Littérature scientifique sur le sujet « Aperiodic diffractive elements »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Aperiodic diffractive elements ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Aperiodic diffractive elements"

1

Fernández, Roberto, Sergi Gallego, Andrés Márquez, Cristian Neipp, Eva Calzado, Jorge Francés, Marta Morales-Vidal et Augusto Beléndez. « Complex Diffractive Optical Elements Stored in Photopolymers ». Polymers 11, no 12 (21 novembre 2019) : 1920. http://dx.doi.org/10.3390/polym11121920.

Texte intégral
Résumé :
We study the recording of complex diffractive elements, such as achromatic lenses, fork gratings or axicons. Using a 3-D diffusion model, previously validated, we are able to predict the behavior of photopolymer during recording. The experimental recording of these complex elements is possible thanks to a new generation spatial light modulator capable of generating periodic and aperiodic profiles. Both experimental and theoretical are analyzed and compared. The results show not only the good response of theoretical model to predict the behavior of the materials, but also the viability of photopolymers to store these kind of elements.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Prather, Dennis W., Joseph N. Mait, Mark S. Mirotznik et James P. Collins. « Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements ». Journal of the Optical Society of America A 15, no 6 (1 juin 1998) : 1599. http://dx.doi.org/10.1364/josaa.15.001599.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Merkel, M., T. Schemme et C. Denz. « Aperiodic biomimetic Vogel spirals as diffractive optical elements for tailored light distribution in functional polymer layers ». Journal of Optics 23, no 6 (29 avril 2021) : 065401. http://dx.doi.org/10.1088/2040-8986/abf8cc.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Porta, Jason, Jeff Lovelace et Gloria E. O. Borgstahl. « How to assign a (3 + 1)-dimensional superspace group to an incommensurately modulated biological macromolecular crystal ». Journal of Applied Crystallography 50, no 4 (30 juin 2017) : 1200–1207. http://dx.doi.org/10.1107/s1600576717007294.

Texte intégral
Résumé :
Periodic crystal diffraction is described using a three-dimensional (3D) unit cell and 3D space-group symmetry. Incommensurately modulated crystals are a subset of aperiodic crystals that need four to six dimensions to describe the observed diffraction pattern, and they have characteristic satellite reflections that are offset from the main reflections. These satellites have a non-integral relationship to the primary lattice and requireqvectors for processing. Incommensurately modulated biological macromolecular crystals have been frequently observed but so far have not been solved. The authors of this article have been spearheading an initiative to determine this type of crystal structure. The first step toward structure solution is to collect the diffraction data making sure that the satellite reflections are well separated from the main reflections. Once collected they can be integrated and then scaled with appropriate software. Then the assignment of the superspace group is needed. The most common form of modulation is in only one extra direction and can be described with a (3 + 1)D superspace group. The (3 + 1)D superspace groups for chemical crystallographers are fully described in Volume C ofInternational Tables for Crystallography. This text includes all types of crystallographic symmetry elements found in small-molecule crystals and can be difficult for structural biologists to understand and apply to their crystals. This article provides an explanation for structural biologists that includes only the subset of biological symmetry elements and demonstrates the application to a real-life example of an incommensurately modulated protein crystal.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Aperiodic diffractive elements"

1

Prather, Dennis W., Mark S. Mirotznik et Shouyuan Shi. « 5. Electromagnetic Models for Finite Aperiodic Diffractive Optical Elements ». Dans Mathematical Modeling in Optical Science, 141–77. Society for Industrial and Applied Mathematics, 2001. http://dx.doi.org/10.1137/1.9780898717594.ch5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Aperiodic diffractive elements"

1

Prather, Dennis W., et Shouyuan Shi. « Hybrid scalar-vector method for the analysis of electrically large finite aperiodic diffractive optical elements ». Dans Optoelectronics '99 - Integrated Optoelectronic Devices, sous la direction de Ivan Cindrich, Sing H. Lee et Richard L. Sutherland. SPIE, 1999. http://dx.doi.org/10.1117/12.349312.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Feng, Di, Yingbai Yan et Qiaofeng Tan. « Vector-based synthesis of finite aperiodic diffractive micro-optical elements with subwavelength structures as beam deflectors ». Dans Fifth International Symposium on Instrumentation and Control Technology, sous la direction de Guangjun Zhang, Huijie Zhao et Zhongyu Wang. SPIE, 2003. http://dx.doi.org/10.1117/12.521407.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mait, Joseph N., Dennis W. Prather et Mark S. Mirotznik. « Scalar-Based Design of Binary Subwavelength Diffractive Lenses ». Dans Diffractive Optics and Micro-Optics. Washington, D.C. : Optica Publishing Group, 1998. http://dx.doi.org/10.1364/domo.1998.dtub.3.

Texte intégral
Résumé :
Recent research1–9 has shown that if a binary-phase diffractive optical element (DOE) has features that are on the order of the illuminating wavelength, the performance limits set by scalar-based diffraction theory can be overcome. In fact, diffraction efficiencies in excess of 90% have been predicted for binary gratings that have subwavelength features.1,4,5 Due primarily to the availability of tools for modeling, the analysis and design of subwavelength DOEs (SWDOEs) has concentrated primarily on gratings.1-7,10 To overcome this limitation, we have developed numerical routines that use a boundary element method (BEM) to analyze diffraction from finite extent, aperiodic DOEs.11 In this paper we consider diffractive design, in particular, the design of diffractive lenses, subject to the constraints of fabrication.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie