Articles de revues sur le sujet « Antibodies »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Antibodies.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Antibodies ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Deora, Kanika, et Ruchee Khanna. « Clinical Profile of the Patients with Antiphospholipid Antibodies : Lupus Anticoagulant and Anticardiolipin Antibodies ». Indian Journal of Forensic Medicine and Pathology 12, no 3 (2019) : 195–99. http://dx.doi.org/10.21088/ijfmp.0974.3383.12319.6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chiswell, David J., et John McCaffery. « Phage antibodies : will new ‘coliclonal’ antibodies replace monoclonal antibodies ? » Trends in Biotechnology 10 (1992) : 80–84. http://dx.doi.org/10.1016/0167-7799(92)90178-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Linhardt, Robert J., C. W. Abell, R. M. Denney, B. W. Altrock, R. Auerbach, S. D. Bernal, R. E. Canfield et al. « Monoclonal antibodies and immobilized antibodies ». Applied Biochemistry and Biotechnology 15, no 1 (juin 1987) : 53–80. http://dx.doi.org/10.1007/bf02798506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Favoreel, Herman W., Geert Van Minnebruggen, Gerlinde R. Van de Walle, Jolanta Ficinska et Hans J. Nauwynck. « Herpesvirus interference with virus-specific antibodies : Bridging antibodies, internalizing antibodies, and hiding from antibodies ». Veterinary Microbiology 113, no 3-4 (mars 2006) : 257–63. http://dx.doi.org/10.1016/j.vetmic.2005.11.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Clark, A. « Antibodies ». Journal of Clinical Pathology 42, no 5 (1 mai 1989) : 559. http://dx.doi.org/10.1136/jcp.42.5.559-c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bradbury, Andrew, Nileena Velappan, Vittorio Verzillo, Milan Ovecka, Leslie Chasteen, Daniele Sblattero, Roberto Marzari, Jianlong Lou, Robert Siegel et Peter Pavlik. « Antibodies in proteomics I : generating antibodies ». Trends in Biotechnology 21, no 6 (juin 2003) : 275–81. http://dx.doi.org/10.1016/s0167-7799(03)00112-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kounis, Nicholas G., George D. Soufras et George N. Kounis. « Antibodies against antibodies inducing Kounis syndrome ». International Journal of Cardiology 168, no 5 (octobre 2013) : 4804–5. http://dx.doi.org/10.1016/j.ijcard.2013.07.037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Trier, Nicole, Paul Hansen et Gunnar Houen. « Peptides, Antibodies, Peptide Antibodies and More ». International Journal of Molecular Sciences 20, no 24 (13 décembre 2019) : 6289. http://dx.doi.org/10.3390/ijms20246289.

Texte intégral
Résumé :
The applications of peptides and antibodies to multiple targets have emerged as powerful tools in research, diagnostics, vaccine development, and therapeutics. Antibodies are unique since they, in theory, can be directed to any desired target, which illustrates their versatile nature and broad spectrum of use as illustrated by numerous applications of peptide antibodies. In recent years, due to the inherent limitations such as size and physical properties of antibodies, it has been attempted to generate new molecular compounds with equally high specificity and affinity, albeit with relatively low success. Based on this, peptides, antibodies, and peptide antibodies have established their importance and remain crucial reagents in molecular biology.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Shoenfeld, Yehuda. « The idiotypic network in autoimmunity : antibodies that bind antibodies that bind antibodies ». Nature Medicine 10, no 1 (janvier 2004) : 17–18. http://dx.doi.org/10.1038/nm0104-17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bobrovnik, S. A., M. O. Demchenko et S. V. Komisarenko. « Effect of trifluoroethanol on antibodies binding properties ». Ukrainian Biochemical Journal 95, no 1 (26 avril 2023) : 20–30. http://dx.doi.org/10.15407/ubj95.01.020.

Texte intégral
Résumé :
The studies on the influence of organic co-solvents on the structure and function of antibodies are of key interest, especially in view of antibodies broad use as recognizing elements in different analytical systems. Here we studied the effect of co-solvent 2,2,2-trifluoroethanol (TFE) on the ability of anti-ovalbumin monoclonal antibodies to interact with its specific antigen. Antibody affinity to antigen and the rate constants of antibody binding to immobilized antigen were analyzed. Changes in antibody reactivity with incubation time which depended on TFE concentration and temperature were revealed. When treatment of antibodies with TFE was carried out at 0°C, we observed nonlinear, non-monotonous changes of antibody reactivity with initial fast decrease and substantial increase that may be related to the loss of antigen binding reactivity by some part of antibodies at the start but its restoration when the incubation proceeds. Keywords: 2;2;2-trifluoroethanol, antibody affinity, antigen-antibody interaction, monoclonal antibodies, ovalbumin
Styles APA, Harvard, Vancouver, ISO, etc.
11

Qian, J., Y. Xing, D. Yufang, X. Deng, J. Zhao, Q. Wang, Z. Tian, M. LI et X. Zeng. « OP0216 THE CLINICAL AND PATHOLOGICAL ROLES OF AUTOANTIBODIES TARGETING BMP SIGNALING IN SYSTEMIC LUPUS ERYTHEMATOSUS-ASSOCIATED PULMONARY ARTERIAL HYPERTENSION ». Annals of the Rheumatic Diseases 82, Suppl 1 (30 mai 2023) : 141.1–142. http://dx.doi.org/10.1136/annrheumdis-2023-eular.3682.

Texte intégral
Résumé :
BackgroundPulmonary arterial hypertension (PAH) is one of the most severe complications and the leading cause of death in patients with systemic lupus erythematosus (SLE). Pathogenic mechanisms leading to SLE-PAH are still not fully understood. In idiopathic PAH, the dysfunction of the bone morphogenetic protein (BMP) pathway was found to be involved in pulmonary artery remodeling [1]. In SLE-PAH, our previous study identified serum autoantibodies targeting BMP receptors (BMPR) as the potential biomarker, including anti-BMPR2, BMPR1A, and Activin Receptor-Like Kinase type 1 (ALK1) antibodies [2]. However, the clinical and pathological roles of the above autoantibodies targeting BMP signaling in SLE-PAH remain uncertain.ObjectivesTo investigate the clinical and pathological roles of autoantibodies targeting BMPR2, BMPR1A, and ALK1 in SLE-PAH.MethodsPatients of SLE-PAH confirmed by right heart catheterization were enrolled and serum levels of autoantibodies targeting BMPR2, BMPR1A, and ALK1 were measured by ELISA. Patients with SLE-PAH were subtyped by cluster analysis. Survival and treatment goal achievement were further compared between different clusters. The Id1 and phospho-SMAD1/5 (p-SMAD1/5) levels were examined in human pulmonary artery endothelial cells (hPAEC) under the induction of BMP9 combined with anti-BMPR2, anti-ALK1, and anti-BMPR1A neutralizing antibodies (5 μg/mL). The effect of anti-ALK1 antibodies on the extent of monolayer permeability and apoptosis of hPAEC was further examined.Results60 SLE-PAH patients were enrolled and cluster analysis revealed two distinct clusters according to the positivity of autoantibodies targeting BMP signaling and clinical manifestations. Cluster 1 was a “low-antibody and high-disease activity” cluster while cluster 2 was a “high-antibody and low-disease activity” cluster. Patients in cluster 1 showed a higher proportion of nephropathy (76.9%) and SLE activity, however a low positivity rate of autoantibodies targeting BMP signaling. Patients in cluster 2 were characterized by a higher rate of anti-BMPR2 antibodies (82.4%), anti-ALK antibodies (70.6%), and lower SLE activity. Prognostic analysis showed that the proportion of patients who reached the treatment target was relatively higher in cluster 2. Mechanism study showed that the p-SMAD1/5 level and the Id1expression were decreased, indicating the suppression of BMP signaling in the presence of anti-ALK1 antibodies. Functional studies showed that anti-ALK1 antibodies increased the monolayer permeability of hPAEC. The late-stage apoptosis of hPAECs was also induced by anti-ALK1 antibodies.Table 1.The clinical features of the patients in cluster 1 and cluster 2.Cluster 1 (N=26)Cluster 2 (N=34)PAnti-BMPR2 antibodies5(19.2)28(82.4)<0.001Anti-BMPR1A antibodies8(30.2)4(1.8)0.068Anti-ALK antibodies5(19.2)24(70.6)<0.001Arthritis12(46.2)25(73.5)0.031Nephropathy20(76.9)1(2.9)<0.001SLEDAI5.46±4.282.62±2.100.001WHO III/IV17(65.4)14(41.2)0.063Figure 1.(A). Kaplan-Meier analysis of the prognosis of cluster1 and cluster2. (B) The level of Id1 expression under the induction of anti-BMPR2, anti-ALK1, and anti-BMPR1A antibodies in the presence or absence of BMP9. The ID1 (C) and p-Smad 1/5/8 (D) measured by western blotting under the induction of anti-ALK antibodies, BMP9, or anti-ALK antibodies+ BMP9. The fluorescence of the receiver plate well solution (E) and the percentage of late-stage apoptotic cells (E) under the induction of anti-ALK neutralizing antibodies.ConclusionThe serum positivity of autoantibodies targeting BMP signaling has clinical potential in dividing SLE-PAH patients into two distinct clusters. The anti-ALK1 antibodies can downregulate BMP signaling and mediate great permeability and apoptosis in hPAECs, which may be involved in the pathogenesis of SLE-PAH.References[1]Dewachter L, et.al. Eur Respir J 34 (5):1100-1110.[2]Xing Y, et.al. FASEB J 35 (12):e22044.AcknowledgementsWe thank CSTAR co-authors as following for assistance with cases collections.Disclosure of InterestsNone Declared.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Dahl, Mark V., et Alina G. Bridges. « Intravenous immune globulin : Fighting antibodies with antibodies ». Journal of the American Academy of Dermatology 45, no 5 (novembre 2001) : 775–83. http://dx.doi.org/10.1067/mjd.2001.119085.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

SHITARA, Kenya. « Potelligent Antibodies as Next Generation Therapeutic Antibodies ». YAKUGAKU ZASSHI 129, no 1 (1 janvier 2009) : 3–9. http://dx.doi.org/10.1248/yakushi.129.3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Methe, H. « Antibodies Stop Secretion of Antibodies in Lupus ». Science Translational Medicine 4, no 141 (4 juillet 2012) : 141ec115. http://dx.doi.org/10.1126/scitranslmed.3004529.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Filatova, Elena A., Grigory B. Krapivinsky, Grigory N. Filatov, Alisa V. Lazareva et Evgeny E. Fesenko. « Antiidiotypic antibodies against anti-cGMP polyclonal antibodies ». Biochimica et Biophysica Acta (BBA) - Biomembranes 1064, no 2 (mai 1991) : 293–96. http://dx.doi.org/10.1016/0005-2736(91)90314-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Khan, Ramsha, Melissa Menard, Chao-Ching Jen, Xi Chen, Peter A. A. Norris et Alan H. Lazarus. « Inhibition of platelet phagocytosis as an in vitro predictor for therapeutic potential of RBC antibodies in murine ITP ». Blood 135, no 26 (25 juin 2020) : 2420–24. http://dx.doi.org/10.1182/blood.2019003646.

Texte intégral
Résumé :
Abstract Polyclonal anti-D is a first-line therapy for immune thrombocytopenia (ITP). Monoclonal antibodies are desirable alternatives, but none have yet proven successful despite their ability to opsonize erythrocytes (or red blood cells, RBCs) and cause anemia. Here, we examined 12 murine erythrocyte–specific antibodies of different specificity and subtypes and found that 8 of these antibodies could induce anemia in antigen-positive mice. Of these 8 antibodies, only 5 ameliorated ITP. All antibodies were examined for their in vitro ability to support macrophage-mediated phagocytosis of erythrocytes. Antibodies which supported erythrocyte phagocytosis in vitro successfully ameliorated ITP in vivo. To examine the ability of each antibody to inhibit phagocytosis of platelets, the antibodies were used to sensitize erythrocytes in vitro and these were added to a platelet phagocytosis assay. Antibodies that inhibited platelet phagocytosis in vitro also all ameliorated ITP in vivo. We conclude that inducing anemia is not a sufficient condition for amelioration of ITP but that the antibody’s ability to prevent platelet phagocytosis in vitro predicted its ability to ameliorate ITP. We suggest that inhibition of in vitro platelet phagocytosis may prove to be a valuable tool for determining which erythrocyte antibodies would likely be candidates for clinical use in ITP.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Reddy, Raghuram, Joel Mintz, Roei Golan, Fakiha Firdaus, Roxana Ponce, Derek Van Booven, Aysswarya Manoharan, Isabelle Issa, Bonnie B. Blomberg et Himanshu Arora. « Antibody Diversity in Cancer : Translational Implications and Beyond ». Vaccines 10, no 8 (22 juillet 2022) : 1165. http://dx.doi.org/10.3390/vaccines10081165.

Texte intégral
Résumé :
Patients with cancer tend to develop antibodies to autologous proteins. This phenomenon has been observed across multiple cancer types, including bladder, lung, colon, prostate, and melanoma. These antibodies potentially arise due to induced inflammation or an increase in self-antigens. Studies focusing on antibody diversity are particularly attractive for their diagnostic value considering antibodies are present at an early diseased stage, serum samples are relatively easy to obtain, and the prevalence of antibodies is high even when the target antigen is minimally expressed. Conversely, the surveillance of serum proteins in cancer patients is relatively challenging because they often show variability in expression and are less abundant. Moreover, an antibody’s presence is also useful as it suggests the relative immunogenicity of a given antigen. For these reasons, profiling antibodies’ responses is actively considered to detect the spread of antigens following immunotherapy. The current review focuses on expanding the knowledge of antibodies and their diversity, and the impact of antibody diversity on cancer regression and progression.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kapustianenko, L. G. « POLYCLONAL ANTIBODIES AGAINST HUMAN PLASMINOGEN KRINGLE 5 ». Biotechnologia Acta 10, no 3 (juin 2017) : 41–49. http://dx.doi.org/10.15407/biotech10.03.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Heng, Boon Chin, Wenjin Huang, Xiufang Zhong, Ping Yin et Guo Qing Tong. « Roles of Antiphospholipid Antibodies, Antithyroid Antibodies and Antisperm Antibodies in Female Reproductive Health ». Integrative Medicine International 2, no 1-2 (16 juillet 2015) : 21–31. http://dx.doi.org/10.1159/000381900.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

BYGREN, P., N. RASMUSSEN, B. ISAKSSON et J. WIESLANDER. « Anti-neutrophil cytoplasm antibodies, anti-GBM antibodies and anti-dsDNA antibodies in glomerulonephritis ». European Journal of Clinical Investigation 22, no 12 (décembre 1992) : 783–92. http://dx.doi.org/10.1111/j.1365-2362.1992.tb01447.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Triplett, Douglas A. « Antiphospholipid Antibodies ». Archives of Pathology & ; Laboratory Medicine 126, no 11 (1 novembre 2002) : 1424–29. http://dx.doi.org/10.5858/2002-126-1424-aa.

Texte intégral
Résumé :
Abstract Objective.—To review the role of lupus anticoagulants in the pathogenesis of both venous and arterial thromboembolic events, as well as in recurrent spontaneous abortions. The pathophysiology of lupus anticoagulants and associated antiphospholipid antibodies (eg, anticardiolipin antibodies) is also discussed. Data Sources.—Review of the recent medical literature. Data Extraction and Synthesis.—Key articles in the recent medical literature dealing with lupus anticoagulants and their role in pathogenesis of thromboembolic events were reviewed. Plasma proteins that have an affinity for binding to “perturbed cellular membranes” have been identified as the antigenic targets for antiphospholipid antibodies. Thus, the concept of antiphospholipid antibodies needs to be reevaluated. Perhaps a better term is antiprotein-phospholipid antibodies. The principal antigenic protein targets are β2-glycoprotein I, prothrombin, and a wide range of additional proteins that interact with activated cellular membranes, including protein C, protein S, annexin V, etc. Most research reported in the literature has focused on β2-glycoprotein I and human prothrombin.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Brinkmann, Ulrich, et Roland E. Kontermann. « Bispecific antibodies ». Science 372, no 6545 (27 mai 2021) : 916–17. http://dx.doi.org/10.1126/science.abg1209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Rieger, Paula Trahan. « Monoclonal Antibodies ». American Journal of Nursing 87, no 4 (avril 1987) : 469. http://dx.doi.org/10.2307/3470440.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Groner, Bernd, Cord Hartmann et Winfried Wels. « Therapeutic Antibodies ». Current Molecular Medicine 4, no 5 (1 août 2004) : 539–47. http://dx.doi.org/10.2174/1566524043360483.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kosmas, C., H. Kalofonos et A. A. Epenetos. « Monoclonal Antibodies ». Drugs 38, no 5 (novembre 1989) : 645–57. http://dx.doi.org/10.2165/00003495-198938050-00001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Larrick, James W., et Kirk E. Fry. « Recombinant antibodies ». Human Antibodies 2, no 4 (1 décembre 1991) : 172–89. http://dx.doi.org/10.3233/hab-1991-2401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Bronson, Richard A. « Sperm Antibodies ». Immunology and Allergy Clinics of North America 10, no 1 (février 1990) : 165–84. http://dx.doi.org/10.1016/s0889-8561(22)00256-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Pisetsky, David S. « ANTINUCLEAR ANTIBODIES ». Immunology and Allergy Clinics of North America 14, no 2 (mai 1994) : 371–85. http://dx.doi.org/10.1016/s0889-8561(22)00780-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Smith, J. Bruce, et F. Susan Cowchock. « ANTIPHOSPHOLIPID ANTIBODIES ». Immunology and Allergy Clinics of North America 14, no 4 (novembre 1994) : 821–34. http://dx.doi.org/10.1016/s0889-8561(22)00345-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Pratt, Donna E. « THYROID ANTIBODIES ». Immunology and Allergy Clinics of North America 14, no 4 (novembre 1994) : 835–38. http://dx.doi.org/10.1016/s0889-8561(22)00346-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Visan, Ioana. « Enhancing antibodies ». Nature Immunology 22, no 7 (28 juin 2021) : 800. http://dx.doi.org/10.1038/s41590-021-00973-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Khamashta, Munther A., et Graham R. V. Hughes. « Antiphospholipid antibodies ». Clinical Reviews in Allergy 12, no 3 (septembre 1994) : 287–96. http://dx.doi.org/10.1007/bf02802323.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Adair, J., et A. Lawson. « Therapeutic Antibodies ». Drug Design Reviews - Online 2, no 3 (1 mai 2005) : 209–17. http://dx.doi.org/10.2174/1567269053828800.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Pullen, Richard L. « Antinuclear antibodies ». Nursing Made Incredibly Easy ! 20, no 6 (novembre 2022) : 47–48. http://dx.doi.org/10.1097/01.nme.0000884112.83689.31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Santos-Argumedo, Leopoldo. « Natural Antibodies ». Advances in Neuroimmune Biology 3, no 3,4 (2012) : 345–52. http://dx.doi.org/10.3233/nib-012912.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

&NA;. « Monoclonal antibodies ». Reactions Weekly &NA;, no 1293 (mars 2010) : 36. http://dx.doi.org/10.2165/00128415-201012930-00100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Hudson, Peter J., et Christelle Souriau. « Engineered antibodies ». Nature Medicine 9, no 1 (janvier 2003) : 129–34. http://dx.doi.org/10.1038/nm0103-129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Benkovic, Stephen J. « Catalytic Antibodies ». Annual Review of Biochemistry 61, no 1 (juin 1992) : 29–54. http://dx.doi.org/10.1146/annurev.bi.61.070192.000333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Harris, E. Nigel. « ANTIPHOSPHOLIPID ANTIBODIES ». British Journal of Haematology 74, no 1 (7 juillet 2008) : 1–9. http://dx.doi.org/10.1111/j.1365-2141.1988.00491.x-i1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Harris, E. Nigel. « ANTIPHOSPHOLIPID ANTIBODIES ». British Journal of Haematology 74, no 1 (janvier 1990) : 1–9. http://dx.doi.org/10.1111/j.1365-2141.1990.tb02530.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Drlicek, M., U. Liszka, W. Grisold, A. Mohn-Staudner, F. Lintner et K. Jellinger. « Antineuronal antibodies ». Neurology 40, no 11 (1 novembre 1990) : 1804. http://dx.doi.org/10.1212/wnl.40.11.1804-b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Helmerhorst, F. M., M. J. J. Finken et J. J. Erwich. « Antisperm antibodies ». Human Reproduction 14, no 7 (juillet 1999) : 1669–71. http://dx.doi.org/10.1093/humrep/14.7.1669.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Worland, PhD, Peter J., Gary S. Gray, PhD, Mark Rolfe, PhD, Karen Gray, PhD et Jeffrey S. Ross, MD. « Anticancer Antibodies ». American Journal of Clinical Pathology 119, no 4 (1 avril 2003) : 472–85. http://dx.doi.org/10.1309/y6lp-c0lr-726l-9dx9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ross, Jeffrey S., Karen Gray, Gary S. Gray, Peter J. Worland et Mark Rolfe. « Anticancer Antibodies ». American Journal of Clinical Pathology 119, no 4 (avril 2003) : 472–85. http://dx.doi.org/10.1309/y6lpc0lr726l9dx9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Barahona-Garrido, J., J. Camcho-Escobedo, C. Garcia-Martiʼnez, H. Tocay, J. Cabiedes et J. Yamamoto-Furusho. « Antinuclear antibodies ». Inflammatory Bowel Diseases 14 (décembre 2008) : S12. http://dx.doi.org/10.1097/00054725-200812001-00038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Persidis, Aris. « Catalytic antibodies ». Nature Biotechnology 15, no 12 (novembre 1997) : 1313–15. http://dx.doi.org/10.1038/nbt1197-1313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Tramontano, A., K. Janda et R. Lerner. « Catalytic antibodies ». Science 234, no 4783 (19 décembre 1986) : 1566–70. http://dx.doi.org/10.1126/science.3787261.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

&NA;. « Monoclonal Antibodies ». Journal of Pediatric Hematology/Oncology 25, no 4 (avril 2003) : S5—S6. http://dx.doi.org/10.1097/00043426-200304000-00025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

&NA;. « Monoclonal Antibodies ». Journal of Pediatric Hematology/Oncology 25, no 4 (avril 2003) : S17—S18. http://dx.doi.org/10.1097/00043426-200304000-00036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

McNeil, H. P., et S. A. Krilis. « Antiphospholipid antibodies ». Australian and New Zealand Journal of Medicine 21, no 4 (août 1991) : 463–75. http://dx.doi.org/10.1111/j.1445-5994.1991.tb01356.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie