aqueous and non-aqueous media ». Thesis, Curtin University, 2012. http://hdl.handle.net/20.500.11937/410.

Texte intégral
Résumé :
Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high fouling tendency and susceptibility at extreme operational conditions. On the other hand, ceramic membranes are also suffering from disadvantages like low selectivity, unreliable control over porosity and pore size which makes it difficult to achieve a reproducible final product. The aim of this project was to develop a high selective TFC membranes incorporated by functionalized TiO2 nanoparticles for aqueous and nonaqueous media applications.In order to obtain high permeable aromatic polyamide thin film nanocomposite (TFN) nanofiltration membrane, the conventional interfacial polymerization (IP) reaction was applied as the embedding media for functionalized nanoparticles. For this purpose, TFN nanofiltration membrane with appropriate structural and separation properties was developed by dispersing the aminosilanized TiO2 nanoparticles inside the diamine monomer and polymerizing the monomer in the presence of these particles. Surface-modified ceramic substrate was used to obtain high mechanical resistant composite membrane. Results from spectrometry analyses represent that the silane coupling agent called AAPTS has been successfully grafted onto the external surface of TiO2 after the chemical modification. Upon incorporation of TiO2 nanoparticles, thermal stability of nanocomposite is significantly improved in comparison with TFC membrane. Morphological investigations prove that the functionalized TiO2 nanoparticles could effectively change the surface properties and roughness of NF membranes. Performance results show that ultra-low concentration (0.005 wt%) of amine functionalized TiO2 nanoparticles improves the salt rejection as well as water flux. Flux can be further improved by the incorporation of higher percentage of the modified TiO2 into polymer membrane.In order to obtain nanofiltration membrane with high permeability and antifouling properties, TFN membrane was synthesised by dip-coating of a hydrophilized porous poly(vinylidene fluoride) (PVDF) support in different poly(vinyl alcohol) (PVA) aqueous solution. In order to improve the interfacial adhesion of nanoparticles in PVA blend, an endothermic carboxylation reaction under acidic condition was carried out on the TiO2 surface using chloroacetic acid (ClCH2COOH). Glutaraldehyde (GA) was used as a cross-linker to bond resultant PVA chains and enhances the stability of the coated PVA layer, accordingly. TiO2 nanoparticles were dispersed in PVA solution in pure and functionalized forms. Scanning electron microscopy (SEM) identified various topographies by the incorporation of TiO2 nanoparticles. Performance results showed a 40% rejection improvement of divalent salt (MgSO4) by the incorporation of 1.0 wt% surface-carboxylated TiO2 nanoparticles into PVA solution. A simultaneous 57% retention improvement was achieved for uncharged solute (PEG 2000). After PVA coating with TiO2 incorporation, the flux recovery ratio of PVDF membrane was significantly improved from 45 to 94%.In order to apply TFN membranes in non-aqueous media, a range of thin film nanocomposite solvent resistant nanofiltration membranes (SRNF) were fabricated by interfacial polymerization technique. TiO2 nanoparticles were used as inorganic fillers into polyamide chain network. TiO2 nanoparticles’ surfaces were functionalized in order to improve their compatibilization inside the polyamide matrix. For this purpose, Monoethanolamine (MEOA) and triethylenetetramine (TETA) agents were applied to aminate TiO2 nanoparticles, while thionyl chloride (TCl) was used to chlorinateation. Morphological investigations identified various topographies formed by the incorporation of TiO2 nanoparticles with different chemistry. Transport properties of membranes were evaluated by two different dyes: positively-charged Crystal Violet (CV) (408 Da) and neutral Bromothymol Blue (BTB) (624 Da). Performance results reveal that high rejection was achieved by the TFN membrane fabricated by TCl-modified TiO2 with BTB and CV rejection of 90 and 93%, respectively. These satisfactory rejection data for both charged and uncharged dyes can be attributed to formation of a dense structure after exposing the chlorinated TiO2 nanoparticles into interfacial polymerization reaction on membrane surfaces.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Richards, D. G. « Non-aqueous chemistry of polyoxometalates ». Thesis, University of Newcastle Upon Tyne, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260951.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Aqueous and non-aqueous"

1

Non-aqueous solvents. Oxford : Oxford University Press, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hickey, Kenneth. A study of amides in aqueous and non-aqueous solution. Dublin : University College Dublin, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gupta, Munishwar Nath, dir. Methods in Non-Aqueous Enzymology. Basel : Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8472-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tian, Hao, dir. Electrorheological fluids : The non-aqueous suspensions. Amsterdam : Elsevier, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Electroanalysis : Theory and applications in aqueous and non-aqueous media and in automated chemical control. Amsterdam : Elsevier, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Vickers, Stephen Lee. Novel zinc and lithium non-aqueous batteries for low rate applications. Leicester : De Montfort University, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hillel, Rubin, Narkis Nava et Carberry Judith B, dir. Soil and aquifer pollution : Non-aqueous phase liquids-- contamination and reclamation. Berlin : Springer-Verlag, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Interstate Technology and Regulatory Cooperation Work Group. DNAPLs/Chemical Oxidation Work Team. Dense non-aqueous phase liquids (DNAPLs) : Review of emerging characterization and remediation technologies. United States] : ITRC, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

