Littérature scientifique sur le sujet « Animal model of infection »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Animal model of infection ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Animal model of infection"
Zak, O., et T. O'Reilly. « Animal infection models and ethics--the perfect infection model ». Journal of Antimicrobial Chemotherapy 31, suppl D (1 janvier 1993) : 193–205. http://dx.doi.org/10.1093/jac/31.suppl_d.193.
Texte intégralHan, Mingyuan, Charu Rajput, Tomoko Ishikawa, Caitlin Jarman, Julie Lee et Marc Hershenson. « Small Animal Models of Respiratory Viral Infection Related to Asthma ». Viruses 10, no 12 (1 décembre 2018) : 682. http://dx.doi.org/10.3390/v10120682.
Texte intégralGlupczynski, Y., et A. Burette. « Animal model of Helicobacter pylori infection. » Antimicrobial Agents and Chemotherapy 34, no 7 (1 juillet 1990) : 1462. http://dx.doi.org/10.1128/aac.34.7.1462.
Texte intégralJanitschke, Klaus, A. Julio Martinez, Govinda S. Visvesvara et Frederick Schuster. « Animal Model Balamuthia Mandrillaris CNS Infection ». Journal of Neuropathology and Experimental Neurology 55, no 7 (juillet 1996) : 815–21. http://dx.doi.org/10.1097/00005072-199607000-00006.
Texte intégralHaenle, Maximilian, Carmen Zietz, Tobias Lindner, Kathleen Arndt, Anika Vetter, Wolfram Mittelmeier, Andreas Podbielski et Rainer Bader. « A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats ». Scientific World Journal 2013 (2013) : 1–8. http://dx.doi.org/10.1155/2013/481975.
Texte intégralIyer, Rajiv R., Noah Gorelick, Karen Carroll, Ari M. Blitz, Sarah Beck, Caroline M. Garrett, Audrey Monroe et al. « Evaluation of an in vivo model for ventricular shunt infection : a pilot study using a novel antimicrobial-loaded polymer ». Journal of Neurosurgery 131, no 2 (août 2019) : 587–95. http://dx.doi.org/10.3171/2018.1.jns172523.
Texte intégralKenney, Scott P., et Xiang-Jin Meng. « Hepatitis E Virus : Animal Models and Zoonosis ». Annual Review of Animal Biosciences 7, no 1 (15 février 2019) : 427–48. http://dx.doi.org/10.1146/annurev-animal-020518-115117.
Texte intégralShimamura, Tsuyoshi, Nobuo Kubota et Kazutoshi Shibuya. « Animal Model of Dermatophytosis ». Journal of Biomedicine and Biotechnology 2012 (2012) : 1–11. http://dx.doi.org/10.1155/2012/125384.
Texte intégralGroseth, Allison, Don Gardner, Kimberly Meade-White, Susanne Amler et Hideki Ebihara. « Immunocompetent hamsters as a model for orthobunyavirus-induced neuroinvasion and neuropathology ». PLOS Neglected Tropical Diseases 17, no 5 (26 mai 2023) : e0011355. http://dx.doi.org/10.1371/journal.pntd.0011355.
Texte intégralTSUKIYAMA-KOHARA, Kyoko, et Michinori KOHARA. « Animal model for hepatitis C virus infection ». Uirusu 65, no 2 (2015) : 255–62. http://dx.doi.org/10.2222/jsv.65.255.
Texte intégralThèses sur le sujet "Animal model of infection"
Maglennon, G. A. « Study of papillomavirus latent infection in an animal model ». Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1306763/.
Texte intégralWen, Li. « Immune responses to vaginal viral infection in a mouse model ». Thesis, The University of Sydney, 1998. https://hdl.handle.net/2123/27666.
Texte intégralShrief, Raghdaa. « Surrogate Markers of Infection Suitable for Monitoring Infectious Burden in Animal Models of Aspergillosis ». Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525921.
Texte intégralShanmuganathan, Subathra Devi. « The woodchuck as an animal model for the study of the immune response in hepadna virus infection ». Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298130.
Texte intégralCARRARO, MONICA. « Identification of infection biomarkers in a murine model of pneumonia by Streptococcus pneumoniae ». Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1037742.
Texte intégralShen, Hong. « Hepatitis C infection models ». Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05T016.
Texte intégralHepatitis C virus (HCV) is one of the major causes of liver disease all over the world which has a high risk to progress to cirrhosis and hepatocellular carcinoma. Currently, the licensed standard treatment of HCV infection is Pegylated-interferon (peg-IFN) and ribavirin. Although the sustained viral response (SVR) rate of treatment has improved during these years, this therapy is not effective in all patients. In addition, several toxic side effects, complication and high cost limit the patient compliance and the efficacy of the treatment. There is no easy model of HCV infection and it is necessary to develop useful in vitro and in vivo models to study the pathobiology of HCV infection, including early events of acute infection (viral entry, immunological mechanisms, and genetic predictors) as well as the evaluation of the potency of the HCV antiviral drugs. We report here in our efforts in developing suitable models of HCV infection. In a first step, we preliminary established a small animal model to study HCV infection. Tupaia is a small, closed related to primate and cost-effective animal. In our work, we investigated the susceptibly of tupaia to HCV infection. Twelve adult tupaias were inoculated with native HCV from patient serum and full-length HCV RNA (Genotype 1a). Three young tupaias were artificially breeded for a month and then inoculated by native HCV from patient serum. HCV RNA, anti-HCV and HCV quasi species evolution were determined in the animal before and after inoculation. Transient and intermittent infection occurred in two among 3 young tupaias and HCV chronic infection occurred in four among 12 adult tupaias. Tupaia should represent a useful model for study HCV chronic infection. In a second step, an in vitro culture system of primary tupaia hepatocytes has been established in which HCV infection could be blocked neither by the soluble CD81 nor by antibodies against CD81. To understand these results, we cloned, sequenced the large extracellular loop (LEL) of tupaia CD81 and analyzed the interaction of HCV E2 with the tupaia CD81 LEL by enzyme-linked immunosorbent assay (EIA). We found that in the tupaia the amino acids sequence of HCV CD81 LEL presented in 6 different amino acid residues compared with human CD81 LEL sequence and the CD81 LEL ability to bind to HCV E2 was also decreased. The different structure of CD81 between human and tupaia could explain the alteration of the interaction between HCV E2 and CD81. This result demonstrated an important role of CD81 LEL for HCV entry. In a third step, we developed an ex vivo model of human liver slices culture and their infection with HCV. The development of human cultured HCV-replication-permissive hepatocarcinoma cell lines has provided important new virological tools to study the mechanisms of HCV infection; however this experimental model remains distantly related to physiological and pathological conditions. Here, we report the development of a new ex vivo model using human adult liver slices culture, demonstrating, for the first time, the ability of primary isolates to undergo de novo viral replication with the production of high titer infectious virus, as well as JFH-1, H77/C3, Con1/C3 (HCVcc). This experimental model was validated by demonstrating the HCV neutralization or HCV inhibition, in a dose-dependent manner, either by CD81 or E2 specific antibodies or convalescent serum from a recovered HCV patient, or by anti-viral drugs. This new ex vivo model represents a powerful tool for studying the viral life cycle, dynamics of virus spread in the liver and also for evaluating the efficacy of the new antiviral drugs. In the last step, we evaluated the efficacy of the new antiviral drugs with our ex vivo model of human adult liver slices. HCV NS3/4A protease is essential for viral replication and has been one of the most important target for developing specific antiviral drug
Furr, Patricia Mary. « The development and value of animal models of mycoplasmal infection ». Thesis, Open University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358598.
Texte intégralPeterson, Christopher. « Evaluation of Therapeutics for an Enterovirus 71 Infection in an AG129 Mouse Model ». DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7278.
Texte intégralXi, Jin [Verfasser], et Thomas [Akademischer Betreuer] Iftner. « An Out-bred Animal Model of Cottontail Rabbit Papillomavirus Latent Infection / Jin Xi ; Betreuer : Thomas Iftner ». Tübingen : Universitätsbibliothek Tübingen, 2019. http://d-nb.info/1197610812/34.
Texte intégralClasper, Jonathan Charles. « Secondary intramedullary nailing of the tibia in an animal model of an external fixator pin track infection ». Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268414.
Texte intégralLivres sur le sujet "Animal model of infection"
Axel, Schmidt, et Weber Olaf F, dir. Animal testing in infectiology. Basel : Karger, 2001.
Trouver le texte intégralAnn, Salzman Lois, dir. Animal models of retrovirus infection and their relationship to AIDS. Orlando : Academic Press, 1986.
Trouver le texte intégralJohnson-Delaney, Cathy A. Simian & human retroviruses in nonhuman primates : Infection, disease & animal model studies : a bibliography, 1988-1989 annual update. Seattle, Wash : Primate Information Center, Regional Primate Research Center, University of Washington, 1989.
Trouver le texte intégralJohnson-Delaney, Cathy A. Simian & human retroviruses in nonhuman primates : Infection, disease & animal model studies : a bibliography, 1989-1990 annual update. Seattle, Wash : Primate Information Center, Regional Primate Research Center, University of Washington, c1990., 1990.
Trouver le texte intégralJohnson-Delaney, Cathy A. Simian & human retroviruses in nonhuman primates : Infection, disease & animal model studies : a bibliography, 1988-1989 annual update. Seattle, Wash : Primate Information Center, Regional Primate Research Center, University of Washington, 1989.
Trouver le texte intégralAnn, Salzman Lois, dir. Animalmodels of retrovirus infection and their relationship to AIDS. Orlando : Academic Press, 1986.
Trouver le texte intégralR, Swearengen James, dir. Biodefense : Research methodology and animal models. Boca Raton, Fla : Taylor & Francis, 2006.
Trouver le texte intégralJohnson-Delaney, Cathy A. Simian and human retroviruses in nonhuman primates : Infection, disease and animal model studies : a bibliography, 1991-1992 annual update. Seattle, Wash : Primate Information Center, Regional Primate Research Center, University of Washington, 1993.
Trouver le texte intégralJohnson-Delaney, Cathy A. Simian and human retroviruses in nonhuman primates : Infection, disease and animal model studies : a bibliography, 1992-1993 annual update. Seattle, Wash : Primate Information Center, Regional Primate Research Center, University of Washington, 1994.
Trouver le texte intégralJohnson-Delaney, Cathy A. Simian and human retroviruses in nonhuman primates : Infection, disease and animal model studies : a bibliography, 1990-1991 annual update. Seattle : Primate Information Center, Regional Primate Research Center, University of Washington, 1991.
Trouver le texte intégralChapitres de livres sur le sujet "Animal model of infection"
Sharma, Karun, Babita Shashni, Meena K. Sakharkar, Kishore R. Sakharkar et Ramesh Chandra. « Animal Model of Cancer and Infection ». Dans Post-genomic Approaches in Cancer and Nano Medicine, 85–100. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003339083-4.
Texte intégralCalabro, Lorenzo, Cameron Lutton, Ahmed Fouad Seif El Din, R. Geoff Richards et T. Fintan Moriarty. « Animal Models of Orthopedic Implant-Related Infection ». Dans Biomaterials Associated Infection, 273–304. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1031-7_12.
Texte intégralLi, Huoming, et Hao Li. « Animal Models of Tuberculosis ». Dans Vaccines for Neglected Pathogens : Strategies, Achievements and Challenges, 139–70. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24355-4_7.
Texte intégralBergin, Ingrid L., et James G. Fox. « Animal Models of Helicobacter pylori Infection ». Dans Helicobacter pylori Infection and Immunity, 215–51. Boston, MA : Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0681-2_13.
Texte intégralLeinonen, M., et P. Saikku. « Animal models for Chlamydia pneumoniae infection ». Dans Chlamydia pneumoniae and Chronic Diseases, 19–24. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57195-4_4.
Texte intégralLee, Ju Yup. « Animal Models of H. pylori Infection ». Dans Helicobacter pylori, 537–46. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-706-2_55.
Texte intégralHarvill, Eric T., et Tracy Nicholson. « Animal models ». Dans Pertussis, 100–111. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198811879.003.0006.
Texte intégralGudmundsson, S., et H. Erlendsdóttir. « Murine Thigh Infection Model ». Dans Handbook of Animal Models of Infection, 137–44. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012775390-4/50154-8.
Texte intégralZimmerli, W. « Tissue Cage Infection Model ». Dans Handbook of Animal Models of Infection, 409–17. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012775390-4/50186-x.
Texte intégralMatsumoto, Tetsuro. « Rat Bladder Infection Model ». Dans Handbook of Animal Models of Infection, 447–51. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012775390-4/50191-3.
Texte intégralActes de conférences sur le sujet "Animal model of infection"
Zulaziz, N., A. Azhim, H. Miyazaki, M. Kinoshita, N. Himeno, D. Saitoh et Y. Morimoto. « A novel animal model for subcutaneous soft tissue infection using temporally neutropenic lys-EGFP mice ». Dans 2015 10th Asian Control Conference (ASCC). IEEE, 2015. http://dx.doi.org/10.1109/ascc.2015.7244500.
Texte intégralLegostaev, S. S., E. V. Protopopova, R. Yu Lutkovsky et V. A. Svyatchenko. « STUDY OF THE EFFECTS OF SARS-COV-2 CO-INFECTION WITH A NON-PATHOGENIC VARIANT OF THE COXSACKIE A7 VIRUS (LEV-8 STRAIN) AND ENTEROVIRUS 71 ». Dans X Международная конференция молодых ученых : биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-256.
Texte intégralTanwar, A., R. Chawla, M. Basu, R. Arora et HA Khan. « FRI0032 Curative effect of camellia sinensis (CS) against opportunistic infection in vulnerable animal model of rheumatoid arthritis ». Dans Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.1057.
Texte intégralZhu, Banghe, Caitlin Guenther, Sunkuk Kwon, Eva M. Sevick-Muraca et Junghae Suh. « Using molecular imaging to assess the delivery and infection of protease activated virus in animal model of myocardial infarction ». Dans SPIE BiOS, sous la direction de Guillermo J. Tearney, Kenton W. Gregory et Laura Marcu. SPIE, 2017. http://dx.doi.org/10.1117/12.2256760.
Texte intégralWillett, Nick J., M. Alice Li, Brent A. Uhrig, Gordon L. Warren et Robert E. Guldberg. « Muscle Injury Attenuates BMP-2 Mediated Tissue Regeneration in a Novel Rat Model of Composite Bone and Muscle Injury ». Dans ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53589.
Texte intégralAltizer, Sonia M. « Monarchs as a model system for studying animal migration and infectious diseases ». Dans 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.88949.
Texte intégralCui, X., W. Xu, D. J. Pepper, J. Sun, J. Welsh et P. Eichacker. « The Effects of Obesity on Outcome in Preclinical Animal Models of Infection and Sepsis : A Systematic Review and Meta-Analysis ». Dans American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a1698.
Texte intégralNoval, Noval, Ali Rakhman Hakim et Ahmad Irawan. « Antipyretic Effects of (phaleria macrocarpa (scheff) boerl.) Infusa In Mice Galur Wistar As Animal Model ». Dans 2nd Sari Mulia International Conference on Health and Sciences 2017 (SMICHS 2017) � One Health to Address the Problem of Tropical Infectious Diseases in Indonesia. Paris, France : Atlantis Press, 2017. http://dx.doi.org/10.2991/smichs-17.2017.44.
Texte intégralBauer, Carla M., Caleb C. Zavitz, Kristen N. Lambert, Earl G. Brown, Karen L. Mossman et Martin R. Stämpfli. « Treating Viral Exacerbations Of COPD With Steroids : Lessons Learned From Animal Models Of Cigarette Smoke Exposure And Influenza A Virus Infection ». Dans American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a1016.
Texte intégralPadilo, Larisa P., Onega V. Ulianova, Galina Maslyakova, Alla Bucharskaya, Sergey Dobdin, Irina Subbotina, Anatoly Skripal et al. « Can the infection, caused by Chlamydia psittaci, produce the stimulation of the growth of a malignant tumor : studying by using t-LASCA technique on animal model ». Dans Saratov Fall Meeting 2019 : Optical and Nano-Technologies for Biology and Medicine, sous la direction de Valery V. Tuchin et Elina A. Genina. SPIE, 2020. http://dx.doi.org/10.1117/12.2563841.
Texte intégralRapports d'organisations sur le sujet "Animal model of infection"
Wang, Xinrun, Tianye Li, Xuechai Bai, Yun Zhu et Meiliang Zhang. Therapeutic prospect on umbilical cord mesenchymal stem cells in animal model with primary ovarian insufficiency : A meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, mai 2023. http://dx.doi.org/10.37766/inplasy2023.5.0075.
Texte intégralSplitter, Gary A., Menachem Banai et Jerome S. Harms. Brucella second messenger coordinates stages of infection. United States Department of Agriculture, janvier 2011. http://dx.doi.org/10.32747/2011.7699864.bard.
Texte intégralShpigel, Nahum, Raul Barletta, Ilan Rosenshine et Marcelo Chaffer. Identification and characterization of Mycobacterium paratuberculosis virulence genes expressed in vivo by negative selection. United States Department of Agriculture, janvier 2004. http://dx.doi.org/10.32747/2004.7696510.bard.
Texte intégralFicht, Thomas, Gary Splitter, Menachem Banai et Menachem Davidson. Characterization of B. Melinensis REV 1 Attenuated Mutants. United States Department of Agriculture, décembre 2000. http://dx.doi.org/10.32747/2000.7580667.bard.
Texte intégralYogev, David, Ricardo Rosenbusch, Sharon Levisohn et Eitan Rapoport. Molecular Pathogenesis of Mycoplasma bovis and Mycoplasma agalactiae and its Application in Diagnosis and Control. United States Department of Agriculture, avril 2000. http://dx.doi.org/10.32747/2000.7573073.bard.
Texte intégralChejanovsky, Nor, et Bruce A. Webb. Potentiation of Pest Control by Insect Immunosuppression. United States Department of Agriculture, janvier 2010. http://dx.doi.org/10.32747/2010.7592113.bard.
Texte intégralFarmer, Roger E. A., et Konstantin Platonov. Animal Spirits in a Monetary Model. Cambridge, MA : National Bureau of Economic Research, mars 2016. http://dx.doi.org/10.3386/w22136.
Texte intégralMellies, Jay L. C. elegans as a Model for EPEC Infection. Fort Belvoir, VA : Defense Technical Information Center, novembre 2005. http://dx.doi.org/10.21236/ada441203.
Texte intégralCabrera, Anahi Maldonado, Blayra Maldonado Cabrera, Dalia Isabel Sánchez Machado et Jaime López Cervantes. Wound healing therapeutic effect of chitosan nanofibers : a systematic review and meta- analysis of animal studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, octobre 2022. http://dx.doi.org/10.37766/inplasy2022.10.0121.
Texte intégralLi, Jiliang. Healing of Stress Fracture in an Animal Model. Fort Belvoir, VA : Defense Technical Information Center, septembre 2004. http://dx.doi.org/10.21236/ada433113.
Texte intégral