Littérature scientifique sur le sujet « Alphabet arithmetic »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Alphabet arithmetic ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Alphabet arithmetic"
Campbell, Jamie I. D., Yalin Chen, Kurtis Allen et Leah Beech. « Transfer of training in alphabet arithmetic ». Memory & ; Cognition 44, no 8 (28 juin 2016) : 1288–300. http://dx.doi.org/10.3758/s13421-016-0631-x.
Texte intégralPerl, Y., et L. Gabriel. « Arithmetic interpolation search for alphabet tables ». IEEE Transactions on Computers 41, no 4 (avril 1992) : 493–99. http://dx.doi.org/10.1109/12.135562.
Texte intégralFias, Wim, Muhammet Ikbal Sahan, Daniel Ansari et Ian M. Lyons. « From Counting to Retrieving : Neural Networks Underlying Alphabet Arithmetic Learning ». Journal of Cognitive Neuroscience 34, no 1 (1 décembre 2021) : 16–33. http://dx.doi.org/10.1162/jocn_a_01789.
Texte intégralBiasizzo, Anton, Franc Novak et Peter Korošec. « A Multi–Alphabet Arithmetic Coding Hardware Implementation for Small FPGA Devices ». Journal of Electrical Engineering 64, no 1 (1 janvier 2013) : 44–49. http://dx.doi.org/10.2478/jee-2013-0006.
Texte intégralMahapatra, Sudipta, et Kuldeep Singh. « An FPGA-Based Implementation of Multi-Alphabet Arithmetic Coding ». IEEE Transactions on Circuits and Systems I : Regular Papers 54, no 8 (août 2007) : 1678–86. http://dx.doi.org/10.1109/tcsi.2007.902527.
Texte intégralDelaygue, É. « Arithmetic properties of Apéry-like numbers ». Compositio Mathematica 154, no 2 (20 octobre 2017) : 249–74. http://dx.doi.org/10.1112/s0010437x17007552.
Texte intégralMüller, Burkhard, et Jürgen Gehrke. « Acquisition and Use of Mental Operators : The Influence of Natural Order of Events ». Experimental Psychology 51, no 1 (janvier 2004) : 33–44. http://dx.doi.org/10.1027/1618-3169.51.1.33.
Texte intégralNatarajan, S., N. Ramadass et Ramana Y. V. Rao. « State-based dynamic multi-alphabet arithmetic coding for image compression ». Imaging Science Journal 57, no 1 (février 2009) : 30–36. http://dx.doi.org/10.1179/174313109x373648.
Texte intégralChen, Yalin, Alicia Orr et Jamie I. D. Campbell. « What is learned in procedural learning ? The case of alphabet arithmetic. » Journal of Experimental Psychology : Learning, Memory, and Cognition 46, no 6 (juin 2020) : 1165–77. http://dx.doi.org/10.1037/xlm0000775.
Texte intégralLogan, Gordon D., et Stuart T. Klapp. « Automatizing alphabet arithmetic : I. Is extended practice necessary to produce automaticity ? » Journal of Experimental Psychology : Learning, Memory, and Cognition 17, no 2 (mars 1991) : 179–95. http://dx.doi.org/10.1037/0278-7393.17.2.179.
Texte intégralThèses sur le sujet "Alphabet arithmetic"
Strickland, Monica Kathleen. « The Effects of Self-evaluation and Response Restriction on Letter and Number Reversal in Young Children ». Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4542/.
Texte intégralRousset, Chouteau Stéphanie. « Apprentissage de l'addition : comptage ou récupération en mémoire ? Approches expérimentale et computationnelle ». Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALS027.
Texte intégralAddition, one of the fundamental operations in arithmetic, is among the first operations taught to children. Among the various forms of addition, those involving two single-digit operands, such as 5+3, are ubiquitous in daily life and often require fast mental calculations. To date, the cognitive mechanisms underlying the resolution of these operations remain poorly understood. Two major theoretical models are in opposition. Associationist theories (Ashcraft, 1982; Campbell & Graham, 1985; Logan, 1988; Siegler & Shrager, 1984) posit that learning leads to the retrieval of answers from memory. At the beginning of learning, children use an explicit counting procedure (e.g., 6...7...8) that creates a memory trace associating the problem with its solution. After numerous repetitions, the result can be retrieved directly from memory without requiring calculation. More recently, a theory proposes that learning leads to the automatization of counting for smaller additions (Barrouillet & Thevenot, 2013; Uittenhove et al., 2016; Thevenot & Barrouillet, 2016). Even after significant experience, the result is not retrieved from memory but is calculated using an ultra-fast and unconscious procedure that would scroll the mental number line. The objective of this thesis is to contribute to this field of research by exploring the cognitive mechanisms employed through both experimental and computational approaches. The experimental component aims to determine how counting and retrieval strategies operate during the learning of addition resolution. It also seeks to examine whether factors such as operand magnitude and problem structure can influence these strategies. The experimental component comprises two learning studies based on tasks similar to those of alphabet arithmetic and conducted with adults. The first study explores the automatization of additions by comparing two learning conditions, memorization and counting, using additions built from an artificial sequence, and shows that counting is still used by most participants, while others memorize larger problems. The second study examines the influence of learning material by comparing additions built from contiguous and non-contiguous sequences, demonstrating that the structure of the sequences also affects the strategies used by participants. The computational modeling component aims to explain and reproduce the strategic shifts observed between counting and memory retrieval. A first version of the model, based solely on counting acceleration, does not fully explain the experimental data. A new version of the model, incorporating a dynamic competition mechanism between counting and memory retrieval, more precisely simulates the transition between these two strategies depending on problem size and structure, as observed in the experiments. The results from the two approaches show that no single strategy prevails at the end of learning. The results are more nuanced, revealing that problem size and material structure influence the choice of strategies. Additionally, individual differences were observed, with some individuals favoring memory retrieval, while others continue to use counting procedures even after prolonged practice. These findings highlight the importance of proposing a flexible model to understand the mechanisms underlying the automatization of basic additions
Peng, Jen-Chun, et 彭仁俊. « Implementation of Adaptive Multi-alphabet Arithmetic Decoder ». Thesis, 2001. http://ndltd.ncl.edu.tw/handle/60501285706085764930.
Texte intégral國立交通大學
電機與控制工程系
89
Data compression played an important role in the data transmission and data storage. Arithmetic coding is an efficient loseless data compression technique and has been proposed in industrial standards. Traditionally, arithmetic coding applies certain specification for different types of data and results in average performance. To obtain the near-optimal performance, this thesis proposes a parameterized solution for adaptive arithmetic coding with a finite weighted history buffer. The thesis develops six probability models by tuning the size of history buffer and scaling weight. Our proposed decoder will employ one of the models for different files and allow users to set the selection of parameters. In addition to the parameterization, the thesis proposes a bit-wise binary searching algorithm to reduce the number of bit-compare operations. The reduction of operations can speed up our decoder significantly. As shown in the thesis, our decoder chip operates at 71.4 MHz clock rate and costs the area of 2.86*2.86 .
Livres sur le sujet "Alphabet arithmetic"
Īraj, Afshār, et Markaz-i Dāʼirat al-Maʻārif-i Buzurg-i Islāmī (Iran), dir. Shams al-ḥisāb al-Fakhrī. Tihrān : Markaz-i Dāʼirat-al-Maʻārif-i Buzurg-i Islāmī, 2008.
Trouver le texte intégralManuel de Andrade de Figueiredo. Nova escola : Para aprender a ler, escrever e contar. Rio de Janeiro : Ministério da Cultura, Fundação Biblioteca Nacional, 2010.
Trouver le texte intégralJuster, Norton. The annotated Phantom tollbooth. New York : Alfred A. Knopf, 2011.
Trouver le texte intégralJuster, Norton. The Phantom Tollbooth. 3e éd. New York : Random House, 1996.
Trouver le texte intégralJuster, Norton. The phantom tollbooth. 5e éd. New York : Alfred A. Knopf, 2011.
Trouver le texte intégralJuster, Norton. The Phantom Tollbooth. New York, USA : Bullseye Books/Alfred A. Knopf, 1989.
Trouver le texte intégralJuster, Norton. The Phantom Tollbooth. 5e éd. New York : Alfred A. Knopf, 1996.
Trouver le texte intégralChapitres de livres sur le sujet "Alphabet arithmetic"
Jeż, Artur, Anthony W. Lin, Oliver Markgraf et Philipp Rümmer. « Decision Procedures for Sequence Theories ». Dans Computer Aided Verification, 18–40. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37703-7_2.
Texte intégralStarchak, Mikhail R. « On the Existential Arithmetics with Addition and Bitwise Minimum ». Dans Lecture Notes in Computer Science, 176–95. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30829-1_9.
Texte intégralSmullyan, Raymond M. « Tarski’s Theorem for Arithmetic ». Dans Gödel's Incompleteness Theorems. Oxford University Press, 1992. http://dx.doi.org/10.1093/oso/9780195046724.003.0005.
Texte intégralTarski, Alfred. « On the Theory of Classes ». Dans Introduction to Logic and to the Methodology of the Deductive Sciences, 63–80. Oxford University PressNew York, NY, 1994. http://dx.doi.org/10.1093/oso/9780195044720.003.0004.
Texte intégralMazur, Joseph. « Symbol Infancy ». Dans Enlightening Symbols. Princeton University Press, 2016. http://dx.doi.org/10.23943/princeton/9780691173375.003.0012.
Texte intégralChandio, Asghar Ali, Zahid Hussain, Muhammad Saleem Vighio et Mehwish Leghari. « Interactive Learning System for Primary Schools using Tablet PC ». Dans Advances in Civil and Industrial Engineering, 446–71. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8803-2.ch020.
Texte intégralActes de conférences sur le sujet "Alphabet arithmetic"
Apparaju, Rakesh, et Suneeta Agarwal. « An Arithmetic Coding Scheme by Converting the Multisymbol Alphabet to M-ary Alphabet ». Dans International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). IEEE, 2007. http://dx.doi.org/10.1109/iccima.2007.317.
Texte intégralGuo, Muling, Takahumi Oka, Shigeo Kato, Hiroshi Kajiwara et Naoto Kawamura. « Encoding of multi-alphabet sources by binary arithmetic coding ». Dans Electronic Imaging '99, sous la direction de Kiyoharu Aizawa, Robert L. Stevenson et Ya-Qin Zhang. SPIE, 1998. http://dx.doi.org/10.1117/12.334610.
Texte intégralGomes, Jiovana Sousa, et Fabio Luis Livi Ramos. « High-Performance Design for the AV1 Multi - Alphabet Arithmetic Decoder ». Dans 2021 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI). IEEE, 2021. http://dx.doi.org/10.1109/sbcci53441.2021.9529970.
Texte intégralBorodzhieva, Adriana. « MS EXCEL-BASED APPLICATION FOR ENCRYPTION AND DECRYPTION USING THE HILL CIPHER ON THE BASIS OF 2X2-MATRIX AND 64-SYMBOL ALPHABET ». Dans eLSE 2017. Carol I National Defence University Publishing House, 2017. http://dx.doi.org/10.12753/2066-026x-17-049.
Texte intégralAhmed, F., A. A. S. Awwal et P. Chen. « Experiment with the storage capacity and shift invariance of trinary associative memory for character recognition ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thx6.
Texte intégralSharma, Saurabh, Sonali Aatrai et Rajlakshmi Guha. « Impact of Anxiety on Eye Markers : Role of Visual Task Complexity ». Dans 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004746.
Texte intégralXiaohui Xue et Wen Gao. « High performance arithmetic coding for small alphabets ». Dans Proceedings DCC '97. Data Compression Conference. IEEE, 1997. http://dx.doi.org/10.1109/dcc.1997.582149.
Texte intégral