H, Illangasekare T., et Robert S. Kerr Environmental Research Laboratory, dir. An experimental evaluation of two sharp front models for vadose zone non-aqueous phase liquid transport. Ada, Okla : Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

F, Hepp Aloysius, et United States. National Aeronautics and Space Administration., dir. Room-temperature synthesis of CuInQ₂(Q=S or Se) in non-aqueous solution using an organoindium reagent. [Washington, DC] : National Aeronautics and Space Administration, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Aqueous and non-aqueous"

1

Szumski, Michał, et Bogusław Buszewski. « Non-Aqueous Capillary Electrophoresis ». Dans Springer Series in Chemical Physics, 203–13. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35043-6_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Light, Jonathan Thomas. « Non-Aqueous Coolant Perspectives ». Dans ASTM Symposium on Global Testing of Extended Service Engine Coolants and Related Fluids, 39–53. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 : ASTM International, 2014. http://dx.doi.org/10.1520/stp155620130068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gores, Heiner Jakob, et Hans-Georg Schweiger. « Non-Aqueous Electrolyte Solutions ». Dans Encyclopedia of Applied Electrochemistry, 1371–75. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_442.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gupta, Munishwar N. « Non-Aqueous Enzymology : Issues and Persspectives ». Dans Methods in Non-Aqueous Enzymology, 1–13. Basel : Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8472-3_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chopineau, Joël, Bernard Lagoutte, Daniel Thomas et Dominique Domurado. « Reversed Micelles as Microreactors : N-terminal Acylation of RNase A and its Characterization ». Dans Methods in Non-Aqueous Enzymology, 160–73. Basel : Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8472-3_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ramanathan, Kumaran, Birgitta Rees Jönsson et Bengt Danielsson. « Analysis in Non-Aqueous Milieu Using Thermistors ». Dans Methods in Non-Aqueous Enzymology, 174–94. Basel : Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8472-3_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gupta, Munishwar Nath. « Importance of the Medium for in vitro and in vivo Protein Folding Mechanisms : Biomedical Implications ». Dans Methods in Non-Aqueous Enzymology, 195–211. Basel : Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8472-3_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Anthonsen, Thorleif, et Birte J. Sjursnes. « Importance of Water Activity for Enzyme Catalysis in Non-Aqueous Organic Systems ». Dans Methods in Non-Aqueous Enzymology, 14–35. Basel : Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8472-3_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Fernández-Lorente, Gloria, Roberto Fernández-Lafuente, Pilar Armisén, Pilar Sabuquillo, Cesar Mateo et José M. Guisán. « Engineering of Enzymes via Immobili-zation and Post-Immobilization Techniques : Preparation of Enzyme Derivatives with Improved Stability in Organic Media ». Dans Methods in Non-Aqueous Enzymology, 36–51. Basel : Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8472-3_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bosley, John A., et Alan D. Peilow. « Immobilization of Lipases for Use in Non-Aqueous Reaction Systems ». Dans Methods in Non-Aqueous Enzymology, 52–69. Basel : Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8472-3_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Aqueous and non-aqueous"

1

Vazquez, Oscar, Eric James Mackay et Kenneth S. Sorbie. « Modelling of Non-Aqueous and Aqueous Scale Inhibitor Squeeze Treatments ». Dans International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/106422-ms.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Buller, J., et J. F. Carpenter. « H2S Scavengers for Non-Aqueous Systems ». Dans SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/93353-ms.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gupta, D. V. S., R. G. Pierce et N. D. Lift. « Non-Aqueous Gelled Alcohol Fracturing Fluid ». Dans International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 1997. http://dx.doi.org/10.2118/37229-ms.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Vazquez, Oscar, Eric James Mackay, Khalfan Hamed Al Shuaili, Kenneth S. Sorbie et Myles Martin Jordan. « Modelling a Surfactant Preflush with Non-Aqueous and Aqueous Scale Inhibitor Squeeze Treatments ». Dans Europec/EAGE Conference and Exhibition. Society of Petroleum Engineers, 2008. http://dx.doi.org/10.2118/113212-ms.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Guan, H., K. S. Sorbie et E. J. Mackay. « The Comparison of Non-Aqueous and Aqueous Scale Inhibitor Treatments : Experimental and Modeling Studies ». Dans SPE International Symposium on Oilfield Scale. Society of Petroleum Engineers, 2004. http://dx.doi.org/10.2118/87445-ms.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Boyle, R. J., I. C. Finlay, T. Biddulph et R. A. Marshall. « Heat Transfer to Non-Aqueous Engine Coolants ». Dans International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 1991. http://dx.doi.org/10.4271/910304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chaure, N. B. « CuInSe2 thin films by non-aqueous electrodeposition ». Dans SOLID STATE PHYSICS : Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710388.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gupta, D. V. S., G. Niechwiadowicz et A. C. Jerat. « CO2 Compatible Non-Aqueous Methanol Fracturing Fluid ». Dans SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2003. http://dx.doi.org/10.2118/84579-ms.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Londhe, Priyanka U., Madhuri More et N. B. Chaure. « Influence of capping agents on the growth of gold nanoparticles from aqueous and non-aqueous medium ». Dans International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (ICANMEET-2013). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chagas, Felipe, Paulo R. Ribeiro et Otto L. A. Santos. « Well Control Simulation With Non-Aqueous Drilling Fluids ». Dans ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96736.

Texte intégral
Résumé :
Abstract The demand for energy has increased recently worldwide, requiring new oilfield discoveries in order to supply this need. Following this demand increase, challenges grow in all areas of the petroleum industry especially those related drilling operations. Due to hard operational conditions found when drilling complex scenarios such as high pressure/high temperature zones, deep and ultradeep waters and other challenging ones, the use non-aqueous drilling fluids became a must. The reason for that is because this kind of drilling fluid is capable to tolerate these extreme drilling conditions found in those scenarios. However, it can experience changes in its properties as results of pressure and temperature variations, requiring special attention during some drilling operations, such as the well control. The well control is a critical issue since it involves safety, social, economic and environmental aspects. To support well control operations and preserve the well integrity, well control simulators are very useful to verify operational parameters and to assist drilling engineers in the decision making process during well control operations and kick situations. Well control simulators are also important computational tools for rig personnel training. This work presents well control research and development contributions, as well as the results of a computational well control simulator that applies the Driller’s Method and allows the understanding the thermodynamic behavior of synthetic drilling fluids, such as n-paraffin and ester base fluids. The simulator employed mathematical correlations for the drilling fluids PVT properties obtained from experimental data.The simulator results were compared to a test well data set, as well to published results from other kick simulators.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Aqueous and non-aqueous"

1

Karmakar, Anwesa. Modeling aqueous and non-aqueous electrolyte solutions from first principle approaches. Office of Scientific and Technical Information (OSTI), mars 2019. http://dx.doi.org/10.2172/1501786.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Allen, Heather. Non-Equilibrium Nucleation of Rare Earth Metals at Aqueous Interfaces. Office of Scientific and Technical Information (OSTI), février 2024. http://dx.doi.org/10.2172/2290395.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lee, K. H., C. Shan et I. Javandel. Electrical resistivity for detecting subsurface non-aqueous phase liquids : A progress report. Office of Scientific and Technical Information (OSTI), juin 1995. http://dx.doi.org/10.2172/90685.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gary A. Pope, Daene C. McKinney, Akhil Datta Gupta, Richard E. Jackson et Minquan Jin. In-Situ Characterization of Dense Non-Aqueous Phase Liquids Using Partitioning Tracers. Office of Scientific and Technical Information (OSTI), mars 2000. http://dx.doi.org/10.2172/793613.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Cureton, LaShonda T., George Fountzoulas et John J. La Scala. Molecular Weight Measurement of Biobased Furan Polyamides via Non-Aqueous Potentiometric Titration. Fort Belvoir, VA : Defense Technical Information Center, juin 2013. http://dx.doi.org/10.21236/ada586113.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Andrade, Gabriel A., Terry Chu, Shikha Sharma, Brian Lindley Scott, John Cameron Gordon, Nathan C. Smythe et Benjamin L. Davis. Transition Metal Based Redox Carriers for use in Non-aqueous Redox Flow Batteries. Office of Scientific and Technical Information (OSTI), avril 2019. http://dx.doi.org/10.2172/1511187.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Alan M. Shipley. Non-invasive Technology to Study Local Passivity Breakdown of Metal Alloys in Aqueous Media. Office of Scientific and Technical Information (OSTI), mars 2005. http://dx.doi.org/10.2172/837571.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Taylor-Pashow, Kathryn M. L., et Daniel H. Jones. Non-Aqueous Titration Method for Determining Suppressor Concentration in the MCU Next Generation Solvent (NGS). Office of Scientific and Technical Information (OSTI), octobre 2017. http://dx.doi.org/10.2172/1404909.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

L.A. Johnson, Jr. CROWTM PROCESS APPLICATION FOR SITES CONTAMINATED WITH LIGHT NON-AQUEOUS PHASE LIQUIDS AND CHLORINATED HYDROCARBONS. Office of Scientific and Technical Information (OSTI), juin 2003. http://dx.doi.org/10.2172/821181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Payne, F. C. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils. Office of Scientific and Technical Information (OSTI), août 1996. http://dx.doi.org/10.2172/447169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie