Articles de revues sur le sujet « Anion-π »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Anion-π.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Anion-π ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Li, Lei, Yu-Jian Hong, Dong-Yang Chen, Wang-Chuan Xiao et Mei-Jin Lin. « Anion–π interactions in lithium–organic redox flow batteries ». Chemical Communications 55, no 16 (2019) : 2364–67. http://dx.doi.org/10.1039/c8cc09834d.

Texte intégral
Résumé :
The interactions between the electrolyte anions and electron-deficient redox-active organic molecules (anion–π interactions) have strong influences on the battery properties due to the anion–π-induced formation of radical anions or sandwich-like aggregates.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mirocki, Artur, et Artur Sikorski. « Structural Characterization of Multicomponent Crystals Formed from Diclofenac and Acridines ». Materials 15, no 4 (17 février 2022) : 1518. http://dx.doi.org/10.3390/ma15041518.

Texte intégral
Résumé :
Multicomponent crystals containing diclofenac and acridine (1) and diclofenac and 6,9-diamino-2-ethoxyacridine (2) were synthesized and structurally characterized. The single-crystal XRD measurements showed that compound 1 crystallizes in the triclinic P-1 space group as a salt cocrystal with one acridinium cation, one diclofenac anion, and one diclofenac molecule in the asymmetric unit, whereas compound 2 crystallizes in the triclinic P-1 space group as an ethanol solvate monohydrate salt with one 6,9-diamino-2-ethoxyacridinium cation, one diclofenac anion, one ethanol molecule, and one water molecule in the asymmetric unit. In the crystals of the title compounds, diclofenac and acridines ions and solvent molecules interact via N–H⋯O, O–H⋯O, and C–H⋯O hydrogen bonds, as well as C–H⋯π and π–π interactions, and form heterotetramer bis[⋯cation⋯anion⋯] (1) or heterohexamer bis[⋯cation⋯ethanol⋯anion⋯] (2). Moreover, in the crystal of compound 1, acridine cations and diclofenac anions interact via N–H⋯O hydrogen bond, C–H⋯π and π–π interactions to produce blocks, while diclofenac molecules interact via C–Cl⋯π interactions to form columns. In the crystal of compound 2, the ethacridine cations interact via C–H⋯π and π–π interactions building blocks, while diclofenac anions interact via π–π interactions to form columns.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Martínez-Camarena, Álvaro, Matteo Savastano, Carla Bazzicalupi, Antonio Bianchi et Enrique García-España. « Stabilisation of Exotic Tribromide (Br3−) Anions via Supramolecular Interaction with a Tosylated Macrocyclic Pyridinophane. A Serendipitous Case ». Molecules 25, no 14 (10 juillet 2020) : 3155. http://dx.doi.org/10.3390/molecules25143155.

Texte intégral
Résumé :
Tetraaza-macrocyclic pyridinophane L-Ts, decorated with a p-toluenesulfonyl (tosyl; Ts) group, appear to be a useful tool to provide evidence on how the interplay of various supramolecular forces can help stabilise exotic anionic species such as tribromide (Br3−) anions. Indeed, crystals of (H2L-Ts)(Br3)1.5(NO3)0.5 unexpectedly grew from an acidic (HNO3) aqueous solution of L-Ts in the presence of Br− anions. The crystal structure of this compound was determined by single crystal XRD analysis. Hydrogen bonds, salt-bridges, anion-π, π-π stacking, and van der Waals interactions contribute to stabilising the crystal lattice. The observation of two independent Br3− anions stuck over the π-electron densities of pyridine and tosyl ligand groups, one of them being sandwiched between two pyridine rings, corroborates the significance of anion-π interactions for N-containing heterocycles. We show herein the possibility of detecting anion-π contacts from fingerprint plots generated by Hirshfeld surface analysis, demonstrating the effective usage of this structural investigation technique to further dissect individual contributions of stabilising supramolecular forces.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kim, Hee-Joon. « Assembly of Sn(IV)-Porphyrin Cation Exhibiting Supramolecular Interactions of Anion···Anion and Anion···π Systems ». Molbank 2022, no 4 (25 septembre 2022) : M1454. http://dx.doi.org/10.3390/m1454.

Texte intégral
Résumé :
Trans-diaqua[meso-tetrakis(4-pyridyl)porphyrinato]Sn(IV) dinitrate complexes were assembled in a two-dimensional manner via hydrogen bonding between aqua ligands and pyridyl substituents. Interestingly, this supramolecular assembly was accompanied by unconventional noncovalent interactions, such as anion···anion and anion···π interactions, which were confirmed by X-ray crystallographic analysis. Two nitrate anions close to 2.070 Å were constrained in a confined space surrounded by four hydrogen-bonded Sn(IV)-porphyrin cations. The nitrate anion was also 3.433 Å away from the adjacent pyrrole ring, and the dihedral angle between the two mean planes was estimated to be 7.39°. The preference of the anion···π interaction was related to the electron-deficient π-system owing to the high-valent Sn(IV) center and cationic nature of the porphyrin complex. These two unconventional noncovalent interactions played an important role in the formation of a one-dimensional array with pairs of Sn(IV)-porphyrin cation and nitrate anion.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Panteleieva, Olha S., Vira V. Ponomarova, Alexander V. Shtemenko et Kostiantyn V. Domasevitch. « Supramolecular networks supported by the anion...π linkage of Keggin-type heteropolyoxotungstates ». Acta Crystallographica Section C Structural Chemistry 76, no 8 (21 juillet 2020) : 753–62. http://dx.doi.org/10.1107/s205322962000950x.

Texte intégral
Résumé :
Anion...π interactions are newly recognized weak supramolecular forces which are relevant to many types of electron-deficient aromatic substrates. Being less competitive with respect to conventional hydrogen bonding, anion...π interactions are only rarely considered as a crystal-structure-defining factor. Their significance dramatically increases for polyoxometalate (POM) species, which offer extended oxide surfaces for maintaining dense aromatic/inorganic stacks. The structures of tetrakis(caffeinium) μ12-silicato-tetracosa-μ2-oxido-dodecaoxidododecatungsten trihydrate, (C8H11N4O2)4[SiW12O40]·3H2O, (1), and tris(theobrominium) μ12-phosphato-tetracosa-μ2-oxido-dodecaoxidododecatungsten ethanol sesquisolvate, (C7H9N4O2)3[PW12O40]·1.5C2H5OH, (2), support the utility of anion...π interactions as a special kind of supramolecular synthon controlling the structures of ionic lattices. Both caffeinium [(HCaf)+ in (1)] and theobrominium cations [(HTbr)+ in (2)] reveal double stacking patterns at both axial sides of the aromatic frameworks, leading to the generation of anion...π...anion bridges. The latter provide the rare face-to-face linkage of the anions. In (1), every square face of the metal–oxide cuboctahedra accepts the interaction and the above bridges yield flat square nets, i.e. {(HCaf+)2[SiW12O40]4−} n . Two additional cations afford single stacks only and they terminate the connectivity. Salt (2) retains a two-dimensional (2D) motif of square nets, with anion...π...anion bridges involving two of the three (HTbr)+ cations. The remaining cations complete a fivefold anion...π environment of [PW12O40]3−, acting as terminal groups. This single anion...π interaction is influenced by the specific pairing of (HTbr)+ cations by double amide-to-amide hydrogen bonding. Nevertheless, invariable 2D patterns in (1) and (2) suggest the dominant role of anion...π interactions as the structure-governing factor, which is applicable to the construction of noncovalent linkages involving Keggin-type oxometalates.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Aramaki, Yoshitaka. « Anion-π Catalyst ». Journal of Synthetic Organic Chemistry, Japan 75, no 9 (2017) : 965–66. http://dx.doi.org/10.5059/yukigoseikyokaishi.75.965.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhao, Yingjie, César Beuchat, Yuya Domoto, Jadwiga Gajewy, Adam Wilson, Jiri Mareda, Naomi Sakai et Stefan Matile. « Anion−π Catalysis ». Journal of the American Chemical Society 136, no 5 (23 janvier 2014) : 2101–11. http://dx.doi.org/10.1021/ja412290r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cotelle, Yoann, Vincent Lebrun, Naomi Sakai, Thomas R. Ward et Stefan Matile. « Anion-π Enzymes ». ACS Central Science 2, no 6 (23 mai 2016) : 388–93. http://dx.doi.org/10.1021/acscentsci.6b00097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Schottel, Brandi L., Helen T. Chifotides et Kim R. Dunbar. « Anion-π interactions ». Chem. Soc. Rev. 37, no 1 (2008) : 68–83. http://dx.doi.org/10.1039/b614208g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Giese, Michael, Markus Albrecht, Gergana Ivanova, Arto Valkonen et Kari Rissanen. « Geometrically diverse anions in anion–π interactions ». Supramolecular Chemistry 24, no 1 (3 novembre 2011) : 48–55. http://dx.doi.org/10.1080/10610278.2011.622384.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Sapronov, Alexander A., Alexey S. Kubasov, Victor N. Khrustalev, Alexey A. Artemjev, Gleb M. Burkin, Evgeny A. Dukhnovsky, Alexander O. Chizhov et al. « Se⋯π Chalcogen Bonding in 1,2,4-Selenodiazolium Tetraphenylborate Complexes ». Symmetry 15, no 1 (11 janvier 2023) : 212. http://dx.doi.org/10.3390/sym15010212.

Texte intégral
Résumé :
The series of substituted 1,2,4-selenodiazolium tetraphenylborate complexes were synthesized via cyclization between 2-pyridylselenylchloride, followed by the anion metathesis, and fully characterized. The utilization of tetraphenylborate anion, a strong π-electron donor via its phenyl rings, promoted the formation of assemblies exhibiting selenium–π interactions. The chalcogen bonding (ChB) interactions involving the π-systems of the tetraphenylborate anion were studied using density functional theory (DFT) calculations, where “mutated” anions were used to estimate the strength of the Se···π chalcogen bonds. Moreover, molecular electrostatic potential (MEP) surfaces were used to investigate the electron-rich and poor regions of the ion pairs. The quantum theory of atoms-in-molecules (QTAIM) and the noncovalent interaction (NCI) plot methods based on the topology of the electron density were used and combined to characterize the ChBs. The investigation reported herein disclosed that the formation of symmetrical dimers can be broken by the introduction of a stronger π-acceptor and, consequently, forming stronger Se···π contacts with selenodiazolium cations.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Frontera, Antonio, David Quiñonero et Pere M. Deyà. « Cation-π and anion-π interactions ». Wiley Interdisciplinary Reviews : Computational Molecular Science 1, no 3 (11 avril 2011) : 440–59. http://dx.doi.org/10.1002/wcms.14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zhang, Jian, Bin Zhou, Zhen-Rong Sun et Xue-Bin Wang. « Photoelectron spectroscopy and theoretical studies of anion–π interactions : binding strength and anion specificity ». Physical Chemistry Chemical Physics 17, no 5 (2015) : 3131–41. http://dx.doi.org/10.1039/c4cp04687k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Yamuna, Thammarse S., Jerry P. Jasinski, Manpreet Kaur, Brian J. Anderson et H. S. Yathirajan. « 5-(4-Fluorophenyl)-2H-pyrazol-1-ium 2,2,2-trifluoroacetate ». Acta Crystallographica Section E Structure Reports Online 70, no 4 (15 mars 2014) : o429—o430. http://dx.doi.org/10.1107/s1600536814005200.

Texte intégral
Résumé :
The title salt, C9H8FN2+·C2F3O2−, crystallizes with two independent cations (AandB) and two independent anions (CandD) in the asymmetric unit. In the cations, the dihedral angles between the benzene and pyrazolium rings are 23.7 (3)° in cationAand 1.8 (8)° in cationB. In the crystal, each anion links to the two cationsviaN—H...O hydrogen bonds, forming a U-shaped unit with anR44(14) ring motif. These U-shaped units stack along theaaxis and are linkedviaC—H...O and C—H...F hydrogen bonds, forming slabs lying parallel to (100). Within the slabs there are π–π interactions between the pyrazolium rings [inter-centroid distance = 3.6326 (15) Å] and between the benzene rings [inter-centroid distance = 3.7244 (16) Å]. In the anions, the F atoms of the trifluoromethyl groups are disordered over two sets of sites, with refined occupancy ratios of 0.58 (3):0.42, 0.540 (14):0.46 (14), and 0.55 (2):0.45 (2) for anionC, and 0.73 (5):0.27 (5), 0.63 (5):0.37 (5), and 0.57 (8):0.43 (8) for anionD.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Quiñonero, David, Antonio Frontera, Carolina Garau, Pablo Ballester, Antoni Costa et Pere M. Deyà. « Interplay Between Cation-π, Anion-π and π-π Interactions ». ChemPhysChem 7, no 12 (30 octobre 2006) : 2487–91. http://dx.doi.org/10.1002/cphc.200600343.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zhang, Zhu-Yan, Zhao-Peng Deng, Li-Hua Huo, Shu-E. Zhang, Hui Zhao et Shan Gao. « Role of Anion–π Interactions in the Supramolecular Assembly of Salts Containing Asymmetrical Bis(pyridyl) Cations ». Australian Journal of Chemistry 67, no 10 (2014) : 1504. http://dx.doi.org/10.1071/ch13673.

Texte intégral
Résumé :
Self-assembly of three flexible bis(pyridyl) molecules with different inorganic acids (HPF6, HClO4, and HNO3) leads to the formation of eight salts, which exhibit diverse architectures involving hydrogen bonding and anion–π interactions. The three types of inorganic anions in these salts formed anion–π interactions with HM+ and H2M2+ except for 2, in which the six F atoms were involved in hydrogen bonds. Anion–π interactions produced diverse motifs of one (anion)-to-one (cation) in 1, 3, 4, and 6, two (anion)-to-one (cation) in 5 and 7, and (4,4) layer in 8. Hydrogen bonds resulted in interesting supramolecular architectures, such as right- and left-handed helical chains in 3, 2-fold interpenetrating networks in 5, and 3-fold interpenetrating networks in 8. Structural analyses indicated that the conformations of the three flexible asymmetrical bis(pyridyl) molecules and the non-covalent bonding interactions, such as hydrogen bonds and anion···π interactions, play crucial roles in the final architectures of these salts. Thermogravimetric analyses indicated that the thermal stability of the eight salts decreased in the order of perchlorates, hexafluorophosphates, and nitrates. The emission intensity of the perchlorates is much stronger than that of the hexafluorophosphates, nitrates, and their corresponding organic molecules in the solid state at room temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Lu, Tongxiang, et Steven E. Wheeler. « Quantifying the Role of Anion−π Interactions in Anion−π Catalysis ». Organic Letters 16, no 12 (10 juin 2014) : 3268–71. http://dx.doi.org/10.1021/ol501283u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Garau, Carolina, David Quiñonero, Antonio Frontera, Pablo Ballester, Antoni Costa et Pere M. Deyà. « Approximate Additivity of Anion−π Interactions : An Ab Initio Study on Anion−π, Anion−π2and Anion−π3Complexes ». Journal of Physical Chemistry A 109, no 41 (octobre 2005) : 9341–45. http://dx.doi.org/10.1021/jp053380p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Geronimo, Inacrist, N. Jiten Singh et Kwang S. Kim. « Nature of anion-templated π+–π+ interactions ». Physical Chemistry Chemical Physics 13, no 25 (2011) : 11841. http://dx.doi.org/10.1039/c1cp20348g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wang, Yun Jie, Hao Hong Li, Zhi Rong Chen, Chang Cang Huang et Ji Bo Liu. « 1-Propylquinolinium triiodidocuprate(I) ». Acta Crystallographica Section E Structure Reports Online 63, no 11 (17 octobre 2007) : m2736. http://dx.doi.org/10.1107/s1600536807049136.

Texte intégral
Résumé :
In the title compound, (C12H14N)2[CuI3], the asymmetric unit contains two N-propylquinolinium cations which lie on opposite sides of the CuI3 2− anion. In the anion, Cu—I bond distances lie in the range 2.5161 (13)–2.5529 (12) Å. All of the atoms in the anion are essentially coplanar, with an r.m.s. deviation from the [CuI3]2− mean plane of 0.0001 Å. In the crystal structure, an extensive network of C—H...I hydrogen bonds links the cations and anions into an extended three-dimensional network, with the cations further aggregated through π–π stacking interactions [centroid–centroid distances 3.48 (7) and 3.43 (5) Å].
Styles APA, Harvard, Vancouver, ISO, etc.
21

Yeston, Jake. « Measuring anion-π interactions ». Science 364, no 6438 (25 avril 2019) : 348.3–348. http://dx.doi.org/10.1126/science.364.6438.348-c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Liu, Le, et Stefan Matile. « Anion-π transaminase mimics ». Supramolecular Chemistry 29, no 10 (18 novembre 2016) : 702–6. http://dx.doi.org/10.1080/10610278.2016.1258118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Pook, Niels-Patrick. « Supramolecular Architecture in a Ni(II) Complex with a Weakly Bonded N,N′-(1,4-phenylenedi- carbonyl)Diglycinate Counter-Anion : Crystal Structure Investigation and Hirshfeld Surface Analysis ». Crystals 9, no 12 (23 novembre 2019) : 615. http://dx.doi.org/10.3390/cryst9120615.

Texte intégral
Résumé :
In this work, we describe the structural investigation of a Ni(II) complex, [Ni(C12H8N2)2(H2O)2]2·(C12H10N2O6)·(NO3)2·10H2O, with phenanthroline ligands, a deprotonated aromatic dicarboxylic acid, N,N′-(1,4-phenylenedicarbonyl)diglycine, and a nitrate as counter-anions, as well as water molecules. Noncovalent interactions, such as π–π stacking, lone-pair···π, and C–H···π between the phenanthrolines of the cationic complex, [Ni(C12H8N2)2(H2O)2]2+, and counter-anions are observed. Moreover, the solvated and noncoordinating counter-anion, N,N′-(1,4-phenylenedicarbonyl)diglycinate, is embedded in classical and nonclassical hydrogen-bonding interactions with water molecules and phenanthrolines. The two water molecules coordinated by the NiII atom and hydrogen bonded to the carboxylate of the N,N′-(1,4-phenylenedicarbonyl)diglycinate show attractive secondary electrostatic interactions, and a DD/AA hydrogen bonding pattern is formed. The noncovalent interactions of the cationic complex and the solvated N,N′-(1,4-phenylenedicarbonyl)diglycinate counter anion were explored with a Hirshfeld surface analysis, and related contributions to crystal cohesion were determined. The results of the N,N′-(1,4-phenylenedicarbonyl)diglycinate counter anion were compared to those of a solvated N,N′-(1,4-phenylenedicarbonyl)diglycine molecule of a previously described copper(II) complex.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kuzniak-Glanowska, Emilia, Dorota Glosz, Grzegorz Niedzielski, Jedrzej Kobylarczyk, Monika Srebro-Hooper, James G. M. Hooper et Robert Podgajny. « Binding of anionic Pt(ii) complexes in a dedicated organic matrix : towards new binary crystalline composites ». Dalton Transactions 50, no 1 (2021) : 170–85. http://dx.doi.org/10.1039/d0dt03535a.

Texte intégral
Résumé :
Square-planar [PtL4]2− (L = CN, Cl, Br) anions are bound by π-acidic HAT(CN)6 in solution and in the solid state to provide the basis for the first epitaxially grown anion–π crystalline composites.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Bornhof, Anna-Bea, Antonio Bauzá, Alexander Aster, Marion Pupier, Antonio Frontera, Eric Vauthey, Naomi Sakai et Stefan Matile. « Synergistic Anion–(π)n–π Catalysis on π-Stacked Foldamers ». Journal of the American Chemical Society 140, no 14 (2 avril 2018) : 4884–92. http://dx.doi.org/10.1021/jacs.8b00809.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Çevik, Sabri, Musa Sarı, Murat Sarı et Tuncay Tunç. « Crystal structure of 4,4′-bipyridine-1,1'-diium naphthalene-2,6-disulfonate dihydrate ». Acta Crystallographica Section E Structure Reports Online 70, no 9 (9 août 2014) : o989—o990. http://dx.doi.org/10.1107/s160053681401784x.

Texte intégral
Résumé :
The title hydrated molecular organic salt, C10H10N22+·C10H6O6S22−·2H2O, crystallized with half a bipyridinium cation, half a naphthalene-2,6-disulfonate anion and a water molecule in the asymmetric unit. The whole cation and anion are generated by inversion symmetry, the inversion centers being at the center of the bridging C—C bond of the cation, and at the center of the fused C—C bond of the naphthalene group of the anion. In the crystal, the anions and cations stack alternately along theaaxis with π–π interactions [inter-centroid distance = 3.491 (1) Å]. The anions are linkedviaO—H...O(sulfonate) hydrogen bonds involving two inversion-related water molecules, forming chains along [10-1]. These chains are bridged by bifurcated N—H...(O,O) hydrogen bonds, forming a three-dimensional framework structure. There are also C—H...O hydrogen bonds present, reinforcing the framework structure.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kim, Ajeong, Rashid Ali, Seok Ho Park, Yong-Hoon Kim et Jung Su Park. « Probing and evaluating anion–π interaction in meso-dinitrophenyl functionalized calix[4]pyrrole isomers ». Chemical Communications 52, no 74 (2016) : 11139–42. http://dx.doi.org/10.1039/c6cc04562f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Savastano, Matteo, Celeste García-Gallarín, Claudia Giorgi, Paola Gratteri, Maria Dolores López de la Torre, Carla Bazzicalupi, Antonio Bianchi et Manuel Melguizo. « Solid State and Solution Study on the Formation of Inorganic Anion Complexes with a Series of Tetrazine-Based Ligands ». Molecules 24, no 12 (16 juin 2019) : 2247. http://dx.doi.org/10.3390/molecules24122247.

Texte intégral
Résumé :
Four molecules (L1–L4) constituted by an s-tetrazine ring appended with two identical aliphatic chains of increasing length bearing terminal morpholine groups were studied as anion receptors in water. The basicity properties of these molecules were also investigated. Speciation of the anion complexes formed in solution and determination of their stability constants were performed by means of potentiometric (pH-metric) titrations, while further information was obtained by NMR and isothermal titration calorimetry (ITC) measurements. The crystal structures of two neutral ligands (L3, L4) and of their H2L3(ClO4)2∙2H2O, H2L4(ClO4)2∙2H2O, H2L3(PF6)2, and H2L3(PF6)2∙2H2O anion complexes were determined by single crystal X-ray diffraction. The formation of anion–π interactions is the leitmotiv of these complexes, both in solution and in the solid state, although hydrogen bonding and/or formation of salt-bridges can contribute to their stability. Evidence of the ability of these ligands to form anion–π interactions is given by the observation that even the neutral (not-protonated) molecules bind anions in water to form complexes of significant stability, including elusive OH− anions.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Zhou, Chun-Shan, Ya-Mei Pei et Xiang-Gao Meng. « 2,2′,2′′,2′′′-(3,6-Dioxaoctane-1,8-diyldinitrilo)tetrabenzimidazolium tetrakis(perchlorate) dihydrate ». Acta Crystallographica Section E Structure Reports Online 63, no 11 (17 octobre 2007) : o4334—o4335. http://dx.doi.org/10.1107/s160053680704980x.

Texte intégral
Résumé :
In the title crystal structure, C38H44N10O2 4+·4ClO4 −·2H2O, components are linked into a two-dimensional framework by a combination of N—H...O, C—H...O, O—H...O and N—H...N hydrogen bonds. In addition, weak π–π stacking interactions and anion–π noncovalent interactions between perchlorate anions and heteroaromatic imidazole rings [O...Cg = 3.328 (10) and 3.386 (11) Å; Cg is the centroid of an imidazole ring] consolidate the crystal structure.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ng, Chee Koon, Teck Lip Dexter Tam, Fengxia Wei, Xuefeng Lu et Jishan Wu. « Anion–π and anion–π-radical interactions in bis(triphenylphosphonium)-naphthalene diimide salts ». Organic Chemistry Frontiers 6, no 1 (2019) : 110–15. http://dx.doi.org/10.1039/c8qo01122b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Li, Lei, Yu-Jian Hong, Yun Lin, Wang-Chuan Xiao et Mei-Jin Lin. « An electron-deficient nanosized polycyclic aromatic hydrocarbon with enhanced anion–π interactions ». Chemical Communications 54, no 84 (2018) : 11941–44. http://dx.doi.org/10.1039/c8cc06522e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Capó, Magdalena, Jordi Benet-Buchholz et Pablo Ballester. « Anion−π−π Interactions in a Dinuclear M2L2Metallocycle ». Inorganic Chemistry 47, no 22 (17 novembre 2008) : 10190–92. http://dx.doi.org/10.1021/ic801282r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Frontera, Antonio, David Quinonero et Pere M. Deya. « ChemInform Abstract : Cation-π and Anion-π Interactions ». ChemInform 42, no 47 (27 octobre 2011) : no. http://dx.doi.org/10.1002/chin.201147277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Quiñonero, David, et Antonio Frontera. « Benzene, an Unexpected Binding Unit in Anion–π Recognition : The Critical Role of CH/π Interactions ». Sci 4, no 3 (22 août 2022) : 32. http://dx.doi.org/10.3390/sci4030032.

Texte intégral
Résumé :
We report high-level ab initio calculations (CCSD(T)(full)/CBS//SCS-RI-MP2(full)/aug-cc-pwCVTZ) that demonstrate the importance of cooperativity effects when Anion–π and CH/π interactions are simultaneously established with benzene as the π-system. In fact, most of the complexes exhibit high cooperativity energies that range from 17% to 25.3% of the total interaction energy, which is indicative of the strong influence of the CH/π on the Anion–π interaction and vice versa. Moreover, the symmetry-adapted perturbation theory (SAPT) partition scheme was used to study the different energy contributions to the interaction energies and to investigate the physical nature of the interplay between both interactions. Furthermore, the Atoms in Molecules (AIM) theory and the Non-Covalent Interaction (NCI) approach were used to analyze the two interactions further. Finally, a few examples from the Protein Data Bank (PDB) are shown. All results stress that the concurrent formation of both interactions may play an important role in biological systems due to the ubiquity of CH bonds, phenyl rings, and anions in biomolecules.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Rusanova, Julia A., Olesia V. Kozachuk, Valentyna V. Semenaka et Viktoriya V. Dyakonenko. « Bis(2,9-dimethyl-1,10-phenanthroline)copper(I) pentacyanidonitrosoferrate(II) ». Acta Crystallographica Section E Structure Reports Online 69, no 12 (27 novembre 2013) : m684—m685. http://dx.doi.org/10.1107/s1600536813031760.

Texte intégral
Résumé :
The asymmetric unit of the title complex [Cu(C14H12N2)2]2[Fe(CN)5(NO)], consists of a [Cu(dmp)2]+cation (dmp is 2,9-dimethyl-1,10-phenanthroline) and half an [Fe(CN)5(NO)]2−anion. The anion is disordered across an inversion center with the FeIIion slightly offset (ca0.205Å) from the inversion center in the direction of the disorderedtrans-coordinating CN/NO ligands. The anion has a distorted octahedral coordination geometry. The CuIion is coordinated by two phenanthroline ligands in a distorted tetrahedral geometry. The dihedral angle between the phenanthroline ligands is 77.16 (4) Å. In the crystal, the cations are connected to the anions by weak C—H...N hydrogen bonds. In addition, weak π–π stacking interactions are observed, with centroid–centroid distances in the range 3.512 (3)–3.859 (3) Å.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Caballero, Antonio, Fabiola Zapata, Lidia González, Pedro Molina, Ibon Alkorta et José Elguero. « Discovery of anion–π interactions in the recognition mechanism of inorganic anions by 1,2,3-triazolium rings ». Chem. Commun. 50, no 36 (2014) : 4680–82. http://dx.doi.org/10.1039/c4cc00169a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Esrafili, Mehdi D., Fariba Mohammadian-Sabet et Mohammad Mehdi Baneshi. « Cooperative and substitution effects in enhancing the strength of fluorine bonds by anion−π interactions ». Canadian Journal of Chemistry 93, no 11 (novembre 2015) : 1169–75. http://dx.doi.org/10.1139/cjc-2015-0154.

Texte intégral
Résumé :
In this work, the cooperative effects between anion−π and fluorine bond interactions are studied by ab initio calculations at the MP2/6-311++G** level. Cooperative effects are observed in complexes in which anion−π and fluorine bond interactions coexist. For each complex, the shortening of the binding distance in the fluorine bond is more prominent than that in the anion−π bond. Favorable cooperativity energies are found with values that range between –0.51 and –0.76 kcal/mol. The atoms in molecules and molecular electrostatic potential analyses are carried out for these complexes to understand the nature of anion−π and fluorine bond interactions and the origin of the cooperativity.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Garau, Carolina, Antonio Frontera, David Quiñonero, Pablo Ballester, Antoni Costa et Pere M. Deyà. « Cation-π vs anion-π interactions : a complete π-orbital analysis ». Chemical Physics Letters 399, no 1-3 (novembre 2004) : 220–25. http://dx.doi.org/10.1016/j.cplett.2004.10.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Pook, Niels-Patrick, Arnold Adam et Mimoza Gjikaj. « Crystal structure and Hirshfeld surface analysis of (μ-2-{4-[(carboxylatomethyl)carbamoyl]benzamido}acetato-κ2 O:O′)bis[bis(1,10-phenanthroline-κ2 N,N′)copper(II)] dinitrate N,N′-(1,4-phenylenedicarbonyl)diglycine monosolvate octahydrate ». Acta Crystallographica Section E Crystallographic Communications 75, no 5 (25 avril 2019) : 667–74. http://dx.doi.org/10.1107/s2056989019005164.

Texte intégral
Résumé :
The centrosymmetric binuclear complex cation of the title compound, [Cu2(C12H10N2O6)(C12H8N2)4](NO3)2·C12H12N2O6·8H2O, is composed of a CuII atom with a distorted trigonal–bipyramidal coordination environment defined by four N atoms from two bidentate 1,10-phenanthroline ligands and one oxygen atom from one-half of the monodentate N,N′-(1,4-phenylenedicarbonyl)diglycinate anion. The asymmetric unit is completed by one-half of the N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule, which is located on a centre of inversion, by one nitrate counter-anion and four water molecules. In the crystal, the cationic complexes are linked via intermolecular π–π stacking and through lone-pair...π interactions involving the N,N′-(1,4-phenylenedicarbonyl)diglycinate anion and the phenanthroline ligands. The N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule is involved in classical and non-classical hydrogen-bonding interactions, as well as π–π stacking interactions. The centroid-to-centroid distances between aromatic entities are in the range 3.5402 (5)–4.3673 (4) Å. The crystal structure is stabilized by further C—H...O contacts as well as by O—H...O and N—H...O hydrogen bonds between water molecules, the nitrate anions, the N,N′-(1,4-phenylenedicarbonyl)diglycinate ligands, N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecules and phenanthroline ligands, giving rise to a supramolecular framework. A Hirshfeld surface analysis was carried out to quantify these interactions.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Mirocki, Artur, et Artur Sikorski. « The Influence of Solvent on the Crystal Packing of Ethacridinium Phthalate Solvates ». Materials 13, no 22 (10 novembre 2020) : 5073. http://dx.doi.org/10.3390/ma13225073.

Texte intégral
Résumé :
The synthesis, structural characterization and influence of solvents on the crystal packing of solvated complexes of ethacridine with phthalic acid: 6,9-diamino-2-ethoxyacridinium phthalate methanol solvate (1), 6,9-diamino-2-ethoxyacridinium phthalate ethanol solvate (2), 6,9-diamino-2-ethoxyacridinium phthalate isobutanol solvate (3), and 6,9-diamino-2-ethoxyacridinium phthalate tert-butanol solvate monohydrate (4) are described in this article. Single-crystal XRD measurements revealed that the compounds 1–4 crystallized in the triclinic P-1 space group, and the 6,9-diamino-2-ethoxyacridinium cations, phthalic acid anions and solvent molecules interact via strong N–H···O, O–H···O, C–H···O hydrogen bonds, and C–H···π and π–π interactions to form different types of basic structural motifs, such as: heterotetramer bis[···cation···anion···] in compound 1 and 2, heterohexamer bis[···cation···alcohol···anion···] in compound 3, and heterohexamer bis[···cation···water···anion···] in compound 4. Presence of solvents molecule(s) in the crystals causes different supramolecular synthons to be obtained and thus has an influence on the crystal packing of the compounds analyzed.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Moon, Dohyun, et Jong-Ha Choi. « Crystal structure oftrans-difluoridotetrakis(pyridine-κN)chromium(III) trichlorido(pyridine-κN)zincate monohydrate from synchrotron data ». Acta Crystallographica Section E Structure Reports Online 70, no 11 (4 octobre 2014) : 290–93. http://dx.doi.org/10.1107/s160053681402145x.

Texte intégral
Résumé :
In the asymmetric unit of the title compound, [CrF2(C5H5N)4][ZnCl3(C5H5N)]·H2O, there are two independent complex cations, one trichlorido(pyridine-κN)zincate anion and one solvent water molecule. The cations lie on inversion centers. The CrIIIions are coordinated by four pyridine (py) N atoms in the equatorial plane and two F atoms in atransaxial arrangement, displaying a slightly distorted octahedral geometry. The Cr—N(py) bond lengths are in the range 2.0873 (14) to 2.0926 (17) Å while the Cr—F bond lengths are 1.8609 (10) and 1.8645 (10) Å. The [ZnCl3(C5H5N)]−anion has a distorted tetrahedral geometry. The Cl atoms of the anion were refined as disordered over two sets of sites in a 0.631 (9):0.369 (9) ratio. In the crystal, two anions and two water molecules are linkedviaO—H...Cl hydrogen bonds, forming centrosymmetric aggregates. In addition, weak C—H...Cl, C—H...π and π–π stacking interactions [centroid–centroid distances = 3.712 (2) and 3.780 (2)Å] link the components of the structure into a three-dimensional network.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Setifi, Zouaoui, Konstantin V. Domasevitch, Fatima Setifi, Pavel Mach, Seik Weng Ng, Vaclav Petříček et Michal Dušek. « Multiple anion...π interactions in tris(1,10-phenanthroline-κ2N,N′)iron(II) bis[1,1,3,3-tetracyano-2-(2-hydroxyethyl)propenide] monohydrate ». Acta Crystallographica Section C Crystal Structure Communications 69, no 11 (12 octobre 2013) : 1351–56. http://dx.doi.org/10.1107/s0108270113027108.

Texte intégral
Résumé :
In the ionic structure of the title compound, [Fe(C12H8N2)3](C9H5N4O2)2·H2O, the octahedral tris-chelate [Fe(phen)3]2+dications [Fe—N = 1.9647 (14)–1.9769 (14) Å; phen is 1,10-phenathroline] afford one-dimensional chains by a series of slipped π–π stacking interactions [centroid-to-centroid distances = 3.792 (3) and 3.939 (3) Å]. The 1,1,3,3-tetracyano-2-(2-hydroxyethyl)propenide anions, denoted tcnoetOH−, reveal an appreciable delocalization of π-electron density, involving the central propenide [C—C = 1.383 (3)–1.401 (2) Å] fragment and four nitrile groups, and this is also supported by density functional theory (DFT) calculations at the B97D/6-311+G(2d,2p) level. Primary noncovalent inter-moiety interactions comprise conventional O—H...O(N) and weak C—H...O(N) hydrogen bonding [O...O(N) = 2.833 (2)–3.289 (5) Å and C...O(N) = 3.132 (2)–3.439 (2) Å]. The double anion...π interaction involving a nitrile group of tcnoetOH−and twocis-positioned pyridine rings (`π-pocket') of [Fe(phen)3]2+[N...centroid = 3.212 (2) and 3.418 (2) Å] suggest the relevance of anion...π stackings for charge-diffuse polycyanoanions and commonM-chelate species.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Mouas, Nardjes, Hocine Merazig, Jean-Claude Daran et Eric Manoury. « rac-{[2-(Diphenylthiophosphoryl)ferrocenyl]methyl}dimethylammonium diphenyldithiophosphinate ». Acta Crystallographica Section E Structure Reports Online 68, no 4 (7 mars 2012) : m381—m382. http://dx.doi.org/10.1107/s1600536812009129.

Texte intégral
Résumé :
2-(Diphenylthiophosphino)dimethylaminomethylferrocene is a key intermediate in the synthesis of various ferrocenyl ligands. During one such synthesis, the title compound, [Fe(C5H5)(C20H22NPS)](C12H10PS2), was isolated as a by-product. It is built up by association of (2-(diphenylphosphino)ferrocenyl)methyl)dimethylammonium cations and diphenylphosphino dithioate anions. N—H...S, C—H...S and C—H...π interactions link the anions and cations. Each anion–cation pair is linked two by two through C—H...π interactions, forming pseudo dimers.
Styles APA, Harvard, Vancouver, ISO, etc.
44

López-Andarias, Javier, Antonio Frontera et Stefan Matile. « Anion−π Catalysis on Fullerenes ». Journal of the American Chemical Society 139, no 38 (13 septembre 2017) : 13296–99. http://dx.doi.org/10.1021/jacs.7b08113.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Giese, Michael, Markus Albrecht et Kari Rissanen. « Anion−π Interactions with Fluoroarenes ». Chemical Reviews 115, no 16 (17 août 2015) : 8867–95. http://dx.doi.org/10.1021/acs.chemrev.5b00156.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhao, Yingjie, Yuya Domoto, Edvinas Orentas, César Beuchat, Daniel Emery, Jiri Mareda, Naomi Sakai et Stefan Matile. « Catalysis with Anion-π Interactions ». Angewandte Chemie 125, no 38 (14 août 2013) : 10124–27. http://dx.doi.org/10.1002/ange.201305356.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Estarellas, Carolina, Antonio Frontera, David Quiñonero et Pere M. Deyà. « Anionπ Interactions in Flavoproteins ». Chemistry - An Asian Journal 6, no 9 (29 juin 2011) : 2316–18. http://dx.doi.org/10.1002/asia.201100285.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Zhao, Yingjie, Yuya Domoto, Edvinas Orentas, César Beuchat, Daniel Emery, Jiri Mareda, Naomi Sakai et Stefan Matile. « Catalysis with Anion-π Interactions ». Angewandte Chemie International Edition 52, no 38 (15 août 2013) : 9940–43. http://dx.doi.org/10.1002/anie.201305356.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Khalil, Salim M. « MINDO-Forces Calculations of 1-Substituted Cyclopropyl Cations and Anions ». Zeitschrift für Naturforschung A 43, no 8-9 (1 septembre 1988) : 801–5. http://dx.doi.org/10.1515/zna-1988-8-914.

Texte intégral
Résumé :
AbstractMINDO-Forces calculations are reported, after complete optimization of geometry, for 1-X-sub- stituted cyclopropyl cations and anions, where X is H, O-, OH, NH2, CH3, NO2, CN, F, CHO. All the substituents are stabilizing. It was found that the π-donating groups interact strongly with the cyclopropyl cations, whereas the π-withdrawing groups interact strongly with cyclopropyl anion depending on the electron demand.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Anbarasan, Radhakrishnan, Palaniyasan Eniya, Jeyaperumal Kalyana Sundar et Menberu Mengesha Woldemariam. « Crystal structure and Hirshfeld surface analysis of 4-bromoanilinium nitrate ». Acta Crystallographica Section E Crystallographic Communications 76, no 6 (29 mai 2020) : 973–76. http://dx.doi.org/10.1107/s2056989020006945.

Texte intégral
Résumé :
The title compound C4H7BrN+·NO3 − crystallizes in the monoclinic crystal system with space group P21/c. In the crystal, π-π stacking interactions and strong N—H...O and C—H...O hydrogen bonds link the cations and anions into layers parallel to the bc plane. The O...H/H...O interactions between the cation and anion are the major factor determining the crystal packing.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie