Littérature scientifique sur le sujet « Anion membrane »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Anion membrane ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Anion membrane"
Grover, A. K., A. P. Singh, P. K. Rangachari et P. Nicholls. « Ion movements in membrane vesicles : a new fluorescence method and application to smooth muscle ». American Journal of Physiology-Cell Physiology 248, no 3 (1 mars 1985) : C372—C378. http://dx.doi.org/10.1152/ajpcell.1985.248.3.c372.
Texte intégralKotyńska, Joanna, et Monika Naumowicz. « Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density ». Molecules 25, no 1 (29 décembre 2019) : 132. http://dx.doi.org/10.3390/molecules25010132.
Texte intégralOliveira, Alexandra M., Brian P. Setzler et Yushan Yan. « Anode-Fed Anion Exchange Membrane Electrolyzers for Hydrogen Generation Tolerant to Anion Contaminants ». ECS Meeting Abstracts MA2022-02, no 44 (9 octobre 2022) : 1679. http://dx.doi.org/10.1149/ma2022-02441679mtgabs.
Texte intégralLejarazu-Larrañaga, Amaia, Juan Manuel Ortiz, Serena Molina, Yan Zhao et Eloy García-Calvo. « Nitrate-Selective Anion Exchange Membranes Prepared using Discarded Reverse Osmosis Membranes as Support ». Membranes 10, no 12 (27 novembre 2020) : 377. http://dx.doi.org/10.3390/membranes10120377.
Texte intégralWilldorf-Cohen, Sapir, Songlin Li, Simcha Srebnik, Charles E. Diesendruck et Dario R. Dekel. « Effect of Carbonate Anions on the Stability of Quaternary Ammonium Groups for Aemfcs ». ECS Meeting Abstracts MA2022-02, no 43 (9 octobre 2022) : 1609. http://dx.doi.org/10.1149/ma2022-02431609mtgabs.
Texte intégralSchefe, C. R., M. Watt, W. J. Slattery et P. M. Mele. « Organic anions in the rhizosphere of Al-tolerant and Al-sensitive wheat lines grown in an acid soil in controlled and field environments ». Soil Research 46, no 3 (2008) : 257. http://dx.doi.org/10.1071/sr07139.
Texte intégralMiller, D. S., P. M. Smith et J. B. Pritchard. « Organic anion and cation transport in crab urinary bladder ». American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 257, no 3 (1 septembre 1989) : R501—R505. http://dx.doi.org/10.1152/ajpregu.1989.257.3.r501.
Texte intégralWei, Fei, Aslan Kosakian, Jiafei Liu et Marc Secanell. « Water Transport Characterization of Anion and Proton Exchange Membranes ». ECS Meeting Abstracts MA2022-02, no 50 (9 octobre 2022) : 2620. http://dx.doi.org/10.1149/ma2022-02502620mtgabs.
Texte intégralDong, X. W., J. B. Zhuang, N. B. Huang, C. H. Liang, L. S. Xu, W. Li, S. C. Zhang et M. Sun. « Development of anion-exchange membrane for anion-exchange membrane fuel cells ». Materials Research Innovations 19, sup6 (juin 2015) : S6–38—S6–41. http://dx.doi.org/10.1179/1432891715z.0000000001442.
Texte intégralZuo, Xingtao, Wenxin Shi, Shuili Yu et Jiajie He. « Fundamental characteristics study of anion-exchange PVDF–SiO2 membranes ». Water Science and Technology 66, no 11 (1 décembre 2012) : 2343–48. http://dx.doi.org/10.2166/wst.2012.464.
Texte intégralThèses sur le sujet "Anion membrane"
Boulter, Jonathan Michael. « Structural and functional studies of the erythrocyte anion exchanger, band 3 ». Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297079.
Texte intégralParker, Mark D. « Expression and anion transport studies on the human erythrocyte anion exchange protein (AE1, band 3) in the yeast Saccharomyces cerevisiae ». Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310589.
Texte intégralDayama, Parth Omprakash. « A Comparative Study of Electrodes and Membranes for Anion Exchange Membrane Water Electrolysis Systems ». Thesis, KTH, Tillämpad elektrokemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300182.
Texte intégralHydrogen can be produced from renewable energy sources using a novel anion exchange membrane water electrolysis (AEMWE) system. AEMWE has some benefits over the currently used state-of-the-art alkaline and proton exchange membrane water electrolysis systems. For instance, there is a possibility of using alkaline electrolytes (even pure water) and low-cost platinum-group-metal free catalysts together with an ion exchange membrane. However, the main challenge is that the AEMWE system should show excellent and stable performance, depending on the stability of the membrane and the electrodes. AemionTM anion exchange membranes (AEMs) of different thickness and water uptake capacity were investigated using a 5 cm2 AEMWE system. The electrochemical behaviour of these commercial AEMs was studied using nickel (Ni) felt electrodes. Among the investigated AEMs, the AF2-HWP8-75-X showed stable performance with a high frequency resistance (HFR) of 90 mΩ•cm2 and was able to reach a current density of 0.8 A/cm2 at 2.38 V using 1 M KOH at 60 ˚C. AEMWE systems based on AF2-HWP8-75-X and different electrode combinations were examined under the same operating conditions. An electrode combination with Raney-Ni and NiFeO as cathode and anode, respectively, showed the best performance during the degradation test and provided a current density of 1.06 and 3.08 A/cm2 at 2.00 and 2.32 V, respectively. The operating temperature and concentration of the KOH solution were reduced to 45 ˚C and 0.1 M, respectively, to study the effect of operating parameters on the flow cell performance. The flow cell showed good stability under the new operating conditions, but its performance was reduced significantly. It reached a current density of 0.8 A/cm2 at 2.25 V.
Crofts, Alan. « Anion efflux across the plasma membrane of Chara corallina ». Thesis, University of York, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358101.
Texte intégralSantori, Pietro Giovanni. « Investigation of electrocatalysts for anion-exchange membrane fuel cells ». Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS129.
Texte intégralThis PhD thesis investigates the synthesis, structural characterization and oxygen reduction reaction (ORR) activity of Fe-N-C catalysts and composites of Fe-N-C and manganese oxides, and their application at the cathode of anion exchange membrane fuel cells (AEMFCs). Compared to proton exchange membrane fuel cells (PEMFCs), where platinum is today needed to reach high performance, AEMFCs hold the promise to reach high performance without precious metals in their catalysts. While Fe-N-C catalysts are currently investigated as an alternative to Pt/C for PEMFC cathodes, they suffer from lower activity and lower durability in the acidic medium of PEMFCs. In contrast, both the ORR activity and stability of Fe-N-C catalysts can be expected to be significantly improved in AEMFC.This PhD work demonstrates the high activity, stability and durability in alkaline medium of Fe-N-C catalysts with atomically-dispersed FeNx sites. They were prepared from a mix of ZIF-8 and iron salt, pyrolyzed in argon (Fe0.5-Ar) and then ammonia (Fe0.5-NH3). The activity was measured in a rotating disk electrode (RDE) and in AEMFC, while the stability was measured in RDE and in operando with mass spectroscopy (ICP-MS) coupled with a scanning flow cell, in both acid and alkaline media. The latter setup was used to measure Fe dissolution in operando. It was evidenced that, in oxygenated acid electrolyte, the iron leaching rate of the most active Fe-N-C catalyst (Fe0.5-NH3) is 10 times faster compared to the less active Fe0.5-Ar. This explains the reduced stability of ammonia-treated Fe-N-C catalysts in operating PEMFC. In contrast, in alkaline medium, very little demetallation was observed even for Fe0.5-NH3. This was correlated with almost unchanged activity after load cycling in RDE. The nature of the active sites was investigated with X-ray absorption spectroscopy, including in operando measurements.Then, to minimize the amount of peroxide species during ORR on Fe-N-C, different manganese oxides were synthesized and their activity for ORR and hydrogen peroxide reduction reaction (HPRR) were evaluated, while operando manganese dissolution was investigated with ICP-MS. It was found that even the most stable Mn-oxide, Mn2O3, leached a significant amount of Mn during ORR in alkaline medium. It was further demonstrated that the Mn leaching is associated with hydrogen peroxide produced during ORR. Composites of Fe0.5-NH3 and Mn-oxides were then investigated for ORR and HPRR. Improved selectivity during ORR was observed for all composites relative to Fe0.5-NH3 alone, but the effect was strongest for Mn2O3.Before investigating such catalysts in AEMFC, a study on the compatibility between different ORR and/or hydrogen oxidation reaction catalysts (Pt/C, Fe0.5-NH3, PtRu/C, Pd-CeO2/C) and anion exchange ionomers was performed in RDE in 0.1 M KOH. The study identified issues between the investigated ionomers and catalysts having low metal contents on the carbon support (Fe0.5-NH3, Pd-CeO2/C).The catalyst Fe0.5-NH3 and its composite with Mn2O3 were then investigated in AEMFC with an ethylene-tetrafluoroethylene ionomer. Both cathode catalysts reached a current density of ca 80 mA cm-2 at 0.9 V, with relatively low loading of 1.0-1.5 mg catalyst·cm-2. The peak power density with H2/O2 reached 1 W cm-2 at 60°C with a low density polyethylene AEM and 1.4 W cm-2 with high density polyethylene AEM at 65°C. By comparison, a current density of ca 70 mA cm-2 at 0.9 V and peak power density of 1.5 W cm-2 was reached with 0.45 mgPt cm-2 at the cathode (40 wt% Pt/C) with low density polyethylene AEM at 60°C. A durability test of 100 h at 0.6 A cm-2 in air showed good stability of the Fe0.5-NH3 catalyst.In conclusion, this work highlights the promising application of Fe-N-C catalysts at the cathode of AEMFCs for replacing precious metal catalysts
Matsuoka, Koji. « Studies on direct alcohol fuel cells using anion-exchange membrane ». 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144928.
Texte intégral0048
新制・課程博士
博士(工学)
甲第11583号
工博第2529号
新制||工||1344(附属図書館)
23226
UT51-2005-D332
京都大学大学院工学研究科物質エネルギー化学専攻
(主査)教授 小久見 善八, 教授 垣内 隆, 教授 田中 功
学位規則第4条第1項該当
BONIZZONI, SIMONE. « Anion Conducting Polymers for Fuel Cell and Electrolyzer ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382284.
Texte intégralThe hydrogen, as energy vector, is considering one promising green, sustainable, low-cost alternative to hydrocarbon fuels. In the circular hydrogen economy, the fuel cell technologies play a crucial role of the energy conversion and, in particular, Anion Exchange Membrane Fuel Cell are retained to be very promising for the high-power delivery, the short waiting time before providing energy, the low working temperature. My PhD is focus on synthesis and characterization of anionic conducting polymer for fuel cell and electrolyzer applications. The first part of activities is focused on the study of new chemical modifications of polyfluorinated (Aquivion®), aliphatic polyketones, polystyrene polymer matrix to address the main drawbacks of the chemical and electrochemical stability and also the high cost. The synthesis methods involve the organic chemistry procedure for examples Pall-Knorr reaction, Baeyer-Villiger oxidation, methylation process. The physical-chemical characterization part is aimed to the better understand the properties of the functionalized polymer matrix. The polymer structure is investigated by spectroscopes technique for example FTIR and solid-state NMR while, the thermal properties and their stability are determined by TGA and DSC measurements. For the promising work of Aquivion® modification, I also performed accelerated ageing treatment for testing the chemical and electrochemical stability and I used them in for water Electrolyzer application. The functionalized polymers show interesting and promising properties for fuel cell and electrolyzer applications and, in particular, modified Aquivion® membranes show excellent stability in alkaline environmental and archive 130 mA cm-2 at 80°C. The results of Aquivion® modification are published on two international journals and the polyketones functionalization work is undergoing publication.
Akanda, Nesar. « Voltage-dependent anion channels (VDAC) in the plasma membrane induces apoptosis / ». Linköping : Univ, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8240.
Texte intégralAkanda, Nesar. « Voltage-dependent anion channels (VDAC) in the plasma membrane induce apoptosis ». Doctoral thesis, Linköpings universitet, Cellbiologi, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8240.
Texte intégralBetaneli, Viktoria. « Voltage dependent anion channel : Interaction with lipid membranes ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-85742.
Texte intégralLivres sur le sujet "Anion membrane"
An, Liang, et T. S. Zhao, dir. Anion Exchange Membrane Fuel Cells. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7.
Texte intégralHalle-Smith, Simon C. A study of the inner membrane anion channel of rat liver mitochondria. Norwich : University of East Anglia, 1990.
Trouver le texte intégralInternational, Meeting on Anion Transport Protein of the Red Blood Cell Membrane as well as Kidney and Diverse Cells (1989 Fukuoka-shi Japan). Anion transport protein of the red blood cell membrane : Proceedings of the International Meeting on Anion Transport Protein of the Red Blood Cell Membrane as well as Kidney and Diverse Cells, Fukuoka, 1-3 May 1989. Amsterdam : Elsevier, 1989.
Trouver le texte intégralPak, Chin-su. Kochʻe alkʻalli yŏllyo chŏnji rŭl wihan ŭmion kyohwanmak mit chŏnʼgŭk-chonhaejil chŏphapchʻe kaebal = : Development of anion-exchange membranes and membrane-electrode assemblies for solid alkaline fuel cells. [Seoul] : Chisik Kyŏngjebu, 2008.
Trouver le texte intégralPak, Chin-su. Kochʻe alkʻalli yŏllyo chŏnji rŭl wihan ŭmion kyohwanmak mit chŏnʼgŭk-chonhaejil chŏphapchʻe kaebal = : Development of anion-exchange membranes and membrane-electrode assemblies for solid alkaline fuel cells. [Seoul] : Chisik Kyŏngjebu, 2008.
Trouver le texte intégralAzzi, Angelo, Katarzyna A. Nałęz, Maciej J. Nałęcz et Lech Wojtczak, dir. Anion Carriers of Mitochondrial Membranes. Berlin, Heidelberg : Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74539-3.
Texte intégralA, Azzi, Instytut Biologii Doświadczalnej im. M. Nenckiego. et International Conference on Anion Carriers of Mitochondrial Membranes (1988 : Zakopane, Poland), dir. Anion carriers of mitochondrial membranes. Berlin : Springer-Verlag, 1989.
Trouver le texte intégralV, Sonawane J., et Bhabha Atomic Research Centre, dir. Liquid anion exchanges (LAE) as novel receptors for plutonium pertraction across polymer immobilized liquid membranes. Mumbai : Bhabha Atomic Research Centre, 1999.
Trouver le texte intégralAn, Liang, et T. S. Zhao. Anion Exchange Membrane Fuel Cells : Principles, Materials and Systems. Springer, 2018.
Trouver le texte intégralAn, Liang, et T. S. Zhao. Anion Exchange Membrane Fuel Cells : Principles, Materials and Systems. Springer, 2018.
Trouver le texte intégralChapitres de livres sur le sujet "Anion membrane"
Knauf, Philip A. « Anion Transport in Erythrocytes ». Dans Membrane Physiology, 191–220. Boston, MA : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1943-6_12.
Texte intégralRothstein, Aser. « Anion Exchanges and Band 3 Protein ». Dans Membrane Transport, 203–35. New York, NY : Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4614-7516-3_7.
Texte intégralHiga, Mitsuru. « Anion-Exchange Membrane (AEM) ». Dans Encyclopedia of Membranes, 78–79. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_23.
Texte intégralHiga, Mitsuru. « Anion-Exchange Membrane (AEM) ». Dans Encyclopedia of Membranes, 1–2. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_23-1.
Texte intégralJennings, Michael L. « The Anion Transport Protein ». Dans The Red Cell Membrane, 143–70. Totowa, NJ : Humana Press, 1989. http://dx.doi.org/10.1007/978-1-4612-4500-1_8.
Texte intégralKnauf, Philip A. « Kinetics of Anion Transport ». Dans The Red Cell Membrane, 171–200. Totowa, NJ : Humana Press, 1989. http://dx.doi.org/10.1007/978-1-4612-4500-1_9.
Texte intégralKnauf, Philip A. « Anion Transport in Erythrocytes ». Dans Physiology of Membrane Disorders, 191–220. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2097-5_12.
Texte intégralWada, Morimasa, Takeshi Uchiumi et Michihiko Kuwano. « Canalicular multispecific organic anion transporter ABCC2 ». Dans Membrane Transporter Diseases, 263–89. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9023-5_18.
Texte intégralBjerrum, P. J. « Irreversible Modification of the Anion Transporter ». Dans The Red Cell Membrane, 329–67. Totowa, NJ : Humana Press, 1989. http://dx.doi.org/10.1007/978-1-4612-4500-1_15.
Texte intégralOmasta, Travis J., et William E. Mustain. « Water and Ion Transport in Anion Exchange Membrane Fuel Cells ». Dans Anion Exchange Membrane Fuel Cells, 1–31. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7_1.
Texte intégralActes de conférences sur le sujet "Anion membrane"
Aeshala, L. M., S. U. Rahman et A. Verma. « Development of a Reactor for Continuous Electrochemical Reduction of CO2 Using Solid Electrolyte ». Dans ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54755.
Texte intégralPandala, Ronit Kumar, Guillaume Serrela, Frederic Fouda Onanala, Yann Bultel et Pascal Schott. « Performance evaluation of the Anion exchange membrane based Water electrolysis ». Dans 2022 10th International Conference on Systems and Control (ICSC). IEEE, 2022. http://dx.doi.org/10.1109/icsc57768.2022.9993826.
Texte intégralAo, Bei, Yanan Wei, Xiaofan Hou, Keryn Lian et Jinli Qiao. « Anion conducting chitosan/poly[(3-methyl-1-vinylimidazolium methyl sulfate)-co-(1-vinylcaprolactam)-co-(1-vinylpyrrolidone)] membrane for alkaline anion-exchange membrane fuel cells ». Dans 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017). Paris, France : Atlantis Press, 2017. http://dx.doi.org/10.2991/iceesd-17.2017.170.
Texte intégralMeguro, Yoshihiro, Atsushi Kato, Yoko Watanabe et Kuniaki Takahashi. « Separation and Recovery of Sodium Nitrate From Low-Level Radioactive Liquid Waste by Electrodialysis ». Dans ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40082.
Texte intégralHossain, Md Awlad, Hohyoun Jang, Youngdon Lim, Soonho Lee, Hyunho Joo, Taehoon Hong, Fei Tan et Whan Gi Kim. « Anion conductive imidazolium-based Parmax alkaline membrane for fuel cell applications ». Dans 2014 5th International Renewable Energy Congress (IREC). IEEE, 2014. http://dx.doi.org/10.1109/irec.2014.6827011.
Texte intégralSood, Sumit, Belkacem Ould Bouamama, Jean-Yves Dieulot, Mathieu Bressel, Xiaohong Li, Habib Ullah et Adeline Loh. « Bond Graph based Multiphysic Modelling of Anion Exchange Membrane Water Electrolysis Cell ». Dans 2020 28th Mediterranean Conference on Control and Automation (MED). IEEE, 2020. http://dx.doi.org/10.1109/med48518.2020.9183344.
Texte intégralSaufi, Syed M., et Conan J. Fee. « Batch adsorption of whey protein onto anion exchange mixed matrix membrane chromatography ». Dans 2010 2nd International Conference on Chemical, Biological and Environmental Engineering (ICBEE). IEEE, 2010. http://dx.doi.org/10.1109/icbee.2010.5650595.
Texte intégralTruong, Van Men, et Hsiharng Yang. « Cell Temperature and Reactant Humidification Effects on Anion Exchange Membrane Fuel Cells ». Dans 2019 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW). IEEE, 2019. http://dx.doi.org/10.1109/icce-tw46550.2019.8991712.
Texte intégralZhang, Zhenyu, Han Qi, Shu Zhou, Mu Chen, Zhongwu Li et Yunfei Chen. « Computational design of a hydrogenated porous graphene membrane for anion selective transport ». Dans 2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2021. http://dx.doi.org/10.1109/3m-nano49087.2021.9599778.
Texte intégralHuang, Jing, et Amir Faghri. « Comparison of Alkaline Direct Ethanol Fuel Cells With and Without Anion Exchange Membrane ». Dans ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6361.
Texte intégralRapports d'organisations sur le sujet "Anion membrane"
Pivovar, Bryan, et Yu Kim. 2019 Anion Exchange Membrane Workshop Summary Report. Office of Scientific and Technical Information (OSTI), juillet 2020. http://dx.doi.org/10.2172/1660106.
Texte intégralDelnick, Frank M. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators. Office of Scientific and Technical Information (OSTI), octobre 2014. http://dx.doi.org/10.2172/1160295.
Texte intégralKim, Yu, et Ivana Gonzales. Computationally Assisted Design of Ion-conducting Polymers for Anion Exchange Membrane Fuel Cells. Office of Scientific and Technical Information (OSTI), janvier 2020. http://dx.doi.org/10.2172/1893651.
Texte intégralKim, Yu, et Ivana Gonzales. Report for computational project w19_ionpolymers (2nd year) Computationally Assisted Design of Ion-conducting Polymers for Anion Exchange Membrane Fuel Cells. Office of Scientific and Technical Information (OSTI), mai 2021. http://dx.doi.org/10.2172/1781361.
Texte intégralYan, Yushan. Highly Stable Anion Exchange Membranes for High-Voltage Redox-Flow Batteries. Office of Scientific and Technical Information (OSTI), février 2018. http://dx.doi.org/10.2172/1422516.
Texte intégralEshelman, H. Dual-Phase Porous Zirconia Supports for Fuel Cell Anion Exchange Membranes. Office of Scientific and Technical Information (OSTI), septembre 2019. http://dx.doi.org/10.2172/1569672.
Texte intégralUpadhyaya, Shrini K., Abraham Shaviv, Abraham Katzir, Itzhak Shmulevich et David S. Slaughter. Development of A Real-Time, In-Situ Nitrate Sensor. United States Department of Agriculture, mars 2002. http://dx.doi.org/10.32747/2002.7586537.bard.
Texte intégralYermiyahu, Uri, Thomas Kinraide et Uri Mingelgrin. Role of Binding to the Root Surface and Electrostatic Attraction in the Uptake of Heavy Metal by Plants. United States Department of Agriculture, 2000. http://dx.doi.org/10.32747/2000.7586482.bard.
Texte intégralBlumwald, Eduardo, et Avi Sadka. Citric acid metabolism and mobilization in citrus fruit. United States Department of Agriculture, octobre 2007. http://dx.doi.org/10.32747/2007.7587732.bard.
Texte intégral