Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Analysis of biological data.

Articles de revues sur le sujet « Analysis of biological data »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Analysis of biological data ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Dwivedi, Vivek Dhar, Indra Prasad Tripathi, Aman Chandra Kaushik, Shiv Bharadwaj et Sarad Kumar Mishra. « Biological Data Analysis Program (BDAP) : a multitasking biological sequence analysis program ». Neural Computing and Applications 30, no 5 (17 décembre 2016) : 1493–501. http://dx.doi.org/10.1007/s00521-016-2772-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Srivastava, Chandan. « Biological Data Analysis : Error and Uncertainty ». World Journal of Computer Application and Technology 1, no 3 (novembre 2013) : 67–74. http://dx.doi.org/10.13189/wjcat.2013.010302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Eliceiri, K. W., C. Rueden, W. A. Mohler, W. L. Hibbard et J. G. White. « Analysis of Multidimensional Biological Image Data ». BioTechniques 33, no 6 (décembre 2002) : 1268–73. http://dx.doi.org/10.2144/02336bt01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Grewal, Rumdeep Kaur, et Sampa Das. « Microarray data analysis : Gaining biological insights ». Journal of Biomedical Science and Engineering 06, no 10 (2013) : 996–1005. http://dx.doi.org/10.4236/jbise.2013.610124.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

El-Bayomi, Kh M., El A. Rady, M. S. El-Tarabany et Fatma D. Mohammed. « Statistical Analysis of Biological Survival Data ». Zagazig Veterinary Journal 42, no 1 (1 mars 2014) : 129–39. http://dx.doi.org/10.21608/zvjz.2014.59478.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Fry, J. C. « Biological Data Analysis : A Practical Approach. » Biometrics 50, no 1 (mars 1994) : 318. http://dx.doi.org/10.2307/2533236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Johnson, Michael L. « Review of Fry, Biological Data Analysis ». Biophysical Journal 67, no 2 (août 1994) : 937. http://dx.doi.org/10.1016/s0006-3495(94)80557-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sung, Wing-Kin. « Pan-omics analysis of biological data ». Methods 102 (juin 2016) : 1–2. http://dx.doi.org/10.1016/j.ymeth.2016.05.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Stansfield, William D., et Matthew A. Carlton. « Bayesian Statistics for Biological Data : Pedigree Analysis ». American Biology Teacher 66, no 3 (1 mars 2004) : 177–82. http://dx.doi.org/10.2307/4451651.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Topaz, Chad M., Lori Ziegelmeier et Tom Halverson. « Topological Data Analysis of Biological Aggregation Models ». PLOS ONE 10, no 5 (13 mai 2015) : e0126383. http://dx.doi.org/10.1371/journal.pone.0126383.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zhang, Weiping, Jingzhi Yang, Yanling Fang, Huanyu Chen, Yihua Mao et Mohit Kumar. « Analytical fuzzy approach to biological data analysis ». Saudi Journal of Biological Sciences 24, no 3 (mars 2017) : 563–73. http://dx.doi.org/10.1016/j.sjbs.2017.01.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Norris, Richard H. « Biological Monitoring : The Dilemma of Data Analysis ». Journal of the North American Benthological Society 14, no 3 (septembre 1995) : 440–50. http://dx.doi.org/10.2307/1467210.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kim, Tae Yong, Hyun Uk Kim et Sang Yup Lee. « Data integration and analysis of biological networks ». Current Opinion in Biotechnology 21, no 1 (février 2010) : 78–84. http://dx.doi.org/10.1016/j.copbio.2010.01.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Haynes, Paul A., Steven P. Gygi, Daniel Figeys et Ruedi Aebersold. « Proteome analysis : Biological assay or data archive ? » Electrophoresis 19, no 11 (août 1998) : 1862–71. http://dx.doi.org/10.1002/elps.1150191104.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Moussati, Omar, et Mohamed Benyettou. « Analysis of Microarray Data ». Circulation in Computer Science 2, no 1 (24 janvier 2017) : 5–8. http://dx.doi.org/10.22632/ccs-2017-251-42.

Texte intégral
Résumé :
The computerized interpretation of biological information has taken a great interest in the scientific community, since it opens up very rich perspectives for the understanding of biological phenomena. These phenomena require collaboration between biologists, doctors, computer scientists, mathematicians and physicists. In this article we studied one of the most important subjects of bioinformatics, it is the biochip.We presented the various steps involved in the analysis of microarray data, Then we applied the KPPV method to the biochip data.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Baudot, Pierre, Monica Tapia, Daniel Bennequin et Jean-Marc Goaillard. « Topological Information Data Analysis ». Entropy 21, no 9 (6 septembre 2019) : 869. http://dx.doi.org/10.3390/e21090869.

Texte intégral
Résumé :
This paper presents methods that quantify the structure of statistical interactions within a given data set, and were applied in a previous article. It establishes new results on the k-multivariate mutual-information ( I k ) inspired by the topological formulation of Information introduced in a serie of studies. In particular, we show that the vanishing of all I k for 2 ≤ k ≤ n of n random variables is equivalent to their statistical independence. Pursuing the work of Hu Kuo Ting and Te Sun Han, we show that information functions provide co-ordinates for binary variables, and that they are analytically independent from the probability simplex for any set of finite variables. The maximal positive I k identifies the variables that co-vary the most in the population, whereas the minimal negative I k identifies synergistic clusters and the variables that differentiate–segregate the most in the population. Finite data size effects and estimation biases severely constrain the effective computation of the information topology on data, and we provide simple statistical tests for the undersampling bias and the k-dependences. We give an example of application of these methods to genetic expression and unsupervised cell-type classification. The methods unravel biologically relevant subtypes, with a sample size of 41 genes and with few errors. It establishes generic basic methods to quantify the epigenetic information storage and a unified epigenetic unsupervised learning formalism. We propose that higher-order statistical interactions and non-identically distributed variables are constitutive characteristics of biological systems that should be estimated in order to unravel their significant statistical structure and diversity. The topological information data analysis presented here allows for precisely estimating this higher-order structure characteristic of biological systems.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Paparountas, Triantafyllos, Maria Nefeli Nikolaidou-Katsaridou, Gabriella Rustici et Vasilis Aidinis. « Data Mining and Meta-Analysis on DNA Microarray Data ». International Journal of Systems Biology and Biomedical Technologies 1, no 3 (juillet 2012) : 1–39. http://dx.doi.org/10.4018/ijsbbt.2012070101.

Texte intégral
Résumé :
Microarray technology enables high-throughput parallel gene expression analysis, and use has grown exponentially thanks to the development of a variety of applications for expression, genetics and epigenetic studies. A wealth of data is now available from public repositories, providing unprecedented opportunities for meta-analysis approaches, which could generate new biological information, unrelated to the original scope of individual studies. This study provides a guideline for identification of biological significance of the statistically-selected differentially-expressed genes derived from gene expression arrays as well as to suggest further analysis pathways. The authors review the prerequisites for data-mining and meta-analysis, summarize the conceptual methods to derive biological information from microarray data and suggest software for each category of data mining or meta-analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Nounou, Mohamed, Hazem Nounou, Nader Meskin et Aniruddha Datta. « Multiscale denoising of biological data : A comparative analysis ». Qatar Foundation Annual Research Forum Proceedings, no 2012 (octobre 2012) : CSP27. http://dx.doi.org/10.5339/qfarf.2012.csp27.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zimeras, Stelios. « Exploratory Point Pattern Analysis for Modeling Biological Data ». International Journal of Systems Biology and Biomedical Technologies 2, no 1 (janvier 2013) : 1–13. http://dx.doi.org/10.4018/ijsbbt.2013010101.

Texte intégral
Résumé :
Data in the form of sets of points, irregular distributed in a region of space could be identified in varies biological applications for examples the cell nuclei in a microscope section of tissue. These kinds of data sets are defined as spatial point patterns and the presentation of the positions in the space are defined as points. The spatial pattern generated by a biological process, can be affected by the physical scale on which the process is observed. With these spatial maps, the biologists will usually want a detailed description of the observed patterns. One way to achieve this is by forming a parametric stochastic model and fitting it to the data. The estimated values of the parameters could be used to compare similar data sets providing statistical measures for fitting models. Also a fitted model can provide an explanation of the biological processes. Model fitting especially for large data sets is difficult. For that reason, statistical methods can apply with main purpose to formulate a hypothesis for the implementation of biological process. Spatial statistics could be implemented using advance statistical techniques that explicitly analyses and simulates point structures data sets. Typically spatial point patterns are data that explain the location of point events. The author’s interest is the investigation of the significance of these patterns. In this work, an investigation of biological spatial data is analyzed, using advance statistical modeling techniques like kriging.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Morain, Stanley A. « Emerging Technology for Biological Data Collection and Analysis ». Annals of the Missouri Botanical Garden 80, no 2 (1993) : 309. http://dx.doi.org/10.2307/2399786.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Burgman, Mark. « Biological Data Analysis : A Practical Approach.John C. Fry ». Quarterly Review of Biology 69, no 1 (mars 1994) : 89–90. http://dx.doi.org/10.1086/418448.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Peterson, Kent W. « Practical Applications in Analysis of Biological Monitoring Data ». Journal of Occupational and Environmental Medicine 32, no 4 (avril 1990) : 377. http://dx.doi.org/10.1097/00043764-199004000-00064.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Madeira, S. C., et A. L. Oliveira. « Biclustering algorithms for biological data analysis : a survey ». IEEE/ACM Transactions on Computational Biology and Bioinformatics 1, no 1 (janvier 2004) : 24–45. http://dx.doi.org/10.1109/tcbb.2004.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Nounou, M. N., H. N. Nounou, N. Meskin, A. Datta et E. R. Dougherty. « Multiscale Denoising of Biological Data : A Comparative Analysis ». IEEE/ACM Transactions on Computational Biology and Bioinformatics 9, no 5 (septembre 2012) : 1539–45. http://dx.doi.org/10.1109/tcbb.2012.67.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zhou, Fang, Luo Qingming, Zhang Guoqing et Li Ixue. « Biological networks to the analysis of microarray data ». Progress in Natural Science 16, no 12 (1 décembre 2006) : 1242–51. http://dx.doi.org/10.1080/10020070612330137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ahmad, Iftikhar, Muhammad Javed Iqbal et Mohammad Basheri. « Biological Data Classification and Analysis Using Convolutional Neural Network ». Journal of Medical Imaging and Health Informatics 10, no 10 (1 octobre 2020) : 2459–65. http://dx.doi.org/10.1166/jmihi.2020.3179.

Texte intégral
Résumé :
The size of data gathered from various ongoing biological and clinically studies is increasing at an exponential rate. The bio-inspired data mainly comprises of genes of DNA, protein and variety of proteomics and genetic diseases. Additionally, DNA microarray data is also available for early diagnosis and prediction of various types of cancer diseases. Interestingly, this data may store very vital information about genes, their structure and important biological function. The huge volume and constant increase in the extracted bio data has opened several challenges. Many bioinformatics and machine learning models have been developed but those fail to address key challenges presents in the efficient and accurate analysis of variety of complex biologically inspired data such as genetic diseases etc. The reliable and robust process of classifying the extracted data into different classes based on the information hidden in the sample data is also a very interesting and open problem. This research work mainly focuses to overcome major challenges in the accurate protein classification keeping in view of the success of deep learning models in natural language processing since it assumes the proteins sequences as a language. The learning ability and overall classification performance of the proposed system can be validated with deep learning classification models. The proposed system can have the superior ability to accurately classify the mentioned datasets than previous approaches and shows better results. The in-depth analysis of multifaceted biological data may also help in the early diagnosis of diseases that causes due to mutation of genes and to overcome arising challenges in the development of large-scale healthcare systems.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Ahmad, Iftikhar, Muhammad Javed Iqbal et Mohammad Basheri. « Biological Data Classification and Analysis Using Convolutional Neural Network ». Journal of Medical Imaging and Health Informatics 10, no 10 (1 octobre 2020) : 2459–65. http://dx.doi.org/10.1166/jmihi.2020.31792459.

Texte intégral
Résumé :
The size of data gathered from various ongoing biological and clinically studies is increasing at an exponential rate. The bio-inspired data mainly comprises of genes of DNA, protein and variety of proteomics and genetic diseases. Additionally, DNA microarray data is also available for early diagnosis and prediction of various types of cancer diseases. Interestingly, this data may store very vital information about genes, their structure and important biological function. The huge volume and constant increase in the extracted bio data has opened several challenges. Many bioinformatics and machine learning models have been developed but those fail to address key challenges presents in the efficient and accurate analysis of variety of complex biologically inspired data such as genetic diseases etc. The reliable and robust process of classifying the extracted data into different classes based on the information hidden in the sample data is also a very interesting and open problem. This research work mainly focuses to overcome major challenges in the accurate protein classification keeping in view of the success of deep learning models in natural language processing since it assumes the proteins sequences as a language. The learning ability and overall classification performance of the proposed system can be validated with deep learning classification models. The proposed system can have the superior ability to accurately classify the mentioned datasets than previous approaches and shows better results. The in-depth analysis of multifaceted biological data may also help in the early diagnosis of diseases that causes due to mutation of genes and to overcome arising challenges in the development of large-scale healthcare systems.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Olson, N. Eric. « The microarray data analysis process : From raw data to biological significance ». NeuroRX 3, no 3 (juillet 2006) : 373–83. http://dx.doi.org/10.1016/j.nurx.2006.05.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Olson, N. Eric. « The microarray data analysis process : From raw data to biological significance ». Neurotherapeutics 3, no 3 (juillet 2006) : 373–83. http://dx.doi.org/10.1007/bf03206660.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Bertrand, Daniel, et Charles-Roland Bader. « Datac : A multipurpose biological data analysis program based on a mathematical interpreter ». International Journal of Bio-Medical Computing 18, no 3-4 (mai 1986) : 193–202. http://dx.doi.org/10.1016/0020-7101(86)90016-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

AHMED, WAMIQ MANZOOR, MUHAMMAD NAEEM AYYAZ, BARTEK RAJWA, FARRUKH KHAN, ARIF GHAFOOR et J. PAUL ROBINSON. « SEMANTIC ANALYSIS OF BIOLOGICAL IMAGING DATA : CHALLENGES AND OPPORTUNITIES ». International Journal of Semantic Computing 01, no 01 (mars 2007) : 67–85. http://dx.doi.org/10.1142/s1793351x07000032.

Texte intégral
Résumé :
Microscopic imaging is one of the most common techniques for investigating biological systems. In recent years there has been a tremendous growth in the volume of biological imaging data owing to rapid advances in optical instrumentation, high-speed cameras and fluorescent probes. Powerful semantic analysis tools are required to exploit the full potential of the information content of these data. Semantic analysis of multi-modality imaging data, however, poses unique challenges. In this paper we outline the state-of-the-art in this area along with the challenges facing this domain. Information extraction from biological imaging data requires modeling at multiple levels of detail. While some applications require only quantitative analysis at the level of cells and subcellular objects, others require modeling of spatial and temporal changes associated with dynamic biological processes. Modeling of biological data at different levels of detail allows not only quantitative analysis but also the extraction of high-level semantics. Development of powerful image interpretation and semantic analysis tools has the potential to significantly help in understanding biological processes, which in turn will result in improvements in drug development and healthcare.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Bocquet-Appel, Jean-Pierre, et Robert R. Sokal. « Spatial Autocorrelation Analysis of Trend Residuals in Biological Data ». Systematic Zoology 38, no 4 (décembre 1989) : 333. http://dx.doi.org/10.2307/2992399.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

El-Bayomi, Khairy, Fatma Mohamed, Mahmoud Eltarabany et Hagar Gouda. « Application of Different Biostatistical Methods in Biological Data Analysis ». Zagazig Veterinary Journal 47, no 2 (1 juin 2019) : 203–12. http://dx.doi.org/10.21608/zvjz.2019.11121.1034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Hyka, Oleksii. « Data analysis system for surface potential of biological tissues ». PRZEGLĄD ELEKTROTECHNICZNY 1, no 5 (1 mai 2022) : 159–62. http://dx.doi.org/10.15199/48.2022.05.29.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

C.P.Chandran, N. Sevugapandi,. « Analysis of Microarray based Biological Pathway using Data Mining ». International Journal of Innovative Research in Science, Engineering and Technology 04, no 07 (15 juillet 2015) : 5326–31. http://dx.doi.org/10.15680/ijirset.2015.0407038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

On, Natthakan Iam, Tossapon Boongoen, Simon Garrett et Chris Price. « New cluster ensemble approach to integrative biological data analysis ». International Journal of Data Mining and Bioinformatics 8, no 2 (2013) : 150. http://dx.doi.org/10.1504/ijdmb.2013.055495.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Raza, Khalid. « Formal concept analysis for knowledge discovery from biological data ». International Journal of Data Mining and Bioinformatics 18, no 4 (2017) : 281. http://dx.doi.org/10.1504/ijdmb.2017.088138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Raza, Khalid. « Formal concept analysis for knowledge discovery from biological data ». International Journal of Data Mining and Bioinformatics 18, no 4 (2017) : 281. http://dx.doi.org/10.1504/ijdmb.2017.10009312.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Schwan, H. P. « Analysis of Dielectric Data : Experience Gained with Biological Materials ». IEEE Transactions on Electrical Insulation EI-20, no 6 (décembre 1985) : 913–22. http://dx.doi.org/10.1109/tei.1985.348727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Cruz, António, Joel P. Arrais et Penousal Machado. « Interactive and coordinated visualization approaches for biological data analysis ». Briefings in Bioinformatics 20, no 4 (26 mars 2018) : 1513–23. http://dx.doi.org/10.1093/bib/bby019.

Texte intégral
Résumé :
AbstractThe field of computational biology has become largely dependent on data visualization tools to analyze the increasing quantities of data gathered through the use of new and growing technologies. Aside from the volume, which often results in large amounts of noise and complex relationships with no clear structure, the visualization of biological data sets is hindered by their heterogeneity, as data are obtained from different sources and contain a wide variety of attributes, including spatial and temporal information. This requires visualization approaches that are able to not only represent various data structures simultaneously but also provide exploratory methods that allow the identification of meaningful relationships that would not be perceptible through data analysis algorithms alone. In this article, we present a survey of visualization approaches applied to the analysis of biological data. We focus on graph-based visualizations and tools that use coordinated multiple views to represent high-dimensional multivariate data, in particular time series gene expression, protein–protein interaction networks and biological pathways. We then discuss how these methods can be used to help solve the current challenges surrounding the visualization of complex biological data sets.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Keenan, Thomas P., et Stephen A. Krawetz. « Computer video acquisition and analysis system for biological data ». Bioinformatics 4, no 1 (1988) : 203–10. http://dx.doi.org/10.1093/bioinformatics/4.1.203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Gaines, Steven D., et William R. Rice. « Analysis of Biological Data When there are Ordered Expectations ». American Naturalist 135, no 2 (février 1990) : 310–17. http://dx.doi.org/10.1086/285047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Alt, Wolfgang. « Model-supported data analysis : some biological principles and examples ». Journal of Mathematical Biology 61, no 6 (1 décembre 2009) : 899–903. http://dx.doi.org/10.1007/s00285-009-0310-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Dokter, Adriaan M., Peter Desmet, Jurriaan H. Spaaks, Stijn van Hoey, Lourens Veen, Liesbeth Verlinden, Cecilia Nilsson et al. « bioRad : biological analysis and visualization of weather radar data ». Ecography 42, no 5 (14 novembre 2018) : 852–60. http://dx.doi.org/10.1111/ecog.04028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Csuti, Blair, C. R. Margules et M. P. Austin. « Nature Conservation : Cost Effective Biological Surveys and Data Analysis ». Journal of Wildlife Management 56, no 3 (juillet 1992) : 621. http://dx.doi.org/10.2307/3808885.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Rosenzweig, Cynthia. « Post IPCC AR4 biological and physical impact data analysis ». IOP Conference Series : Earth and Environmental Science 6, no 9 (1 février 2009) : 092005. http://dx.doi.org/10.1088/1755-1307/6/9/092005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Vaidyanathan, Seetharaman, John S. Fletcher, Alex Henderson, Nicholas P. Lockyer et John C. Vickerman. « Exploratory analysis of TOF-SIMS data from biological surfaces ». Applied Surface Science 255, no 4 (décembre 2008) : 1599–602. http://dx.doi.org/10.1016/j.apsusc.2008.05.135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Tjärnhage, Torbjörn, Marianne Strömqvist, Göran Olofsson, David Squirrell, James Burke, Jim Ho et Mel Spence. « Multivariate data analysis of fluorescence signals from biological aerosols ». Field Analytical Chemistry & ; Technology 5, no 4 (2001) : 171–76. http://dx.doi.org/10.1002/fact.1018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Klein, Karsten, Oliver Koch, Nils Kriege, Petra Mutzel et Till Schäfer. « Visual Analysis of Biological Activity Data with Scaffold Hunter ». Molecular Informatics 32, no 11-12 (9 septembre 2013) : 964–75. http://dx.doi.org/10.1002/minf.201300087.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Park, Ji-Won, Hyegeun Min, Young-Pil Kim, Hyun Kyong Shon, Jinmo Kim, Dae Won Moon et Tae Geol Lee. « Multivariate analysis of ToF-SIMS data for biological applications ». Surface and Interface Analysis 41, no 8 (13 mai 2009) : 694–703. http://dx.doi.org/10.1002/sia.3049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie