Thèses sur le sujet « Algebraic schemes »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Algebraic schemes ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Abou-Rached, John. « Sheaves and schemes : an introduction to algebraic geometry ». Kansas State University, 2016. http://hdl.handle.net/2097/32608.
Texte intégralDepartment of Mathematics
Roman Fedorov
The purpose of this report is to serve as an introduction to the language of sheaves and schemes via algebraic geometry. The main objective is to use examples from algebraic geometry to motivate the utility of the perspective from sheaf and scheme theory. Basic facts and definitions will be provided, and a categorical approach will be frequently incorporated when appropriate.
Bechtold, Benjamin [Verfasser], et Jürgen [Akademischer Betreuer] Hausen. « Cox sheaves on graded schemes, algebraic actions and F1-schemes / Benjamin Bechtold ; Betreuer : Jürgen Hausen ». Tübingen : Universitätsbibliothek Tübingen, 2018. http://d-nb.info/1168803829/34.
Texte intégralGoward, Russell A. « A simple algorithm for principalization of monomial ideals / ». free to MU campus, to others for purchase, 2001. http://wwwlib.umi.com/cr/mo/fullcit?p3012972.
Texte intégralCliff, Emily Rose. « Universal D-modules, and factorisation structures on Hilbert schemes of points ». Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:9edee0a0-f30a-4a54-baf5-c833222303ca.
Texte intégralLee, Hwa Young. « The flag Hilbert scheme of points on nodal curves and the punctual Hilbert scheme of points of the cusp curve ». Diss., UC access only, 2009. http://proquest.umi.com/pqdweb?did=1907270841&sid=1&Fmt=7&clientId=48051&RQT=309&VName=PQD.
Texte intégralIncludes abstract. Includes bibliographical references (leaf 71). Issued in print and online. Available via ProQuest Digital Dissertations.
BORGHESI, SIMONE. « Algebraic Morava K-theories and the higher degree formula ». Doctoral thesis, Northwestern University, 2000. http://hdl.handle.net/10281/39205.
Texte intégralHeinze, Aiso. « Applications of Schur rings in algebraic combinatorics graphs, partial difference sets and cyclotomic schemes / ». [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962888532.
Texte intégralKuang, Yu Rang. « Algebraic coupled-state calculation of positron-hydrogen collisions at low energy, using large coupling schemes ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq23106.pdf.
Texte intégralCarissimi, Nicola. « Reconstruction of schemes via the tensor triangulated category of perfect complexes ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23343/.
Texte intégralALMashrafi, Mufeed Juma. « Analysis of stream cipher based authenticated encryption schemes ». Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/60916/1/Mufeed_ALMashrafi_Thesis.pdf.
Texte intégralStaal, Andrew Philippe. « On the existence of jet schemes logarithmic along families of divisors ». Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/3327.
Texte intégralScience, Faculty of
Mathematics, Department of
Graduate
Staal, Andrew Phillipe. « On the existence of jet schemes logarithmic along families of divisors ». Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/3327.
Texte intégralGroechenig, Michael. « Autoduality of the Hitchin system and the geometric Langlands programme ». Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:f0a08e96-2f25-4df1-9e56-99931e411f73.
Texte intégralKaradogan, Gulay. « The Moduli Of Surfaces Admitting Genus Two Fibrations Over Elliptic Curves ». Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606084/index.pdf.
Texte intégral#8804
3. Ultimately, we show that the moduli spaces, considered, are fiber spaces over the affine line A¹
with fibers determined by the components of H (1,X(d),n).
Wagner, David R. « Schur Rings Over Projective Special Linear Groups ». BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6089.
Texte intégralLeimkuhler, Benedict, et Sebastian Reich. « Symplectic integration of constrained Hamiltonian systems ». Universität Potsdam, 1994. http://opus.kobv.de/ubp/volltexte/2007/1565/.
Texte intégralSchmidt, Benjamin. « Stability Conditions on Threefolds and Space Curves ». The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1460542777.
Texte intégralSebestean, Magda. « Correspondance de McKay et equivalences derivees ». Phd thesis, Université Paris-Diderot - Paris VII, 2005. http://tel.archives-ouvertes.fr/tel-00012064.
Texte intégralPrager, Stefan [Verfasser], et Andreas [Akademischer Betreuer] Dreuw. « Development of Frozen-Density Embedded Algebraic Diagrammatic Construction Schemes for Excited States and Quantum-Chemical Investigation of Photophysical Properties of Tetrathiaheterohelicenes / Stefan Prager ; Betreuer : Andreas Dreuw ». Heidelberg : Universitätsbibliothek Heidelberg, 2017. http://d-nb.info/1178008665/34.
Texte intégralLe, Rudulier Cécile. « Points algébriques de hauteur bornée ». Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S073/document.
Texte intégralThe study of the distribution of rational or algebraic points of an algebraic variety according to their height is a classic problem in Diophantine geometry. In this thesis, we will be interested in the asymptotic cardinality of the set of algebraic points of fixed degree and bounded height of a smooth Fano variety defined over a number field, when the bound on the height tends to infinity. In particular, we show that this can be connected to the Batyrev-Manin-Peyre conjecture, i.e. the case of rational points, on some ponctual Hilbert scheme. We thus deduce the distribution of algebraic points of fixed degree on a rational curve. When the variety is a smooth Fano surface, our study shows that the associated Hilbert schemes provide, under certain conditions, new counterexamples to the Batyrev-Manin-Peyre conjecture. However, in two cases detailed in this thesis, the associated Hilbert schemes satisfie a slightly weaker version of the Batyrev-Manin-Peyre conjecture
CATTANEO, ALBERTO. « NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS ». Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/606455.
Texte intégralWe study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution. In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution.
Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n points sur une surface K3, pour n > 1. Dans la première partie de la thèse, nous classifions les automorphismes du schéma de Hilbert de n points sur une surface K3 projective générique, dont le réseau de Picard est engendré par un fibré ample. Nous montrons que le groupe des automorphismes est soit trivial soit engendré par une involution non-symplectique et nous déterminons des conditions numériques et géométriques pour l’existence de l’involution. Dans la deuxième partie, nous étudions les automorphismes non-symplectiques d’ordre premier des variétés de type K3^[n]. Nous déterminons les propriétés du réseau invariant de l'automorphisme et de son complément orthogonal dans le deuxième réseau de cohomologie de la variété et nous classifions leurs classes d’isométrie. Dans le cas des involutions, e des automorphismes d’ordre premier impair pour n = 3, 4, nous montrons que toutes les actions en cohomologie dans notre classification sont réalisées par un automorphism non-symplectique sur une variété de type K3^[n]. Nous construisons explicitement l’immense majorité de ces automorphismes et, en particulier, nous présentons la construction d’un nouvel automorphisme d’ordre trois sur une famille de dimension dix de variétés de Lehn-Lehn-Sorger-van Straten de type K3^[4]. Pour n < 6, nous étudions aussi les espaces de modules de dimension maximal des variétés de type K3^[n] munies d’une involution non-symplectique.
Sædén, Ståhl Gustav. « Hilbert schemes and Rees algebras ». Doctoral thesis, KTH, Matematik (Avd.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195717.
Texte intégralQC 20161110
Epple, Alexander. « Methods for increased computational efficiency of multibody simulations ». Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26532.
Texte intégralCommittee Chair: Olivier A. Bauchau; Committee Member: Andrew Makeev; Committee Member: Carlo L. Bottasso; Committee Member: Dewey H. Hodges; Committee Member: Massimo Ruzzene. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Engel, Johannes [Verfasser]. « Hilbert Schemes of Quiver Algebras / Johannes Engel ». Wuppertal : Universitätsbibliothek Wuppertal, 2010. http://d-nb.info/1004850492/34.
Texte intégralBhattacharyya, Gargi. « Terwilliger algebras of wreath products of association schemes ». [Ames, Iowa : Iowa State University], 2008.
Trouver le texte intégralOzkan, Engin. « Fixed Point Scheme Of The Hilbert Scheme Under A 1-dimensional Additive Algebraic Group Action ». Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613165/index.pdf.
Texte intégral0),in P^{2}. In particular we give an other proof of the fact that Hilb^{d}(P^{2}
0) is connected.
Kodalen, Brian G. « Cometric Association Schemes ». Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/512.
Texte intégralSædén, Ståhl Gustav. « Rees algebras of modules and Quot schemes of points ». Licentiate thesis, KTH, Matematik (Avd.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156636.
Texte intégralQC 20141218
Song, Sung Yell. « The character tables of certain association schemes / ». The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487329662147808.
Texte intégralShao, Yijun. « A Compactification of the Space of Algebraic Maps from P^1 to a Grassmannian ». Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/194715.
Texte intégralBlanc, Anthony. « Invariants topologiques des espaces non-commutatifs ». Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2013. http://tel.archives-ouvertes.fr/tel-01012109.
Texte intégralKioulos, Charalambos. « From Flag Manifolds to Severi-Brauer Varieties : Intersection Theory, Algebraic Cycles and Motives ». Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40716.
Texte intégralDaqqa, Ibtisam. « Subconstituent Algebras of Latin Squares ». Scholar Commons, 2007. https://scholarcommons.usf.edu/etd/199.
Texte intégralLourdeaux, Alexandre. « Sur les invariants cohomologiques des groupes algébriques linéaires ». Thesis, Lyon, 2020. http://www.theses.fr/2020LYSE1044.
Texte intégralOur thesis deals with the cohomological invariants of smooth and connected linear algebraic groups over an arbitrary field. More precisely, we study degree 2 invariants with coefficients Q/Z(1), that is invariants taking values in the Brauer group. Our main tool is the étale cohomology of sheaves on simplicial schemes. We get a description of these invariants for every smooth and connected linear groups, in particular for non reductive groups over an imperfect field (as pseudo-reductive or unipotent groups for instance).We use our description to investigate how the groups of invariants with values in the Brauer group behave with respect to operations on algebraic groups. We detail this group of invariants for particular non reductive algebraic groups over an imperfect field
Xiao, Xinli. « The double of representations of Cohomological Hall algebras ». Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32900.
Texte intégralDepartment of Mathematics
Yan Soibelman
Given a quiver Q with/without potential, one can construct an algebra structure on the cohomology of the moduli stacks of representations of Q. The algebra is called Cohomological Hall algebra (COHA for short). One can also add a framed structure to quiver Q, and discuss the moduli space of the stable framed representations of Q. Through these geometric constructions, one can construct two representations of Cohomological Hall algebra of Q over the cohomology of moduli spaces of stable framed representations. One would get the double of the representations of Cohomological Hall algebras by putting these two representations together. This double construction implies that there are some relations between Cohomological Hall algebras and some other algebras. In this dissertation, we focus on the quiver without potential case. We first define Cohomological Hall algebras, and then the above construction is stated under some assumptions. We computed two examples in detail: A₁-quiver and Jordan quiver. It turns out that A₁-COHA and its double representations are related to the half infinite Clifford algebra, and Jordan-COHA and its double representations are related to the infinite Heisenberg algebra. Then by the fact that the underlying vector spaces of these two COHAs are isomorphic to each other, we get a COHA version of Boson-Fermion correspondence.
Bastian, Nicholas Lee. « Terwilliger Algebras for Several Finite Groups ». BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/8897.
Texte intégralDyer, Ben. « NC-algebroid thickenings of moduli spaces and bimodule extensions of vector bundles over NC-smooth schemes ». Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23168.
Texte intégralHarris, Twyla. « The Effects of Two Homework Assessment Schemes on At-Risk Student Performance in College Algebra ». TopSCHOLAR®, 2008. http://digitalcommons.wku.edu/theses/400.
Texte intégralTran, Nguyen Khanh Linh [Verfasser], et Martin [Akademischer Betreuer] Kreuzer. « Kähler Differential Algebras for 0-Dimensional Schemes and Applications / Nguyen Khanh Linh Tran. Betreuer : Martin Kreuzer ». Passau : Universität Passau, 2015. http://d-nb.info/1079066950/34.
Texte intégralRydh, David. « Families of cycles and the Chow scheme ». Doctoral thesis, Stockholm : Matematik, Mathematics, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4813.
Texte intégralTOSSICI, DAJANO. « Group schemes of order p^2 and extension of Z/p^2Z-torsors ». Doctoral thesis, Università di Roma Tre, 2008. http://hdl.handle.net/10281/20961.
Texte intégralNgo, Long. « Computationally sound automated proofs of cryptographic schemes ». Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/54668/1/Long_Ngo__Thesis.pdf.
Texte intégralNogueira, Davi Maximo Alexandrino. « Colagem de espaÃos anelados e um esquema sem pontos fechados ». Universidade Federal do CearÃ, 2007. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2847.
Texte intégralNeste trabalho mostraremos resultados sobre a colagem de espaÃos anelados e suas aplicacÃes a teoria de Esquemas, seguindo a linha de [5]. O principal resultado sobre espaÃos à o teorema 2.1: Teorema Suponha que W à um espaÃo anelado e que para cada i ∈ I existem mapas. No final, usamos um resultado para construir um esquema sem pontosfechados. Uma outra construÃÃo usando anÃis de valorizaÃÃo tambÃm à apresentada.
In this paper, we present results concerning gluing of ringed spaces and its applications to Schemes, following [5]. Our principal result about ringed spaces is theorem 2.1: Theorem Assume W is a ringed space and also that for each i ∈ I there exists maps. In the end, we use this last result to construct an scheme without closed points. Another construction is given using valuation rings.
NOVARIO, SIMONE. « LINEAR SYSTEMS ON IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS ». Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/886303.
Texte intégralIn this thesis we study some complete linear systems associated to divisors of Hilbert schemes of 2 points on complex projective K3 surfaces with Picard group of rank 1, together with the rational maps induced. We call these varieties Hilbert squares of generic K3 surfaces, and they are examples of irreducible holomorphic symplectic (IHS) manifold. In the first part of the thesis, using lattice theory, Nakajima operators and the model of Lehn–Sorger, we give a basis for the subvector space of the singular cohomology ring with rational coefficients generated by rational Hodge classes of type (2, 2) on the Hilbert square of any projective K3 surface. We then exploit a theorem by Qin and Wang together with a result by Ellingsrud, Göttsche and Lehn to obtain a basis of the lattice of integral Hodge classes of type (2, 2) on the Hilbert square of any projective K3 surface. In the second part of the thesis we study the following problem: if X is the Hilbert square of a generic K3 surface admitting an ample divisor D with q(D)=2, where q is the Beauville–Bogomolov–Fujiki form, describe geometrically the rational map induced by the complete linear system |D|. The main result of the thesis shows that such an X, except on the case of the Hilbert square of a generic quartic surface of P^3, is a double EPW sextic, i.e., the double cover of an EPW sextic, a normal hypersurface of P^5, ramified over its singular locus. Moreover, the rational map induced by |D| is a morphism and coincides exactly with this double covering. The main tools to obtain this result are the description of integral Hodge classes of type (2, 2) of the first part of the thesis and the existence of an anti-symplectic involution on such varieties due to a theorem by Boissière, Cattaneo, Nieper-Wißkirchen and Sarti.
Dans cette thèse, nous étudions certains systèmes linéaires complets associés aux diviseurs des schémas de Hilbert de 2 points sur des surfaces K3 projectives complexes avec groupe de Picard de rang 1, et les fonctions rationnelles induites. Ces variétés sont appelées carrés de Hilbert sur des surfaces K3 génériques, et sont un exemple de variété symplectique holomorphe irréductible (variété IHS). Dans la première partie de la thèse, en utilisant la théorie des réseaux, les opérateurs de Nakajima et le modèle de Lehn–Sorger, nous donnons une base pour le sous-espace vectoriel de l’anneau de cohomologie singulière à coefficients rationnels engendré par les classes de Hodge rationnels de type (2, 2) sur le carré de Hilbert de toute surface K3 projective. Nous exploitons ensuite un théorème de Qin et Wang ainsi qu’un résultat de Ellingsrud, Göttsche et Lehn pour obtenir une base du réseau des classes de Hodge intégraux de type (2, 2) sur le carré de Hilbert d’une surface K3 projective quelconque. Dans la deuxième partie de la thèse, nous étudions le problème suivant : si X est le carré de Hilbert d’une surface K3 générique tel que X admet un diviseur ample D avec q(D) = 2, où q est la forme quadratique de Beauville–Bogomolov–Fujiki, on veut décrire géométriquement la fonction rationnelle induite par le système linéaire complet |D|. Le résultat principal de la thèse montre qu’une telle X, sauf dans le cas du carré de Hilbert d’une surface quartique générique de P^3, est une double sextique EPW, c’est-à-dire le revêtement double d’une sextique EPW, une hypersurface normale de P^5, ramifié sur son lieu singulier. En plus la fonction rationnelle induite par |D| est exactement ce revêtement double. Les outils principaux pour obtenir ce résultat sont la description des classes de Hodge intégraux de type (2, 2) de la première partie de la thèse et l’existence d’une involution anti-symplectique sur de telles variétés par un théorème de Boissière, Cattaneo, Nieper-Wißkirchen et Sarti.
Cattaneo, Alberto. « Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds ». Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2322/document.
Texte intégralWe study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution.In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution
Graziani, Giacomo. « Modular sheaves of de Rham classes on Hilbert formal modular schemes for unramified primes ». Doctoral thesis, Università degli studi di Padova, 2020. http://hdl.handle.net/11577/3425908.
Texte intégralTari, Kévin. « Automorphismes des variétés de Kummer généralisées ». Thesis, Poitiers, 2015. http://www.theses.fr/2015POIT2301/document.
Texte intégralLn this work, we classify non-symplectic automorphisms of varieties deformation equivalent to 4-dimensional generalized Kummer varieties, having a prime order action on the Beauville-Bogomolov lattice. Firstly, we give the fixed loci of natural automorphisms of this kind. Thereafter, we develop tools on lattices, in order to apply them to our varieties. A lattice-theoritic study of 2-dimensional complex tori allows a better understanding of natural automorphisms of Kummer-type varieties. Finaly, we classify all the automorphisms described above on thos varieties. As an application of our results on lattices, we complete also the classification of prime order automorphisms on varieties deformation-equivalent to Hilbert schemes of 2 points on K3 surfaces, solving the case of order 5 which was still open
Prado, Laerte Gomes. « Teoria dos esquemas e a invariÃncia birracional do gÃnero geomÃtrico ». Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11190.
Texte intégralO objetivo deste trabalho à desenvolver a teoria bÃsica de esquemas e mostrar que duas variedades projetivas birracionalmente equivalentes e nÃo-singulares sobre um corpo algebricamente fechado possuem um mesmo gÃnero geomÃtrico. Um resultado relacionado permite determinar se uma hipersuperfÃcie nÃo-singular de grau d em um espaÃo projetivo Pn à uma variedade nÃo-racional.
This work aims to develop basic scheme theory and show that two projective, non-singular and birationally equivalent varieties over an algebraically closed field have same geometric genus. A related result allows to check whether a non-singular hipersurface of degree d in a projective space Pn is a non-rational variety.
N'guessan, Marc-Arthur. « Space adaptive methods with error control based on adaptive multiresolution for the simulation of low-Mach reactive flows ». Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC017.
