Littérature scientifique sur le sujet « Alkane oxygenation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Alkane oxygenation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Alkane oxygenation"
Shul'pin, Georgiy B., Alexander E. Shilov et Georg Süss-Fink. « Alkane oxygenation catalysed by gold complexes ». Tetrahedron Letters 42, no 41 (octobre 2001) : 7253–56. http://dx.doi.org/10.1016/s0040-4039(01)01517-9.
Texte intégralShul'pin, Georgiy B. « Alkane Oxygenation with Hydrogen Peroxide Catalysed by Soluble Derivatives of Nickel and Platinum ». Journal of Chemical Research 2002, no 7 (juillet 2002) : 351–53. http://dx.doi.org/10.3184/030823402103172257.
Texte intégralJulsing, Mattijs K., Manfred Schrewe, Sjef Cornelissen, Inna Hermann, Andreas Schmid et Bruno Bühler. « Outer Membrane Protein AlkL Boosts Biocatalytic Oxyfunctionalization of Hydrophobic Substrates in Escherichia coli ». Applied and Environmental Microbiology 78, no 16 (8 juin 2012) : 5724–33. http://dx.doi.org/10.1128/aem.00949-12.
Texte intégralShul’pin, Georgiy B., Tawan Sooknoi, Vladimir B. Romakh, Georg Süss-Fink et Lidia S. Shul’pina. « Regioselective alkane oxygenation with H2O2 catalyzed by titanosilicalite TS-1 ». Tetrahedron Letters 47, no 18 (mai 2006) : 3071–75. http://dx.doi.org/10.1016/j.tetlet.2006.03.009.
Texte intégralShul’pin, Georgiy B., Camilla C. Golfeto, Georg Süss-Fink, Lidia S. Shul’pina et Dalmo Mandelli. « Alkane oxygenation with H2O2 catalysed by FeCl3 and 2,2′-bipyridine ». Tetrahedron Letters 46, no 27 (juillet 2005) : 4563–67. http://dx.doi.org/10.1016/j.tetlet.2005.05.007.
Texte intégralCompany, Anna, Julio Lloret, Laura Gomez et Miquel Costas. « ChemInform Abstract : Alkane C-H Oxygenation Catalyzed by Transition Metal Complexes ». ChemInform 44, no 11 (8 mars 2013) : no. http://dx.doi.org/10.1002/chin.201311257.
Texte intégralSahoo, Prakash C., Amardeep Singh, Manoj Kumar, R. P. Gupta, D. Bhattacharyya et S. S. V. Ramakumar. « Photosensitized biohybrid for terminal oxygenation of n-alkane to α, ω-dicarboxylic acids ». Molecular Catalysis 535 (janvier 2023) : 112889. http://dx.doi.org/10.1016/j.mcat.2022.112889.
Texte intégralBarloy, Laurent, Pierrette Battioni et Daniel Mansuy. « Manganese porphyrins supported on montmorillonite as hydrocarbon mono-oxygenation catalysts : particular efficacy for linear alkane hydroxylation ». Journal of the Chemical Society, Chemical Communications, no 19 (1990) : 1365. http://dx.doi.org/10.1039/c39900001365.
Texte intégralGuisado-Barrios, Gregorio, Alexandra M. Z. Slawin et David T. Richens. « Iron complexes of new hydrophobic derivatives of tris(2-pyridylmethyl)amine : synthesis, characterization, and catalysis of alkane oxygenation by H2O2 ». Journal of Coordination Chemistry 63, no 14-16 (20 juillet 2010) : 2642–58. http://dx.doi.org/10.1080/00958972.2010.506216.
Texte intégralSutradhar, Manas, Nikita V. Shvydkiy, M. Fátima C. Guedes da Silva, Marina V. Kirillova, Yuriy N. Kozlov, Armando J. L. Pombeiro et Georgiy B. Shul'pin. « A new binuclear oxovanadium(v) complex as a catalyst in combination with pyrazinecarboxylic acid (PCA) for efficient alkane oxygenation by H2O2 ». Dalton Transactions 42, no 33 (2013) : 11791. http://dx.doi.org/10.1039/c3dt50584g.
Texte intégralThèses sur le sujet "Alkane oxygenation"
SUAREZ, BERTOA RICARDO. « Sustainable procedures in organic synthesis ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7474.
Texte intégralGuisado, Barrios Gregorio. « Towards the development of selective hydrocarbon oxygenation catalysts ». Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/925.
Texte intégralSchneider, Ludovic. « Systèmes hybrides photosensibilisateur-laccase pour la catalyse d'oxydation de composés organiques ». Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4372.
Texte intégralLaccases are oxidases that efficiently perform the reduction of dioxygen into water. Studies in the laboratory have allowed to show that irradiation under inert atmosphere of a EDTA/[Ru(bpy)3]2+/laccase system, lead to the photoreduction of the enzyme via the irradiation of [Ru(bpy)3]2+*. The substitution of EDTA by the alkene p-styrene sulfonate results similarly in a photoreduction of the enzyme. Opening the system to air allows a dioxygen consumption with a simultaneous detection of oxidation products such as the epoxide, diol and p-benzaldehyde sulfonate detected by NMR. The influence of the concentration of the partners, the irradiation source and pH on the efficiency of the reaction was evaluated. Other alkenes such as styrene, cyclohexene and cyclooctene are also substrates. Isotopic labeling experiments in the presence of either H218O or 18O2, as well as the use of reactive oxygen species generators, allowed us to propose a main mechanism where the laccase assisted RuIII photogenerated specie would withdraw an electron from the substrate which in turn would react with dioxygen to yield the products observed. Other ruthenium and manganese photosensitizers were also used. To address the control of the reactivity, a covalent grafting of a ruthenium photosensitizer, on a unique lysine nearby the substrate oxidation site of the laccase was done
Tseng, Tzu-Hsien, et 曾資賢. « Non-Heme Iron Model Study for Alkane C-H Oxygenation ». Thesis, 2014. http://ndltd.ncl.edu.tw/handle/90344934585443563899.
Texte intégral國立中興大學
化學系所
102
Recently, the energy consumption is the urgent issue for scientists to devote great effort to solve the problems. The upper layer of petroleum which is abundant with methane comes with low remunerative value. Nowadays, a costly two-stage process is used to transform methane to methanol under a hard condition with very low yield. The qualities such as transportation, safety, storage, and commercial value of methanol are much advantageous than methane. However, the shortcoming is that there would be huge amount of energy consumption during the process of transformation. Methane monooxygenase (MMOs) which are inclusive of particular MMO (pMMO) and soluble MMO (sMMO) achieve this chemistry efficiently under ambient conditions. Those two MMOs carry out the oxidation from methane to methanol. The report refers to the sMMO system and synthesis of complexes which are similar to the ligand environment and active center of MMO and possess the unprecedented ability of oxidation. We announced here that the treatment of 1 equivalence complex and 1 equivalent of oxidant to cyclohexane, substrate for catalysis, could oxidize cyclohexane to cyclohexanol and cyclohexaone successfully under the normal pressure and temperature. The announcement mentioned above is based on the known criteria of cyclohexane C-H bond dissociation energy ( BDEC-H = 99.3 kcal/mol) which closely approximates to methane ( BDEC-H = 104 kcal/mol).
簡佑芩. « (I)Structrual and Functional Models for the Trinuclear Copper Clusters of the Particulate Methane Monooxygenase (II)Monooxygenase-like Oxygenation of Alkane Molecules Catalyzed by Trinuclear Manganese Complex ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/33409504356936432529.
Texte intégral國立臺灣師範大學
化學系
99
In first study, a new modified trinuclear copper complex, [CuICuICuI(7-dipy)](BF4) (2), was first employed as a catalyst to oxidize the CH bonds of cyclohexane (CH BDE is 99.3 kcal mol-1). ESI-MS spectra demonstrate that the oxygenation of [CuICuICuI(7-dipy)](BF4) (2)either by dioxygen will obtain a stable [CuIICuII(-O)CuII(7-dipy)](BF4 )2(3) complex. The catalysis of CH bond oxygenation of cyclohexane was carried out under room temperature in the presence of 50 equivalents of oxidant, and a product mixture of cyclohexanol and cyclohexanone were observed with 34% conversion according to the consuming of the oxidant by the quantitative GC-MS analysis. However, there is nearly no reaction by employing [CuIICuII(-O)CuII(7-dipy)](BF4)2 (3) complex instead of [CuICuICuI(7-dipy)](BF4) (2). This tricopper complex is a quite robust catalyst because most the remainders after the catalytic reaction are in the form of [CuIICuII(-O)CuII(7-dipy)](BF4)2 (3)evidenced by ESI-MS spectra. In second study, the same 7-dipy ligand was also adopted in the synthesis of trinuclear manganese complex. A first trimanganese complex [MnII(OAc)2MnII(-OAc)2MnII(7-dipy)] (2) was first synthesized as a precursor for the high-valent manganese species. Further oxidation of [MnII(OAc)2MnII(-OAc)2MnII(7-dipy)] (2) by treating two equivalents of TBHP (tert-butylhydroperoxide) is able to obtain a 16-line characteristic EPR spectrum with gx= 2.006, gy= 1.998, gz= 1.985, AIII xx=-16.3 mT, AIII yy= -11.7 mT, AIII zz= -16.2 mT, AIV xx= 8.2 mT, AIV yy= 8.0 mT, AIV zz= 7.4 mT acquired by simulation, which is postulated as a active intermediate, [MnIIIMnIII(-O)2MnIV(7-dipy)]4+ (3). While excess of TBHP up to 15 equivalents were added, and the 16-line EPR spectra still remain unchanged. [MnIIIMnIII(-O)2MnIV(7-dipy)]4+ (3) is able to catalyze the oxidation of CH bonds of cyclohexane (CH BDE is 99.3 kcal mol-1) to a mixture of cyclohexanol and cyclohexanone, CH bonds of n-hexane in the C-2 and C-3 position (CH BDE is 98 kcal mol-1 and 99.1 kcal mol-1, respectively) to a mixture of 2-hexanol, 3-hexanol, 2-hexanone and 3-hexanone. Except the CH bond oxidation in the secondary carbon atom position, ethane molecule which merely has primary CH bonds (CH BDE is 101 kcal mol-1) was applied as the substrate, and the suspected acetic acid product involving 6 oxidation equivalents was found. Ethanol molecule (CH BDE is 95.6 kcal mol-1) as the substrate was also oxidized in the same catalysis to form the acetic acid product, providing the support for the oxidation of ethane molecule.
Teasley, Mark Frederick. « The cation radical chain oxygenation of alkenes and dienes, the physical properties of alkene, diene, and peroxide cation radicals, and the crisscross dimerization of a dendralene ». 1987. http://catalog.hathitrust.org/api/volumes/oclc/16319176.html.
Texte intégralChapitres de livres sur le sujet "Alkane oxygenation"
Company, Anna, Julio Lloret, Laura Gómez et Miquel Costas. « Alkane C–H Oxygenation Catalyzed by Transition Metal Complexes ». Dans Catalysis by Metal Complexes, 143–228. Dordrecht : Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-3698-8_5.
Texte intégralBaader, W. J., et E. L. Bastos. « Thiol–Alkene Co-oxygenation ». Dans Peroxides, Inorganic Esters (RO-X, X=Hal, S, Se, Te, N), 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-038-00420.
Texte intégralAlberti, M. N., M. D. Tzirakis et M. Orfanopoulos. « Thiol–Alkene Co-oxygenation ». Dans Peroxides, Inorganic Esters (RO-X, X=Hal, S, Se, Te, N), 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-038-00462.
Texte intégralTaber, Douglass F. « The Trost Synthesis of (-)-Pseudolaric Acid B ». Dans Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.003.0085.
Texte intégralBaader, W. J., et E. L. Bastos. « Singlet Oxygenation of Alkenes ». Dans Peroxides, Inorganic Esters (RO-X, X=Hal, S, Se, Te, N), 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-038-00354.
Texte intégralTidwell, T. T. « Monoarylketenes by Ruthenium-Catalyzed Alkyne Oxygenation ». Dans Three Carbon-Heteroatom Bonds : Thio-, Seleno-, and Tellurocarboxylic Acids and Derivatives ; Imidic Acids and Derivatives ; Ortho Acid Derivatives, 1. Georg Thieme Verlag KG, 2006. http://dx.doi.org/10.1055/sos-sd-023-00412.
Texte intégralHuybrechts, D. R. C., Ph L. Buskens et P. A. Jacobs. « Alkane Oxygenations By H2O2 On Titanium Silicalite ». Dans New Developments in Selective Oxidation by Heterogeneous Catalysis, 21–31. Elsevier, 1992. http://dx.doi.org/10.1016/s0167-2991(08)61655-9.
Texte intégralMalacria, M., C. Aubert et J. L. Renaud. « Cobalt(II)-Mediated Aerobic Oxygenation of Alkenes ». Dans Compounds with Transition Metal-Carbon pi-Bonds and Compounds of Groups 10-8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os), 1. Georg Thieme Verlag KG, 2001. http://dx.doi.org/10.1055/sos-sd-001-00385.
Texte intégralNishinaga, Akira, Kazushige Maruyama, Takahiro Mashino, Kohei Yoda et Hiromitsu Okamoto. « Cobalt-Schiff Base Complex Promoted Oxygenation of Alkynes ». Dans Dioxygen Activation and Homogeneous Catalytic Oxidation, Proceedings of the Fourth International Symposium on Dioxygen Activation and Homogeneous Catalytic Oxidation, 93–102. Elsevier, 1991. http://dx.doi.org/10.1016/s0167-2991(08)62823-2.
Texte intégralTaber, Douglass F. « The Sato/Chida Synthesis of Paclitaxel (Taxol®) ». Dans Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0104.
Texte intégralActes de conférences sur le sujet "Alkane oxygenation"
Tagmatarchis, Nikos. « Photosensitized oxygenation of alkenes in the presence of bisazafullerene (C[sub 59]N)[sub 2] and hydroazafullerene C[sub 59]HN ». Dans NANONETWORK MATERIALS : Fullerenes, Nanotubes, and Related Systems. AIP, 2001. http://dx.doi.org/10.1063/1.1420140.
Texte intégral