Articles de revues sur le sujet « APERTURE COUPLED ANTENNA »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : APERTURE COUPLED ANTENNA.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « APERTURE COUPLED ANTENNA ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kirov, Georgi, Georgi Chervenkov et Chavdar Kalchev. « Aperture Coupled Microstrip Short Backfire Antenna ». Journal of Electrical Engineering 63, no 2 (1 mars 2012) : 75–80. http://dx.doi.org/10.2478/v10187-012-0011-0.

Texte intégral
Résumé :
Aperture Coupled Microstrip Short Backfire Antenna A broadband aperture coupled microstrip short backfire antenna is described herein. It consists of a feed part (a microstrip feed line and a coupling slot in a metal ground) and a radiating part with two radiators: a patch antenna and a backfire antenna. The bandwidth widening of the antenna is achieved by use of two resonances: a patch resonance and a backfire resonance. The antenna is designed to operate within the Ku-band. It has a frequency bandwidth of about 15% and a maximum gain of 11.5 dBi. Within the antenna bandwidth the gain and the radiation efficiency have values more than 9 dBi and 82.1%, respectively. The designed antenna has a simple and compact construction and high mechanical and electrical characteristics. It can be used as a single antenna or as an element of microstrip antenna arrays with various applications in the contemporary communication systems.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Soni, Brijesh Kumar, Kamaljeet Singh, Amit Rathi et Sandeep Sancheti. « Performance Improvement of Aperture Coupled MSA through Si Micromachining ». International Journal of Circuits, Systems and Signal Processing 16 (10 janvier 2022) : 272–77. http://dx.doi.org/10.46300/9106.2022.16.33.

Texte intégral
Résumé :
In recent times rectangular patch antenna design has become the most innovative and popular subject due to its advantages, such as being lightweight, conformal, ease to fabricate, low cost and small size. In this paper design of aperture coupled microstrip patch antenna (MSA) on high index semiconductor material coupled with micromachining technique for performance enhancement is discussed. The performance in terms of return loss bandwidth, gain, cross-polarization and antenna efficiency is compared with standard aperture coupled antenna. Micromachining underneath of the patch helps in to reduce the effective dielectric constant, which is desirable for the radiation characteristics of the patch antenna. Improvement 36 percent and 18 percent in return loss bandwidth and gain respectively achieved using micromachined aperture coupled feed patch, which is due to the reduction in losses, suppression of surface waves and substrate modes. In this article along with design, fabrication aspects on Si substrate using MEMS process also discussed. Presented antenna design is proposed antenna can be useful in smart antenna arrays suitable in satellite, radar communication applications. Two topologies at X-band are fabricated and comparison between aperture coupled and micromachined aperture coupled are presented. Index Terms—Microstrip Patch Antenna, Aperture Coupled, Micromachining, High Resistivity Silicon
Styles APA, Harvard, Vancouver, ISO, etc.
3

Чурсина, О. А., Е. А. Литинская, К. В. Плыкин, С. В. Поленга, А. А. Баскова et Р. О. Рязанцев. « Низкопрофильная сканирующая антенная решетка на основе излучающего элемента с апертурной связью ». Письма в журнал технической физики 49, no 15 (2023) : 12. http://dx.doi.org/10.21883/pjtf.2023.15.55857.19563.

Texte intégral
Résumé :
A low-profile antenna array based on an aperture-coupled element with wide-angle mechanoelectric scanning is considered. The scanning sector of the developed antenna array is 0°-60° by the criterion of the gain degradation not more than by 3 dB at a profile of the whole antenna is 48 mm. Developed antenna aperture-coupled element with two linear orthogonal polarizations has a multilayer structure and gain more 7 dB in the frequency band 10.7-12.75 GHz. The presented antenna array consists of eight identical subarrays, each consisting of 16 aperture-coupled radiators. Modeling and analysis of the directional characteristics of the antenna array based on an aperture-coupled radiator are performed. Conclusions about the applicability of the proposed antenna array based on the aperture-coupled element in ground terminals of satellite communication, including for low-orbit and medium-orbit systems is done.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rao, Q., et R. H. Johnston. « Modified Aperture Coupled Microstrip Antenna ». IEEE Transactions on Antennas and Propagation 52, no 12 (décembre 2004) : 3397–401. http://dx.doi.org/10.1109/tap.2004.836415.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Park, I., et R. Mittra. « Aperture-coupled small microstrip antenna ». Electronics Letters 32, no 19 (1996) : 1741. http://dx.doi.org/10.1049/el:19961188.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Milligan, T., et N. Herscovici. « The aperture-coupled helix antenna ». IEEE Antennas and Propagation Magazine 37, no 3 (juin 1995) : 47–50. http://dx.doi.org/10.1109/74.388818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, Bo, Yiqi Zhuang, Xiaoming Li et Weifeng Liu. « Design of a novel dual ports antenna to enhance sensitivity of handheld RFID reader ». International Journal of Microwave and Wireless Technologies 8, no 2 (21 avril 2015) : 369–77. http://dx.doi.org/10.1017/s1759078715000756.

Texte intégral
Résumé :
A compact dual ports antenna with high isolation is proposed for handheld radio frequency identification (RFID) reader which is rarely reported in open literatures. Different with conventional handheld RFID reader antennas with single port, the proposed antenna transmits and receives signal separately. The proposed antenna operating with full duplex mode can enhance effectively sensitivity of reader, since the strong transmitting signal of reader with single port is usually highly coupled with weak receiving backscatter signal of tag. The antenna utilizes E-shaped aperture-coupled patch structure that occupies less volume and provides further space-saving efficiency. The height of the proposed antenna is only 6.8 mm and the volume of that is 80 mm × 80 mm × 6.8 mm, which is easy to integrate in handheld RFID readers. The antenna uses two E-shaped coupling apertures to excite two orthogonal modes for dual-polarized operation. High isolation of around −30 dB is obtained by proper arrangement of the length of coupling apertures and the position of the stubs. The measured results show −10 dB matching band and −25 dB isolation band from 2.32 to 2.6 GHz and from 2.3 to 2.55 GHz, respectively. The antenna is suitable for applications in handheld RFID readers.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Duffy, S. M., et D. M. Pozar. « Circularly polarised aperture coupled microstrip antenna ». Electronics Letters 31, no 16 (3 août 1995) : 1303–5. http://dx.doi.org/10.1049/el:19950937.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Oostlander, R., Y. M. M. Antar, A. Ittipiboon et M. Cuhaci. « Aperture coupled microstrip antenna element design ». Electronics Letters 26, no 4 (1990) : 224. http://dx.doi.org/10.1049/el:19900151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Croq, F., et A. Papiernik. « Large bandwidth aperture-coupled microstrip antenna ». Electronics Letters 26, no 16 (1990) : 1293. http://dx.doi.org/10.1049/el:19900832.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Wang, J., R. Fralich, C. Wu et J. Litva. « Multifunctional aperture coupled stack patch antenna ». Electronics Letters 26, no 25 (1990) : 2067. http://dx.doi.org/10.1049/el:19901333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Konkol, Matthew R., Dylan D. Ross, Kevin P. Shreve, Charles E. Harrity, Shouyuan Shi, Christopher A. Schuetz et Dennis W. Prather. « High-Power, Aperture Coupled Photonic Antenna ». IEEE Photonics Technology Letters 29, no 14 (15 juillet 2017) : 1207–10. http://dx.doi.org/10.1109/lpt.2017.2713303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Hall, R. C. « Full-wave aperture coupled patch antenna ». Electronics Letters 29, no 24 (1993) : 2073. http://dx.doi.org/10.1049/el:19931384.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kao, Nien-An, Cheng-Chi Hu, Jin-Jei Wu et C. F. Jou. « Active aperture-coupled leaky-wave antenna ». Electronics Letters 34, no 23 (1998) : 2183. http://dx.doi.org/10.1049/el:19981539.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hsu, Wen-Hsiu, et Kin-Lu Wong. « Broadband aperture-coupled shorted-patch antenna ». Microwave and Optical Technology Letters 28, no 5 (2001) : 306–7. http://dx.doi.org/10.1002/1098-2760(20010305)28:5<306 ::aid-mop1025>3.0.co;2-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Drossos, George, Zhipeng Wu et Lionel E. Davis. « Aperture-coupled cylindrical dielectric resonator antenna ». Microwave and Optical Technology Letters 20, no 6 (20 mars 1999) : 407–14. http://dx.doi.org/10.1002/(sici)1098-2760(19990320)20:6<407 ::aid-mop14>3.0.co;2-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Cheng, C. H., K. Li, K. F. Tang et T. Matsui. « A new aperture-coupled patch antenna ». Microwave and Optical Technology Letters 38, no 5 (7 juillet 2003) : 422–23. http://dx.doi.org/10.1002/mop.11079.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Morsy, Mohamed M., et Frances J. Harackiewicz. « Stacked aperture-coupled coplanar patch antenna ». Microwave and Optical Technology Letters 51, no 5 (13 mars 2009) : 1228–30. http://dx.doi.org/10.1002/mop.24290.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Indrianti, Rizka Kurnia. « Build a Rectangular Patch Single Microstrip Antenna with Aperture Coupled for Wifi Application 2.4 Ghz ». JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING 3, no 1 (25 juillet 2019) : 8. http://dx.doi.org/10.31289/jite.v3i1.2464.

Texte intégral
Résumé :
<p><span>Wifi technology is a means of obtaining information in a fast way, to strengthen the signal, for that it is required that the functioning antenna emit and receive electromagnetic waves in which contained the information signal. A wide range of antennas have been developed for a wide range of applications, one of which is a microstrip antenna. Microstrip antennas have small characteristics, are lightweight, thin, easy to fabricate, and can be used at very long distances. The results of single rectangular patch microstrip antenna measurements indicate that the antenna can work optimally with a frequency of 2,440 GHz, has a return loss-22,182 dB value, VSWR 1,169 value, 0.3452 dB bandwidth value, LOS-45.6 dBm power value with Percentage upload is 97% higher than the reference antenna and the download percentage is 88% higher than the reference antenna, NLOS-79 dBm value with a percentage upload of 33% compared to the reference antenna and the download percentage 12% higher than the Reference antenna, for the range of distances capable of receiving signals up to 120 meters with a percentage of percentage of is 16% higher than the reference antenna.</span></p>
Styles APA, Harvard, Vancouver, ISO, etc.
20

Venneri, F., S. Costanzo et G. Di Massa. « Bandwidth Behavior of Closely Spaced Aperture-Coupled Reflectarrays ». International Journal of Antennas and Propagation 2012 (2012) : 1–11. http://dx.doi.org/10.1155/2012/846017.

Texte intégral
Résumé :
The bandwidth features of reflectarray antennas are analyzed by examining in detail the phase errors due to the compensation mechanism for spatial phase delays. A bandwidth estimation rule is defined, taking into account the combined effects due to the overall antenna geometry and the frequency response of the single reflectarray element. An aperture-coupled reflectarray configuration with reduced interelement spacing is considered as broadband solution for the implementation of small reflectarrays. A 20 GHz aperture-coupled element is synthesized for the design of a 12 diameter reflectarray, showing a simulated 1 dB gain bandwidth of 23%.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Khan, Osama, Johannes Meyer, Klaus Baur, Saeed Arafat et Christian Waldschmidt. « Aperture coupled stacked patch thin film antenna for automotive radar at 77 GHz ». International Journal of Microwave and Wireless Technologies 11, no 10 (10 juin 2019) : 1061–68. http://dx.doi.org/10.1017/s1759078719000795.

Texte intégral
Résumé :
AbstractA hybrid thin film multilayer antenna for automotive radar is presented in this work. A 2 × 8 aperture coupled stacked patch antenna array is realized on a single layer printed circuit board (PCB) using a novel thin film-based approach. Using a compact 180° phase difference power divider, inter-element spacing in a 2×2 sub-array is reduced. Measurement results show a 19% (67.9–82.5 GHz) impedance bandwidth and a wideband broadside radiation pattern, with a maximum gain of 15.4 dBi realized gain at 72 GHz. The presented antenna compares favorably with other multilayer PCB antennas in terms of performance, with the advantage of simpler manufacturing and robust design. The antenna can be employed in mid-range automotive radar applications.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Chen, P., X. D. Yang, C. Y. Chen et Z. H. Ma. « Broadband Multilayered Array Antenna with EBG Reflector ». International Journal of Antennas and Propagation 2013 (2013) : 1–4. http://dx.doi.org/10.1155/2013/250862.

Texte intégral
Résumé :
Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Vishwakarma, Rajesh Kumar, et Sanjay Tiwari. « Aperture Coupled Microstrip Antenna for Dual-Band ». Wireless Engineering and Technology 02, no 02 (2011) : 93–101. http://dx.doi.org/10.4236/wet.2011.22013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Sullivan, P., et D. Schaubert. « Analysis of an aperture coupled microstrip antenna ». IEEE Transactions on Antennas and Propagation 34, no 8 (août 1986) : 977–84. http://dx.doi.org/10.1109/tap.1986.1143929.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Wang, Junfang, Hang Wong, Zhuoqiao Ji et Yongle Wu. « Broadband CPW-Fed Aperture Coupled Metasurface Antenna ». IEEE Antennas and Wireless Propagation Letters 18, no 3 (mars 2019) : 517–20. http://dx.doi.org/10.1109/lawp.2019.2895618.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Qinjiang Rao, T. A. Denidni et R. H. Johnston. « A new aperture coupled microstrip slot antenna ». IEEE Transactions on Antennas and Propagation 53, no 9 (septembre 2005) : 2818–26. http://dx.doi.org/10.1109/tap.2005.854521.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Lee, R. Q., et R. N. Simons. « Coplanar-waveguide aperture-coupled microstrip patch antenna ». IEEE Microwave and Guided Wave Letters 2, no 4 (avril 1992) : 138–39. http://dx.doi.org/10.1109/75.129441.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Keller, M. G., D. J. Roscoe, M. B. Oliver, R. K. Mongia, Y. M. M. Antar et A. Ittipiboon. « Active aperture-coupled rectangular dielectric resonator antenna ». IEEE Microwave and Guided Wave Letters 5, no 11 (1995) : 376–78. http://dx.doi.org/10.1109/75.473537.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Pozar, D. M. « Microstrip antenna aperture-coupled to a microstripline ». Electronics Letters 21, no 2 (1985) : 49. http://dx.doi.org/10.1049/el:19850034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Zheng, Jun-Hao, Ying Liu et Shu-Xi Gong. « APERTURE COUPLED MICROSTRIP ANTENNA WITH LOW RCS ». Progress In Electromagnetics Research Letters 3 (2008) : 61–68. http://dx.doi.org/10.2528/pierl08013102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

El Yazidi, M., M. Himdi et J. P. Daniel. « Analysis of aperture-coupled circular microstrip antenna ». Electronics Letters 29, no 11 (27 mai 1993) : 1021–22. http://dx.doi.org/10.1049/el:19930681.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

B�ke, A., A. Moumen, I. L. Morrow et L. P. Ligthart. « Optimized dual-polarized aperture-coupled patch antenna ». Microwave and Optical Technology Letters 27, no 4 (2000) : 252–55. http://dx.doi.org/10.1002/1098-2760(20001120)27:4<252 ::aid-mop9>3.0.co;2-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Wincza, K., S. Gruszczynski et K. Sachse. « Aperture coupled to stripline antenna element for integrated antenna arrays ». Electronics Letters 42, no 3 (2006) : 130. http://dx.doi.org/10.1049/el:20063951.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Tong, San-Qiang, Bing-Zhong Wang et Ren Wang. « A tightly coupled dipole array used for radiation power improvement on finite radiation aperture ». Acta Physica Sinica 70, no 20 (2021) : 204101. http://dx.doi.org/10.7498/aps.70.20210309.

Texte intégral
Résumé :
Radiation power of an electromagnetic wave plays a decisive role in its transmission distance. Traditionally, the radiation power can be improved by expanding the radiation aperture size of the antenna array or increasing input power of the unit cell. However, the radiation aperture size is always restricted by assembly space. The input power improvement of the unit cell is always limited by the signal source. It is difficult to improve radiation power on a finite radiation aperture. However, the radiation power on a finite radiation aperture is related closely to the number of antenna elements and the radiation efficiency of the antenna array. It is useful to arrange more elements and improve radiation efficiency of the antenna array to improve the radiation power on a finite radiation aperture. Wideband wide-angle scanning phased array is able to make full use of a finite radiation aperture. The wide-angle scanning properties make it possible for the radiated power to cover a wide area. In this paper, a compact wideband wide-angle scanning tightly coupled dipole array (TCDA) is proposed. A high permittivity substrate and compact wideband balun are used for miniaturizing the antenna array. The period of the unit cell is only 0.144<i>λ</i><sub>high</sub> × 0.144<i>λ</i><sub>high</sub> (<i>λ</i><sub>high</sub> is the wavelength at the highest operation frequency in free space). Parameters of the balun are optimized to improve impedance matching between the balun and the antenna array. Two bilateral frequency selective surfaces (FSSs) are used to replace traditional dielectric superstrate to improve the impedance matching between the antenna array and free space. A low-loss dielectric substrate is used to reduce dielectric loss of the antenna array. In these ways, the radiation efficiency is greatly improved. The simulation results show that the proposed antenna array operates at 1.7–5.4 GHz (3.2:1) while scanning up to 65° in the E plane, 45° in the H plane and 60° in the D plane with following a rigorous impedance matching criterion (active VSWR < 2). A 16 × 16 prototype array is fabricated and measured. Good agreement is achieved between the simulation results and the measurement results. Compared with the designs in the literature, the proposed antenna array has an excellent performance in radiation power on a finite radiation aperture.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Umair, Hassan, Niaz Muhammad, Tayyab Hassan, Imran Rashid et Farooq A. Bhatti. « Aperture-coupled ESPAR antenna with unique feed network for symmetric switched beam radiation patterns ». International Journal of Microwave and Wireless Technologies 9, no 3 (4 avril 2016) : 675–83. http://dx.doi.org/10.1017/s1759078716000362.

Texte intégral
Résumé :
Aperture-coupled ESPAR antenna with a unique feed structure for switched beam application has been presented. The feed structure provides control over surface current of the driven element with the help of which main lobe can be steered in desired direction. This control has been achieved through the use of PIN-diodes. Finite element method has been utilized for design and simulated and measured results have been presented for validation. The antenna has the ability to steer the main beam in six directions. All radiation patterns are symmetric. The planar aperture-coupled nature of proposed antenna is ideal for integration and commercialization.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Khayal, Bashar I. K., et Alaa Elrouby. « Broadband Dual-Polarized Aperture-Coupled Patch Antenna for 5G Applications ». International Journal for Research in Applied Science and Engineering Technology 10, no 8 (31 août 2022) : 666–71. http://dx.doi.org/10.22214/ijraset.2022.46234.

Texte intégral
Résumé :
Abstract: This paper presents the design of a dual-polarized aperture-coupled microstrip antenna array for Sub-6GHz 5G communication systems. The antenna operates at 3.5 GHz and consists of 4×4 square patches. The proposed 4×4 array antenna feds by aperture-coupled feed line provide broadband bandwidth to operate in the N78 sub-6GHz 5G frequency band. The dualpolarized is presented, which gives two communications channels. The antenna consists of three layers and is designed on Rogers RO4003C substrate with a dielectric constant of 3.55 and substrate thickness of 0.8 mm. The final design of the antenna array with an overall size of 269 mm × 269 mm × 12.5 mm, and the results show that the 4×4 array has a 10dB bandwidth between 3.3-3.8 GHz and a maximum gain of 14.9 dB at 3.5 GHz, and the isolation between the two ports was 30 dB. The proposed antenna's gain, radiation efficiency, and bandwidth satisfy the requirements of 5G base station systems.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Hamidah Abd Hamid, Saidatul, Goh Chin Hock et M. T. Ali. « Analysis of Performance on Circular Patch Antenna Based on Different Feeding Techniques ». International Journal of Engineering & ; Technology 7, no 4.1 (12 septembre 2018) : 81. http://dx.doi.org/10.14419/ijet.v7i4.1.28230.

Texte intégral
Résumé :
This paper presents a simulation and analysis of a circular patch antenna with different feeding techniques. The objectives of this analysis are to design the microstrip circular patch antennas using five types of feedings techniques which are stepped feed, inset feed, coaxial feed, aperture coupled feed, and proximity feed, to analyze and compares the performance of the antenna design. Performance characteristics of the antenna such as return loss S11 parameter <-10dB, directivity, gain, bandwidth, side lobe level, beam width, and voltage standing wave ratio (VSWR) parameters of each of the feeding methods designs are obtained and compared.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Jiang, Hao, Weiming Li et Zhenghui Xue. « Modified Microstrip Aperture Coupled Patch Antenna with Sierpinski Fractal Geometry ». International Journal of Antennas and Propagation 2014 (2014) : 1–8. http://dx.doi.org/10.1155/2014/132462.

Texte intégral
Résumé :
A two-layer modified microstrip aperture coupled patch antenna with Sierpinski fractal geometry is presented in this paper. The effects of the two coupling slots and the parasitic patch are discussed. The proposed antenna can work on 956 MHz to 968 MHz, 3.654 GHz to 3.78 GHz, and 8.81 GHz to 9.28 GHz three frequency bands, and the maximum gain in each band is 4.64 dBi, 8.46 dBi, and 7.85 dBi, respectively. The simulated result reveals that the Sierpinski patch antenna we proposed in this paper performs better on radiation properties.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Buck, A. C., et D. M. Pozar. « Aperture-coupled microstrip antenna with a perpendicular feed ». Electronics Letters 22, no 3 (1986) : 125. http://dx.doi.org/10.1049/el:19860087.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Chan, K. M., E. Lee, T. Y. Lee, P. Gardner et T. Dodgson. « Aperture-coupled, differentially-fed planar inverted F antenna ». Electronics Letters 42, no 11 (2006) : 608. http://dx.doi.org/10.1049/el:20060812.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Antar, Y. M. M., et Z. Fan. « Characteristics of aperture-coupled rectangular dielectric resonator antenna ». Electronics Letters 31, no 15 (20 juillet 1995) : 1209–10. http://dx.doi.org/10.1049/el:19950853.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chang, The-Nan, et Jyun-Ming Lin. « Serial Aperture-Coupled Dual Band Circularly Polarized Antenna ». IEEE Transactions on Antennas and Propagation 59, no 6 (juin 2011) : 2419–23. http://dx.doi.org/10.1109/tap.2011.2144553.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Gauthier, G. P., J. P. Raskin, L. P. B. Katehi et G. M. Rebeiz. « A 94-GHz aperture-coupled micromachined microstrip antenna ». IEEE Transactions on Antennas and Propagation 47, no 12 (1999) : 1761–66. http://dx.doi.org/10.1109/8.817650.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Coccioli, R., Fei-Ran Yang, Kuang-Ping Ma et T. Itoh. « Aperture-coupled patch antenna on UC-PBG substrate ». IEEE Transactions on Microwave Theory and Techniques 47, no 11 (1999) : 2123–30. http://dx.doi.org/10.1109/22.798008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Himdi, M., J. P. Daniel et C. Terret. « Transmission line analysis of aperture-coupled microstrip antenna ». Electronics Letters 25, no 18 (1989) : 1229. http://dx.doi.org/10.1049/el:19890824.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Muhammad, Niaz, Hassan Umair, Zain Ul Islam, Zar Khitab, Imran Rashid et Farooq Ahmad Bhatti. « HIGH GAIN FSS APERTURE COUPLED MICROSTRIP PATCH ANTENNA ». Progress In Electromagnetics Research C 64 (2016) : 21–31. http://dx.doi.org/10.2528/pierc16022102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

El Yazidi, M., M. Himdi et J. P. Daniel. « Aperture coupled microstrip antenna for dual frequency operation ». Electronics Letters 29, no 17 (1993) : 1506. http://dx.doi.org/10.1049/el:19931004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Shum, S. M., et K. M. Luk. « Analysis of aperture coupled rectangular dielectric resonator antenna ». Electronics Letters 30, no 21 (13 octobre 1994) : 1726–27. http://dx.doi.org/10.1049/el:19941195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Dhiman, Jonny, et Sunil Kumar Khah. « Parasitic coupled microstrip antenna using shared aperture technique ». Micro & ; Nano Letters 14, no 8 (juillet 2019) : 845–47. http://dx.doi.org/10.1049/mnl.2018.5768.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Hammad, H. F., Y. M. M. Antar et A. P. Freundorfer. « Dual band aperture coupled antenna using spur line ». Electronics Letters 33, no 25 (1997) : 2088. http://dx.doi.org/10.1049/el:19971452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie