Littérature scientifique sur le sujet « Algebraic schemes, cohomology theory, algebraic cycles, homotopy theory »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Algebraic schemes, cohomology theory, algebraic cycles, homotopy theory ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Algebraic schemes, cohomology theory, algebraic cycles, homotopy theory"

1

Lesch, Matthias, Henri Moscovici et Markus J. Pflaum. « Relative pairing in cyclic cohomology and divisor flows ». Journal of K-Theory 3, no 2 (11 février 2008) : 359–407. http://dx.doi.org/10.1017/is008001021jkt051.

Texte intégral
Résumé :
AbstractWe construct invariants of relative K-theory classes of multiparameter dependent pseudodifferential operators, which recover and generalize Melrose's divisor flow and its higher odd-dimensional versions of Lesch and Pflaum. These higher divisor flows are obtained by means of pairing the relative K-theory modulo the symbols with the cyclic cohomological characters of relative cycles constructed out of the regularized operator trace together with its symbolic boundary. Besides giving a clear and conceptual explanation to the essential features of the divisor flows, namely homotopy invariance, additivity and integrality, this construction allows to uncover the previously unknown even-dimensional counterparts. Furthermore, it confers to the totality of these invariants a purely topological interpretation, that of implementing the classical Bott periodicity isomorphisms in a manner compatible with the suspension isomorphisms in both K-theory and in cyclic cohomology. We also give a precise formulation, in terms of a natural Clifford algebraic suspension, for the relationship between the higher divisor flows and the spectral flow.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Toën, Bertrand, et Gabriele Vezzosi. « Algèbres simplicialesS1-équivariantes, théorie de de Rham et théorèmes HKR multiplicatifs ». Compositio Mathematica 147, no 6 (29 juillet 2011) : 1979–2000. http://dx.doi.org/10.1112/s0010437x11005501.

Texte intégral
Résumé :
AbstractThis work establishes a comparison between functions on derived loop spaces (Toën and Vezzosi,Chern character, loop spaces and derived algebraic geometry, inAlgebraic topology: the Abel symposium 2007, Abel Symposia, vol. 4, eds N. Baas, E. M. Friedlander, B. Jahren and P. A. Østvær (Springer, 2009), ISBN:978-3-642-01199-3) and de Rham theory. IfAis a smooth commutativek-algebra andkhas characteristic 0, we show that two objects,S1⊗Aand ϵ(A), determine one another, functorially inA. The objectS1⊗Ais theS1-equivariant simplicialk-algebra obtained by tensoringAby the simplicial groupS1:=Bℤ, while the object ϵ(A) is the de Rham algebra ofA, endowed with the de Rham differential, and viewed as aϵ-dg-algebra(see the main text). We define an equivalence φ between the homotopy theory of simplicial commutativeS1-equivariantk-algebras and the homotopy theory of ϵ-dg-algebras, and we show the existence of a functorial equivalence ϕ(S1⊗A)∼ϵ(A) . We deduce from this the comparison mentioned above, identifying theS1-equivariant functions on the derived loop spaceLXof a smoothk-schemeXwith the algebraic de Rham cohomology of X/k. As corollaries, we obtainfunctorialandmultiplicativeversions of decomposition theorems for Hochschild homology (in the spirit of Hochschild–Kostant–Rosenberg) for arbitrary semi-separatedk-schemes. By construction, these decompositions aremoreovercompatible with theS1-action on the Hochschild complex, on one hand, and with the de Rham differential, on the other hand.
Styles APA, Harvard, Vancouver, ISO, etc.
3

BACHMANN, Tom, et Marc HOYOIS. « Norms in motivic homotopy theory ». Astérisque 425 (1 septembre 2021). http://dx.doi.org/10.24033/ast.1147.

Texte intégral
Résumé :
If $f : S' \to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal "norm" functor $f_\otimes : \mathcal{H}_{\bullet}(S')\to \mathcal{H}_{\bullet}(S)$, where $\mathcal{H}_\bullet(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finite étale, we show that it stabilizes to a functor $f_\otimes : \mathcal{S}\mathcal{H}(S') \to \mathcal{S}\mathcal{H}(S)$, where $\mathcal{S}\mathcal{H}(S)$ is the $\mathbb{P}^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a normed motivic spectrum, which is an enhancement of a motivic $E_\infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendieck's Galois theory, with Betti realization, and with Voevodsky's slice filtration; we prove that the norm functors categorify Rost's multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $H\mathbb{Z}$, the homotopy $K$-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $H\mathbb{Z}$ is a common refinement of Fulton and MacPherson's mutliplicative transfers on Chow groups and of Voevodsky's power operations in motivic cohomology.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Algebraic schemes, cohomology theory, algebraic cycles, homotopy theory"

1

BORGHESI, SIMONE. « Algebraic Morava K-theories and the higher degree formula ». Doctoral thesis, Northwestern University, 2000. http://hdl.handle.net/10281/39205.

Texte intégral
Résumé :
This manuscript consists of two parts. In the first, a cohomology theory on the category of algebraic schemes over a field of characteristic zero is provided. This theory shares several properties with the topological Morava K-theories, hence the name. The second part contains a proof of Voevodsky and Rost conjectured degree formulae. The proof uses algebraic Morava K-theories.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Algebraic schemes, cohomology theory, algebraic cycles, homotopy theory"

1

Burgos Gil, José I. (José Ignacio), 1962- editor, dir. Feynman amplitudes, periods, and motives : International research conference on periods and motives : a modern perspective on renormalization : July 2-6, 2012, Institute de Ciencias Matematicas, Madris, Spain. Providence, Rhode Island : American Mathematical Society, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kedlaya, Kiran S., Debargha Banerjee, Ehud de Shalit et Chitrabhanu Chaudhuri. Perfectoid Spaces. Springer Singapore Pte. Limited, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Perfectoid Spaces : Lectures from the 2017 Arizona Winter School. American Mathematical Society, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hilbert Schemes of Points and Infinite Dimensional Lie Algebras. American Mathematical Society, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie