Sommaire
Littérature scientifique sur le sujet « Antiamyloidogenic »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Antiamyloidogenic ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Antiamyloidogenic"
Benseny-Cases, Núria, Oxana Klementieva et Josep Cladera. « Dendrimers antiamyloidogenic potential in neurodegenerative diseases ». New J. Chem. 36, no 2 (2012) : 211–16. http://dx.doi.org/10.1039/c1nj20469f.
Texte intégralChauhan, Ved, Lina Ji et Abha Chauhan. « P1-442 : Antiamyloidogenic properties of gelsolin ». Alzheimer's & ; Dementia 4 (juillet 2008) : T349. http://dx.doi.org/10.1016/j.jalz.2008.05.1024.
Texte intégralBermejo-Bescós, Paloma, Sagrario Martín-Aragón, Karim L. Jiménez-Aliaga, Andrea Ortega, María Teresa Molina, Eduardo Buxaderas, Guillermo Orellana et Aurelio G. Csákÿ. « In vitro antiamyloidogenic properties of 1,4-naphthoquinones ». Biochemical and Biophysical Research Communications 400, no 1 (septembre 2010) : 169–74. http://dx.doi.org/10.1016/j.bbrc.2010.08.038.
Texte intégralYu, Kun-Hua, et Cheng-I. Lee. « Quercetin Disaggregates Prion Fibrils and Decreases Fibril-Induced Cytotoxicity and Oxidative Stress ». Pharmaceutics 12, no 11 (11 novembre 2020) : 1081. http://dx.doi.org/10.3390/pharmaceutics12111081.
Texte intégralKhaengkhan, Parinda, Yuki Nishikaze, Tetsuhiro Niidome, Kenji Kanaori, Kunihiko Tajima, Masatoshi Ichida, Shigeharu Harada, Hachiro Sugimoto et Kaeko Kamei. « Identification of an antiamyloidogenic substance from mulberry leaves ». NeuroReport 20, no 13 (août 2009) : 1214–18. http://dx.doi.org/10.1097/wnr.0b013e32832fa645.
Texte intégralBenseny-Cases, Nuria, Oxana Klementieva et Josep Cladera. « ChemInform Abstract : Dendrimers Antiamyloidogenic Potential in Neurodegenerative Diseases ». ChemInform 43, no 22 (3 mai 2012) : no. http://dx.doi.org/10.1002/chin.201222233.
Texte intégralPandini, Giuseppe, Vincenza Pace, Agata Copani, Sebastiano Squatrito, Danilo Milardi et Riccardo Vigneri. « Insulin Has Multiple Antiamyloidogenic Effects on Human Neuronal Cells ». Endocrinology 154, no 1 (1 janvier 2013) : 375–87. http://dx.doi.org/10.1210/en.2012-1661.
Texte intégralChemerovski-Glikman, Marina, Michal Richman et Shai Rahimipour. « Structure-based study of antiamyloidogenic cyclic d,l-α-peptides ». Tetrahedron 70, no 42 (octobre 2014) : 7639–44. http://dx.doi.org/10.1016/j.tet.2014.07.097.
Texte intégralZhao, Zijian, Ling Zhu, Haiyun Li, Peng Cheng, Jiaxi Peng, Yudan Yin, Yang Yang, Chen Wang, Zhiyuan Hu et Yanlian Yang. « Antiamyloidogenic Activity of Aβ42-Binding Peptoid in Modulating Amyloid Oligomerization ». Small 13, no 1 (7 octobre 2016) : 1602857. http://dx.doi.org/10.1002/smll.201602857.
Texte intégralFortin, Jessica S., et Marie-Odile Benoit-Biancamano. « Inhibition of islet amyloid polypeptide aggregation and associated cytotoxicity by nonsteroidal anti-inflammatory drugs ». Canadian Journal of Physiology and Pharmacology 94, no 1 (janvier 2016) : 35–48. http://dx.doi.org/10.1139/cjpp-2015-0117.
Texte intégralThèses sur le sujet "Antiamyloidogenic"
VISENTIN, CRISTINA. « Use of a technological platform to screening in vitro and in vivo anti-amyloidogenic drugs able to prevent early neurodegenerative process ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/158278.
Texte intégralAmyloidoses are protein misfolding diseases caused by deposition of fibrillar proteins in target organs. Nowadays, most of them are still incurable and their relevance to public health system is growing, especially as a consequence of population aging. Spinocerebellar ataxia type 3 is a member of this group of pathologies and its causative agent is ataxin-3 (ATX3). This is consists of a globular N-terminal (JD), followed by a flexible tail carrying a poly-glutamine (polyQ) tract. An expanded polyQ tract triggers the aggregation. In this work, I have investigated the capability of tetracycline (Tetra), epigallocatechin-gallate (EGCG), epigallocatechin (EGC), gallic acid (GA) and trifluoroethanol (TFE) to interfere with ATX3 amyloid deposition. Tetra is an antibiotic recently re-evaluated as anti- amyloidogenic compound. EGCG, EGC and GA, which are natural polyphenols, are already known in literature for their anti-amyloidogenic effect; finally, TFE is an osmolyte that stabilizes secondary structure, preferentially α-helix. Data obtained by aggregation assay, spectroscopic analyses (NMR, FTIR) and morphologic characterisation clearly demonstrated Tetra capability of increasing ATX3 aggregates solubility, without a substantial remodelling of the internal structure. Nevertheless, this antibiotic reduced the toxicity of the oligomeric species and ameliorated ataxic C. elegans phenotype. On the contrary, the analysed polyphenols were capable to interfere with ATX3 aggregation but, instead of preventing, they accelerated the aggregation rate redirecting the process towards the formation of soluble, not toxic, off-pathway aggregates. All compounds were also active against the JD in isolation, but only the polyphenols were capable to bind the monomeric form. In particular, they overlapped specific aggregation-prone regions directly involved in the fibrillation. This could explain their capability of redirecting the aggregation pathway and the different mode of action with respect to Tetra. These polyphenols showed a remarkable reduction of ATX3-mediated cytotoxicity and mitigation of ataxic phenotype in C. elegans and E. coli models. However, the compounds displayed a different efficacy, whereby EGCG was the most and GA the least effective. All data strongly support the idea that GA is the minimal functional unit of EGCG. TFE did not show the capability of preventing aggregation; in fact, even at very low concentration it promotes a faster amyloid-like aggregation. Biophysical characterization of its effect on JD aggregation, instead, provided evidence that ATX3 aggregation proceeds along a new identified pathway by which protein misfolding follows protein aggregation. In fact, TFE induces the formation of a native-like state almost indistinguishable from fully native protein, but more aggregation prone.
Chapitres de livres sur le sujet "Antiamyloidogenic"
« Antiamyloidogenic Effect of Dates Grown in Oman with Reference to Their Possible Protection against Alzheimer’s Disease ». Dans Dates, 416–31. CRC Press, 2012. http://dx.doi.org/10.1201/b11874-33.
Texte intégral