Texte intégralWe address the development of new numerical methods for the efficient resolution of stiff Partial Differential Equations modelling multi-scale time/space physical phenomena. We are more specifically interested in low Mach reacting flow processes, that cover various real-world applications such as flame dynamics at low gas velocity, buoyant jet flows or plasma/flow interactions. It is well-known that the numerical simulation of these problems is a highly difficult task, due to the large spectrum of spatial and time scales caused by the presence of nonlinear The adaptive spatial discretization is coupled to a new 3rd-order additive Runge-Kutta method for the incompressible Navier-Stokes equations, combining a 3rd-order, A-stable, stiffly accurate, 4-stage ESDIRK method for the algebraic linear part of these equations, and a 4th-order explicit Runge-Kutta scheme for the nonlinear convective part. This numerical strategy is implemented from scratch in the in-house numerical code mrpy. This software is written in Python, and relies on the PETSc library, written in C, for linear algebra operations. We assess the capabilities of this mechanisms taking place into dynamic fronts. In this general context, this work introduces dedicated numerical tools for the resolution of the incompressible Navier-Stokes equations, an important first step when designing an hydrodynamic solver for low Mach flows. We build a space adaptive numerical scheme to solve incompressible flows in a finite-volume context, that relies on multiresolution analysis with error control. To this end, we introduce a new collocated finite-volume method on adaptive rectangular grids, with an original treatment of the spurious pressure and velocity modes that does not alter the precision of the discretization technique. new hydrodynamic solver in terms of speed and efficiency, in the context of scalar transport on adaptive grids. Hence, this study presents a new high-order hydrodynamics solver for incompressible flows, with grid adaptation by multiresolution, that can be extended to the more general low-Mach flow configuration
Codorniu, Rodrigo. « Schéma en groupes fondamental de quelques variétés connexes par courbes et associées ». Thesis, Université Côte d'Azur, 2021. http://www.theses.fr/2021COAZ4036.
Texte intégralIn this thesis work we study the fundamental group-scheme of curve-connected varieties or associated to them. Curve-connected varieties are the generalization of rationally connected varieties, whose definition was conceived by J. Kollár. These notions are the closest ones in algebraic geometry, to the notion of arc connectedness in topology, because over an algebraically closed field (uncountable), over any pair of two very general points in a curve-connected variety (resp. chain-connected), there exists a curve (resp. chain of curves) with a morphism to the variety whose image contains the two points mentioned before. Depending on the type of curves we consider, we have the notions of g-connectedness (resp. chain g-connectedness) where we consider exclusively curves (resp. chains of curves) with irreducible components are smooth and projective curves of genus g, and the notion of C-connectedness for a fixed curve C where over any two very general points, we can contain them in the image of a morphism from C to the variety.Using classical and recent results from the theory of fundamental group-schemes, which classifies torsors under the action of an affine group-scheme, notably Nori fundamental group-scheme and the S-fundamental group-scheme, we try to describe the Nori fundamental group-scheme of certain types of curve-connected varieties, for which the rationally connected case is known, and some associated varieties.To obtain these results, we use all the aspects that play a role in the theory of the fundamental group-scheme: affine group-schemes, tannakian categories of vector bundles over proper varieties, and the theory of affine torsors. Moreover, we build new fundamental group-schemes associated to tannakian categories of vector bundles over varieties where we can join any pair of points by a chain of curves belonging to arbitrary families of curves, generalizing a recent construction of I.Biswas, P.H. Hai and J.P. Dos Santos which could provide a new framework for the study of fundamental group-schemes of curve-connected varieties.More specifically, we propose two different approaches to understand these fundamental group-schemes, apply the new framework for fundamental group-schemes described in the paragraph above for g-connected varieties and to utilize the maximal rationally connected fibration and describe the behaviour of the fundamental group over it. Inspired by the second approach, we describe the fundamental group-scheme of fibrations over elliptic curves with rationally connected fibers, inspired by the description of elliptically connected varieties in characteristic zero made by F. Gounelas. These varieties are not necessarily elliptically connected in positive characteristic, but the description of their fundamental group-schemes is possible with the homotopy exact sequence