Articles de revues sur le sujet « ALANINE:GLYOXYLATE AMINOTRANSFERASE »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : ALANINE:GLYOXYLATE AMINOTRANSFERASE.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « ALANINE:GLYOXYLATE AMINOTRANSFERASE ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Orzechowski, S., J. Socha-Hanc et A. Paszkowski. « Alanine aminotransferase and glycine aminotransferase from maize (Zea mays L.) leaves. » Acta Biochimica Polonica 46, no 2 (30 juin 1999) : 447–57. http://dx.doi.org/10.18388/abp.1999_4176.

Texte intégral
Résumé :
Alanine aminotransferase (AlaAT, EC 2.6.1.2) and glycine aminotransferase (GlyAT, EC 2.6.1.4), two different enzymes catalyzing transamination reactions with L-alanine as the amino-acid substrate, were examined in maize in which alanine participates substantially in nitrogen transport. Preparative PAGE of a partially purified preparation of aminotransferases from maize leaves gave 6 fractions differing in electrophoretic mobility. The fastest migrating fraction I represents AlaAT specific for L-alanine as amino donor and 2-oxoglutarate as amino acceptor. The remaining fractions showed three aminotransferase activities: L-alanine-2-oxoglutarate, L-alanine-glyoxylate and L-glutamate-glyoxylate. By means of molecular sieving on Zorbax SE-250 two groups of enzymes were distinguished in the PAGE fractions: of about 100 kDa and 50 kDa. Molecular mass of 104 kDa was ascribed to AlaAT in fraction I, while the molecular mass of the three enzymatic activities in 3 fractions of the low electrophoretic mobility was about 50 kDa. The response of these fractions to: aminooxyacetate, 3-chloro-L-alanine and competing amino acids prompted us to suggest that five out of the six preparative PAGE fractions represented GlyAT isoforms, differing from each other by the L-glutamate-glyoxylate:L-alanine-glyoxylate:L-alanine-2-oxoglutarate activity ratio.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Han, Qian, Cihan Yang, Jun Lu, Yinai Zhang et Jianyong Li. « Metabolism of Oxalate in Humans : A Potential Role Kynurenine Aminotransferase/Glutamine Transaminase/Cysteine Conjugate Betalyase Plays in Hyperoxaluria ». Current Medicinal Chemistry 26, no 26 (22 octobre 2019) : 4944–63. http://dx.doi.org/10.2174/0929867326666190325095223.

Texte intégral
Résumé :
Hyperoxaluria, excessive urinary oxalate excretion, is a significant health problem worldwide. Disrupted oxalate metabolism has been implicated in hyperoxaluria and accordingly, an enzymatic disturbance in oxalate biosynthesis can result in the primary hyperoxaluria. Alanine-glyoxylate aminotransferase-1 and glyoxylate reductase, the enzymes involving glyoxylate (precursor for oxalate) metabolism, have been related to primary hyperoxalurias. Some studies suggest that other enzymes such as glycolate oxidase and alanine-glyoxylate aminotransferase-2 might be associated with primary hyperoxaluria as well, but evidence of a definitive link is not strong between the clinical cases and gene mutations. There are still some idiopathic hyperoxalurias, which require a further study for the etiologies. Some aminotransferases, particularly kynurenine aminotransferases, can convert glyoxylate to glycine. Based on biochemical and structural characteristics, expression level, and subcellular localization of some aminotransferases, a number of them appear able to catalyze the transamination of glyoxylate to glycine more efficiently than alanine glyoxylate aminotransferase-1. The aim of this minireview is to explore other undermining causes of primary hyperoxaluria and stimulate research toward achieving a comprehensive understanding of underlying mechanisms leading to the disease. Herein, we reviewed all aminotransferases in the liver for their functions in glyoxylate metabolism. Particularly, kynurenine aminotransferase-I and III were carefully discussed regarding their biochemical and structural characteristics, cellular localization, and enzyme inhibition. Kynurenine aminotransferase-III is, so far, the most efficient putative mitochondrial enzyme to transaminate glyoxylate to glycine in mammalian livers, which might be an interesting enzyme to look for in hyperoxaluria etiology of primary hyperoxaluria and should be carefully investigated for its involvement in oxalate metabolism.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pey, Angel L., Armando Albert et Eduardo Salido. « Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase : New Therapeutic Strategies in Primary Hyperoxaluria Type I ». BioMed Research International 2013 (2013) : 1–15. http://dx.doi.org/10.1155/2013/687658.

Texte intégral
Résumé :
Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Donini, Stefano, Manuela Ferrari, Chiara Fedeli, Marco Faini, Ilaria Lamberto, Ada Serena Marletta, Lara Mellini et al. « Recombinant production of eight human cytosolic aminotransferases and assessment of their potential involvement in glyoxylate metabolism ». Biochemical Journal 422, no 2 (13 août 2009) : 265–72. http://dx.doi.org/10.1042/bj20090748.

Texte intégral
Résumé :
PH1 (primary hyperoxaluria type 1) is a severe inborn disorder of glyoxylate metabolism caused by a functional deficiency of the peroxisomal enzyme AGXT (alanine-glyoxylate aminotransferase), which converts glyoxylate into glycine using L-alanine as the amino-group donor. Even though pre-genomic studies indicate that other human transaminases can convert glyoxylate into glycine, in PH1 patients these enzymes are apparently unable to compensate for the lack of AGXT, perhaps due to their limited levels of expression, their localization in an inappropriate cell compartment or the scarcity of the required amino-group donor. In the present paper, we describe the cloning of eight human cytosolic aminotransferases, their recombinant expression as His6-tagged proteins and a comparative study on their ability to transaminate glyoxylate, using any standard amino acid as an amino-group donor. To selectively quantify the glycine formed, we have developed and validated an assay based on bacterial GO (glycine oxidase); this assay allows the detection of enzymes that produce glycine by transamination in the presence of mixtures of potential amino-group donors and without separation of the product from the substrates. We show that among the eight enzymes tested, only GPT (alanine transaminase) and PSAT1 (phosphoserine aminotransferase 1) can transaminate glyoxylate with good efficiency, using L-glutamate (and, for GPT, also L-alanine) as the best amino-group donor. These findings confirm that glyoxylate transamination can occur in the cytosol, in direct competition with the conversion of glyoxylate into oxalate. The potential implications for the treatment of primary hyperoxaluria are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sakuraba, Haruhiko. « Studies on Avian Peroxisomal Alanine : Glyoxylate Aminotransferase ». Journal of the Kyushu Dental Society 45, no 3 (1991) : 390–408. http://dx.doi.org/10.2504/kds.45.390.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Takada, Y., et T. Noguchi. « Characteristics of alanine : glyoxylate aminotransferase from Saccharomyces cerevisiae, a regulatory enzyme in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates ». Biochemical Journal 231, no 1 (1 octobre 1985) : 157–63. http://dx.doi.org/10.1042/bj2310157.

Texte intégral
Résumé :
Alanine: glyoxylate aminotransferase (EC 2.6.1.44), which is involved in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates in Saccharomyces cerevisiae, was highly purified and characterized. The enzyme had Mr about 80 000, with two identical subunits. It was highly specific for L-alanine and glyoxylate and contained pyridoxal 5′-phosphate as cofactor. The apparent Km values were 2.1 mM and 0.7 mM for L-alanine and glyoxylate respectively. The activity was low (10 nmol/min per mg of protein) with glucose as sole carbon source, but was remarkably high with ethanol or acetate as carbon source (930 and 430 nmol/min per mg respectively). The transamination of glyoxylate is mainly catalysed by this enzyme in ethanol-grown cells. When glucose-grown cells were incubated in medium containing ethanol as sole carbon source, the activity markedly increased, and the increase was completely blocked by cycloheximide, suggesting that the enzyme is synthesized de novo during the incubation period. Similarity in the amino acid composition was observed, but immunological cross-reactivity was not observed among alanine: glyoxylate aminotransferases from yeast and vertebrate liver.
Styles APA, Harvard, Vancouver, ISO, etc.
7

夏, 敬明. « Introduction and Research Progress of Alanine-Glyoxylate Aminotransferase ». Open Journal of Nature Science 06, no 05 (2018) : 409–15. http://dx.doi.org/10.12677/ojns.2018.65053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rumsby, G., T. Weir et C. T. Samuell. « A Semiautomated Alanine : Glyoxylate Aminotransferase Assay for the Tissue Diagnosis of Primary Hyperoxaluria Type 1 ». Annals of Clinical Biochemistry : International Journal of Laboratory Medicine 34, no 4 (juillet 1997) : 400–404. http://dx.doi.org/10.1177/000456329703400411.

Texte intégral
Résumé :
We have developed a sensitive assay for the measurement of alanine:glyoxylate aminotransferase (EC 2.6.1.44) activity in human liver. The assay is partly automated, and takes into consideration the sensitivity of the reaction to pH and to glyoxylate concentration. It is less subject to interference from other enzymes utilizing glyoxylate and to chemical interference from glyoxylate itself and can therefore be used without correction for cross-over by glutamate:glyoxylate aminotransferase (EC 2.6.1.4). The assay allows clear discrimination between normal and affected livers and is sufficiently sensitive to measure enzyme activity in fetal liver samples. Enzyme activity ranged from 17·9 to 38·5 μmol/h/mg protein in control livers ( n = 9) and 0·8 to 9·5 μmol/h/mg protein in 30 of 39 hyperoxaluric patients studied. Normal alanine: glyoxylate aminotransferase activity (from 22·8 to 45·5 μmol/h/mg protein) allowed exclusion of primary hyperoxaluria type 1 in the other nine hyperoxaluric patients.
Styles APA, Harvard, Vancouver, ISO, etc.
9

COOPER, Arthur J. L., Boris F. KRASNIKOV, Etsuo OKUNO et Thomas M. JEITNER. « l-Alanine–glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate β-lyase activity : a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes ? » Biochemical Journal 376, no 1 (15 novembre 2003) : 169–78. http://dx.doi.org/10.1042/bj20030988.

Texte intégral
Résumé :
Several halogenated alkenes are metabolized in part to cysteine S-conjugates, which are mitochondrial toxicants of kidney and, to a lesser extent, other organs. Toxicity is due to cysteine S-conjugate β-lyases, which convert the cysteine S-conjugate into pyruvate, ammonia and a reactive sulphur-containing fragment. A section of the human population is exposed to halogenated alkenes. To understand the health effects of such exposure, it is important to identify cysteine S-conjugate β-lyases that contribute to mitochondrial damage. Mitochondrial aspartate aminotransferase [Cooper, Bruschi, Iriarte and Martinez-Carrion (2002) Biochem. J. 368, 253–261] and mitochondrial branched-chain aminotransferase [Cooper, Bruschi, Conway and Hutson (2003) Biochem. Pharmacol. 65, 181–192] exhibit β-lyase activity toward S-(1,2-dichlorovinyl)-l-cysteine (the cysteine S-conjugate of trichloroethylene) and S-(1,1,2,2-tetrafluoroethyl)-l-cysteine (the cysteine S-conjugate of tetrafluoroethylene). Turnover leads to eventual inactivation of these enzymes. Here we report that mitochondrial l-alanine–glyoxylate aminotransferase II, which, in the rat, is most active in kidney, catalyses cysteine S-conjugate β-lyase reactions with S-(1,1,2,2-tetrafluoroethyl)-l-cysteine, S-(1,2-dichlorovinyl)-l-cysteine and S-(benzothiazolyl-l-cysteine); turnover leads to inactivation. Previous workers showed that the reactive-sulphur-containing fragment released from S-(1,1,2,2-tetrafluoroethyl)-l-cysteine and S-(1,2-dichlorovinyl)-l-cysteine is toxic by acting as a thioacylating agent – particularly of lysine residues in nearby proteins. Toxicity, however, may also involve ‘self-inactivation’ of key enzymes. The present findings suggest that alanine–glyoxylate aminotransferase II may be an important factor in the well-established targeting of rat kidney mitochondria by toxic halogenated cysteine S-conjugates. Previous reports suggest that alanine–glyoxylate aminotransferase II is absent in some humans, but present in others. Alanine–glyoxylate aminotransferase II may contribute to the bioactivation (toxification) of halogenated cysteine S-conjugates in a subset of individuals exposed to halogenated alkenes.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kontani, Yasuhide, Masae Kaneko, Mariko Kikugawa, Shigeko Fujimoto et Nanaya Tamaki. « Identity of D-3-aminoisobutyrate-pyruvate aminotransferase with alanine-glyoxylate aminotransferase 2 ». Biochimica et Biophysica Acta (BBA) - General Subjects 1156, no 2 (février 1993) : 161–66. http://dx.doi.org/10.1016/0304-4165(93)90131-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Holbrook, Joanna D., Graeme M. Birdsey, Ziheng Yang, Michael W. Bruford et Christopher J. Danpure. « Molecular Adaptation of Alanine : Glyoxylate Aminotransferase Targeting in Primates ». Molecular Biology and Evolution 17, no 3 (1 mars 2000) : 387–400. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026318.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ikeda, Mitsunori, Hiroaki Kanouchi et Yohsuke Minatogawa. « Characterization of Peroxisomal Targeting Signals on Alanine : Glyoxylate Aminotransferase ». Biological & ; Pharmaceutical Bulletin 31, no 1 (2008) : 131–34. http://dx.doi.org/10.1248/bpb.31.131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Holmes, R. P., C. H. Hurst, D. G. Assimos et H. O. Goodman. « Glucagon increases urinary oxalate excretion in the guinea pig ». American Journal of Physiology-Endocrinology and Metabolism 269, no 3 (1 septembre 1995) : E568—E574. http://dx.doi.org/10.1152/ajpendo.1995.269.3.e568.

Texte intégral
Résumé :
Factors that influence hepatic oxalate synthesis are poorly defined. Hormones are important regulators of hepatic metabolism and could potentially be involved. The effects of hyperglucagonemia were examined in guinea pigs injected with either saline or pharmacological doses of glucagon for 4 days. Glucagon treatment increased mean urinary oxalate excretion by 77% in male and 34% in female animals. The levels of hepatic peroxisomal enzymes involved in oxalate synthesis declined with glucagon treatment, but experiments with isolated peroxisomes indicated that oxalate synthesis in vitro was unaffected. Glucagon decreased hepatic alanine levels by 66%, lactate by 69%, and pyruvate by 73%, but glycolate and glyoxylate levels were unaffected. This decrease in alanine would substantially lower the activity of alanine-to-glyoxylate aminotransferase activity in vivo and make more glyoxylate available for oxalate synthesis. The decrease in lactate and pyruvate concentrations would stimulate the enzymatic conversion of glyoxylate to oxalate and may account for the increase in oxalate synthesis without an increase in glyoxylate concentration. These results demonstrate that hepatic oxalate synthesis is influenced by metabolic changes and that alterations in hepatic alanine, lactate, and pyruvate concentrations may be important elements.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kah, A., D. Dörnemann et H. Senger. « Isolation and Purification to Apparent Homogeneity of 4,5-Dioxovalerate Aminotransferase from Scenedesmus obliquus Mutant C-2 A′ ». Zeitschrift für Naturforschung C 43, no 7-8 (1 août 1988) : 563–71. http://dx.doi.org/10.1515/znc-1988-7-813.

Texte intégral
Résumé :
In the present paper the purification of a specific 4,5-dioxovalerate transaminase from pigment mutant C-2 A′ of the unicellular green alga Scenedesmus obliquus to apparent homogeneity is described. The newly isolated enzyme ʟ-glutamate: 4,5-dioxovalerate aminotransferase is not identical with ʟ-alanine: 4,5-dioxovalerate aminotransferase (EC 2.6.1.43) and ʟ-alanine: glyoxylate aminotransferase (EC 2.6.1.44). A procedure for the purification is described and the resulting homogeneous protein is characterized by its Kᴍ-values for oxo-substrates and amino donors, its pyridoxal phosphate requirement, reversability of the catalysis, pH-optimum, isoelectric point and its molecular weight.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Han, Qian, Seong Ryul Kim, Haizhen Ding et Jianyong Li. « Evolution of two alanine glyoxylate aminotransferases in mosquito ». Biochemical Journal 397, no 3 (13 juillet 2006) : 473–81. http://dx.doi.org/10.1042/bj20060469.

Texte intégral
Résumé :
In the mosquito, transamination of 3-HK (3-hydroxykynurenine) to XA (xanthurenic acid) is catalysed by an AGT (alanine glyoxylate aminotransferase) and is the major branch pathway of tryptophan metabolism. Interestingly, malaria parasites hijack this pathway to use XA as a chemical signal for development in the mosquito. Here, we report that the mosquito has two AGT isoenzymes. One is the previously cloned AeHKT [Aedes aegypti HKT (3-HK transaminase)] [Han, Fang and Li (2002) J. Biol. Chem. 277, 15781–15787], similar to hAGT (human AGT), which primarily catalyses 3-HK to XA in mosquitoes, and the other is a typical dipteran insect AGT. We cloned the second AGT from Ae. aegypti mosquitoes [AeAGT (Ae. aegypti AGT)], overexpressed the enzyme in baculovirus/insect cells and determined its biochemical characteristics. We also expressed hAGT for a comparative study. The new cloned AeAGT is highly substrate-specific when compared with hAGT and the previously reported AeHKT and Drosophila AGT, and is translated mainly in pupae and adults, which contrasts with AeHKT that is expressed primarily in larvae. Our results suggest that the physiological requirements of mosquitoes and the interaction between the mosquito and its host appear to be the driving force in mosquito AGT evolution.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Rumsby, G., R. Jones, C. J. Danpure et C. T. Samuell. « Taql polymorphism at the alanine : glyoxylate aminotransferase (AGXT) gene locus ». Human Molecular Genetics 1, no 5 (1992) : 350. http://dx.doi.org/10.1093/hmg/1.5.350-a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Okuno, Etsuo, Takaya Ishikawa, Jun Kawai et Ryo Kido. « Alanine : Glyoxylate aminotransferase activities in liver of Suncus murinus (insectivora) ». Comparative Biochemistry and Physiology Part B : Comparative Biochemistry 90, no 4 (janvier 1988) : 773–78. http://dx.doi.org/10.1016/0305-0491(88)90333-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Allsop, Jennifer, Patricia R. Jennings et Christopher J. Danpure. « A new micro-assay for human liver alanine : Glyoxylate aminotransferase ». Clinica Chimica Acta 170, no 2-3 (décembre 1987) : 187–93. http://dx.doi.org/10.1016/0009-8981(87)90127-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Schlösser, Thomas, Cornelia Gätgens, Ulrike Weber et K. Peter Stahmann. « Alanine : glyoxylate aminotransferase ofSaccharomyces cerevisiae–encoding geneAGX1 and metabolic significance ». Yeast 21, no 1 (15 janvier 2004) : 63–73. http://dx.doi.org/10.1002/yea.1058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kobayashi, Shigeru, Sueko Hayashi, Satoko Fujiwara et Tomoo Noguchi. « Identity of alanine : glyoxylate aminotransferase with alanine : 2-oxoglutarate aminotrasferase in rat liver cytosol ». Biochimie 71, no 4 (avril 1989) : 471–75. http://dx.doi.org/10.1016/0300-9084(89)90177-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Han, Qian, et Jianyong Li. « Comparative characterization ofAedes3-hydroxykynurenine transaminase/alanine glyoxylate transaminase andDrosophilaserine pyruvate aminotransferase ». FEBS Letters 527, no 1-3 (28 août 2002) : 199–204. http://dx.doi.org/10.1016/s0014-5793(02)03229-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Satriano, Letizia, Monika Lewinska, Colm O. Rourke, Douglas VNP Oliveira, Deepak Kumar Bhatt, Andrzej Taranta, Monika Herr et al. « THU-491-The role of alanine glyoxylate aminotransferase in hepatocellular carcinoma ». Journal of Hepatology 70, no 1 (avril 2019) : e377. http://dx.doi.org/10.1016/s0618-8278(19)30738-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Wang, Bing-Jun, Jing-Ming Xia, Qian Wang, Jiang-Long Yu, Zhiyin Song et Huabin Zhao. « Diet and Adaptive Evolution of Alanine-Glyoxylate Aminotransferase Mitochondrial Targeting in Birds ». Molecular Biology and Evolution 37, no 3 (8 novembre 2019) : 786–98. http://dx.doi.org/10.1093/molbev/msz266.

Texte intégral
Résumé :
Abstract Adaptations to different diets represent a hallmark of animal diversity. The diets of birds are highly variable, making them an excellent model system for studying adaptive evolution driven by dietary changes. To test whether molecular adaptations to diet have occurred during the evolution of birds, we examined a dietary enzyme alanine-glyoxylate aminotransferase (AGT), which tends to target mitochondria in carnivorous mammals, peroxisomes in herbivorous mammals, and both mitochondria and peroxisomes in omnivorous mammals. A total of 31 bird species were examined in this study, which included representatives of most major avian lineages. Of these, 29 have an intact mitochondrial targeting sequence (MTS) of AGT. This finding is in stark contrast to mammals, which showed a number of independent losses of the MTS. Our cell-based functional assays revealed that the efficiency of AGT mitochondrial targeting was greatly reduced in unrelated lineages of granivorous birds, yet it tended to be high in insectivorous and carnivorous lineages. Furthermore, we found that proportions of animal tissue in avian diets were positively correlated with mitochondrial targeting efficiencies that were experimentally determined, but not with those that were computationally predicted. Adaptive evolution of AGT mitochondrial targeting in birds was further supported by the detection of positive selection on MTS regions. Our study contributes to the understanding of how diet drives molecular adaptations in animals, and suggests that caution must be taken when computationally predicting protein subcellular targeting.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Lage, Melissa D., Adrianne M. C. Pittman, Alessandro Roncador, Barbara Cellini et Chandra L. Tucker. « Allele-specific Characterization of Alanine : Glyoxylate Aminotransferase Variants Associated with Primary Hyperoxaluria ». PLoS ONE 9, no 4 (9 avril 2014) : e94338. http://dx.doi.org/10.1371/journal.pone.0094338.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Hayashi, Sueko, Haruhiko Sakuraba et Tomoo Noguchi. « Response of hepatic alanine : Glyoxylate aminotransferase 1 to hormone differs among mammalia ». Biochemical and Biophysical Research Communications 165, no 1 (novembre 1989) : 372–76. http://dx.doi.org/10.1016/0006-291x(89)91080-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Zhao, Chaohui Lisa, Yiang Hui, Li Juan Wang, Dongfang Yang, Evgeny Yakirevich, Shamlal Mangray, Chiung-Kuei Huang et Shaolei Lu. « Alanine-glyoxylate aminotransferase 1 (AGXT1) is a novel marker for hepatocellular carcinomas ». Human Pathology 80 (octobre 2018) : 76–81. http://dx.doi.org/10.1016/j.humpath.2018.05.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kukreja, Anjli, Melissa Lasaro, Christian Cobaugh, Chris Forbes, Jian-Ping Tang, Xiang Gao, Cristina Martin-Higueras et al. « Systemic Alanine Glyoxylate Aminotransferase mRNA Improves Glyoxylate Metabolism in a Mouse Model of Primary Hyperoxaluria Type 1 ». Nucleic Acid Therapeutics 29, no 2 (avril 2019) : 104–13. http://dx.doi.org/10.1089/nat.2018.0740.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Ishikawa, K., E. aneko et A. Ichiyama. « Pyridoxal 5'-Phosphate Binding of a Recombinant Rat Serine : Pyruvate/Alanine : Glyoxylate Aminotransferase ». Journal of Biochemistry 119, no 5 (1 mai 1996) : 970–78. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021337.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Liu, Yang, Huihui Xu, Xinpu Yuan, Stephen J. Rossiter et Shuyi Zhang. « Multiple Adaptive Losses of Alanine-Glyoxylate Aminotransferase Mitochondrial Targeting in Fruit-Eating Bats ». Molecular Biology and Evolution 29, no 6 (19 janvier 2012) : 1507–11. http://dx.doi.org/10.1093/molbev/mss013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Caplin, Ben, Zhen Wang, Anna Slaviero, James Tomlinson, Laura Dowsett, Mathew Delahaye, Alan Salama, David C. Wheeler et James Leiper. « Alanine-Glyoxylate Aminotransferase-2 Metabolizes Endogenous Methylarginines, Regulates NO, and Controls Blood Pressure ». Arteriosclerosis, Thrombosis, and Vascular Biology 32, no 12 (décembre 2012) : 2892–900. http://dx.doi.org/10.1161/atvbaha.112.254078.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

NISHIJIMA, SAORI, KIMIO SUGAYA, MAKOTO MOROZUMI, TADASHI HATANO et YOSHIHIDE OGAWA. « Hepatic Alanine-glyoxylate Aminotransferase Activity and Oxalate Metabolism in Vitamin B6 Deficient Rats ». Journal of Urology 169, no 2 (février 2003) : 683–86. http://dx.doi.org/10.1016/s0022-5347(05)63992-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Craigen, W. J. « Persistent glycolic aciduria in a healthy child with normal alanine-glyoxylate aminotransferase activity ». Journal of Inherited Metabolic Disease 19, no 6 (novembre 1996) : 793–94. http://dx.doi.org/10.1007/bf01799176.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Danpure, C. J. « Primary hyperoxaluria type 1 and peroxisome-to-mitochondrion mistargeting of alanine : glyoxylate aminotransferase ». Biochimie 75, no 3-4 (janvier 1993) : 309–15. http://dx.doi.org/10.1016/0300-9084(93)90091-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Nakatani, Toshihide, Yukihiko Kawasaki, Yohsuke Minatogawa, Etsuo Okuno et Ryo Kido. « Peroxisome localized human hepatic alanine-glyoxylate aminotransferase and its application to clinical diagnosis ». Clinical Biochemistry 18, no 5 (octobre 1985) : 311–16. http://dx.doi.org/10.1016/s0009-9120(85)80039-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Oda, Toshiaki, Takuji Mizuno, Kouichi Ito, Tsuneyoshi Funai, Arata Ichiyama et Satoshi Miura. « Peroxisomal and Mitochondrial Targeting of Serine : Pyruvate/Alanine : Glyoxylate Aminotransferase in Rat Liver ». Cell Biochemistry and Biophysics 32, no 1-3 (2000) : 277–81. http://dx.doi.org/10.1385/cbb:32:1-3:277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Oatey, Paru B., Michael J. Lumb et Christopher J. Danpure. « Molecular Basis of the Variable Mitochondrial and Peroxisomal Localisation of Alanine-Glyoxylate Aminotransferase ». European Journal of Biochemistry 241, no 2 (octobre 1996) : 374–85. http://dx.doi.org/10.1111/j.1432-1033.1996.00374.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Danpure, C. J., et P. R. Jennings. « Enzymatic heterogeneity in primary hyperoxaluria type 1 (hepatic peroxisomal alanine : Glyoxylate aminotransferase deficiency) ». Journal of Inherited Metabolic Disease 11, S2 (juin 1988) : 205–7. http://dx.doi.org/10.1007/bf01804236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Hameed, Mohammed, Kashif Eqbal, Beena Nair, Alexander Woywodt et Aimun Ahmed. « Late Diagnosis of Primary Hyperoxaluria by Crystals in the Bone Marrow ! » Nephrology @ Point of Care 1, no 1 (janvier 2015) : napoc.2015.1467. http://dx.doi.org/10.5301/napoc.2015.14679.

Texte intégral
Résumé :
Primary hyperoxaluria type 1 (PH1) is a rare, inherited, autosomal recessive, metabolic disorder caused by a deficiency of peroxisomal alanine-glyoxylate aminotransferase (AGT). We describe here a case of a 57-year-old man with End Stage Renal Disease, where the late age of presentation of PH T1 due to marked heterogeneity of disease expression caused a delay in diagnosis, and we discuss the causes of the poor outcome typical of this condition
Styles APA, Harvard, Vancouver, ISO, etc.
39

Horváth, V. Andy P., et Ronald J. A. Wanders. « Re-Evaluation of Conditions Required for Measurement of True Alanine:Glyoxylate Aminotransferase Activity in Human Liver : Implications for the Diagnosis of Hyperoxaluria Type I ». Annals of Clinical Biochemistry : International Journal of Laboratory Medicine 31, no 4 (juillet 1994) : 361–66. http://dx.doi.org/10.1177/000456329403100410.

Texte intégral
Résumé :
In this paper we studied the glyoxylate-dependent transamination of L-alanine and L-glutamate in human liver homogenates in order to develop a reliable method for the determination of true alanine:glyoxylate aminotransferase activity in liver homogenates from patients suspected to suffer from hyperoxaluria type I. Measurements were made according to two protocols described in literature in control human liver homogenates which were either untreated or treated with an antiserum raised against purified alanine:glyoxylate aminotransferase. The results obtained show that enzyme activity can best be determined at pH 8.0 as compared to pH 7.4 since the former leads to a higher sensitivity of the method. Alanine:glyoxylate aminotransferase activities measured at pH 8.0 are approximately 50% higher compared to the enzyme activities measured at pH 7.4. Accordingly, it is proposed to measure alanine:glyoxylate aminotransferase activity at pH 8.0 using the newly determined correction factor as described in this paper.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Li, Yueyan, Rui Zheng, Guofeng Xu, Yunteng Huang, Yongmei Li, Dali Li et Hongquan Geng. « Generation and characterization of a novel rat model of primary hyperoxaluria type 1 with a nonsense mutation in alanine-glyoxylate aminotransferase gene ». American Journal of Physiology-Renal Physiology 320, no 3 (1 mars 2021) : F475—F484. http://dx.doi.org/10.1152/ajprenal.00514.2020.

Texte intégral
Résumé :
Primary hyperoxaluria type 1 is a severe inherited disorder that results in recurrent urolithiasis and renal failure. We generated an alanine-glyoxylate aminotransferase ( Agxt) Q84X nonsense mutant rat model that displayed an early onset of hyperoxaluria, spontaneous renal CaOx precipitation, bladder stone, and kidney injuries. Our results suggest an interaction of renal CaOx crystals with the activation of inflammation-, fibrosis-, and necroptosis-related pathways. In all, the AgxtQ84X rat strain has broad applicability in mechanistic studies and the development of innovative therapeutics.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Chen, Wen-Chi, Hsin-Ping Liu, Hsi-Chin Wu, Chou-Huang Tsai, Huey-Yi Chen, Hsin-Yi Chen, Fuu-Jen Tsai et al. « Preliminary Study of Ethylene Glycol-Induced Alanine-Glyoxylate Aminotransferase 2 Expression in Rat Kidney ». Current Urology 3, no 3 (2009) : 129–35. http://dx.doi.org/10.1159/000253370.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Lhotta, K., G. Rumsby, W. Vogel, H. Pernthaler, H. Feichtinger et P. Konig. « Primary hyperoxaluria type 1 caused by peroxisome-to-mitochondrion mistargeting of alanine : glyoxylate aminotransferase ». Nephrology Dialysis Transplantation 11, no 11 (1 novembre 1996) : 2296–98. http://dx.doi.org/10.1093/oxfordjournals.ndt.a027152.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Lee, In Sook Matsui, Morimitu Nishikimi, Masaya Inoue, Yasuteru Muragaki et Akira Ooshima. « Specific Expression of Alanine-Glyoxylate Aminotransferase 2 in the Epithelial Cells of Henle’s Loop ». Nephron 83, no 2 (1999) : 184–85. http://dx.doi.org/10.1159/000045507.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Albert, Armando, Cristina Yunta, Rocío Arranz, Álvaro Peña, Eduardo Salido, José María Valpuesta et Jaime Martín-Benito. « Structure of GroEL in Complex with an Early Folding Intermediate of Alanine Glyoxylate Aminotransferase ». Journal of Biological Chemistry 285, no 9 (7 janvier 2010) : 6371–76. http://dx.doi.org/10.1074/jbc.m109.062471.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

LUMB, Michael J., P. Edward PURDUE et Christopher J. DANPURE. « Molecular evolution of alanine/glyoxylate aminotransferase 1 intracellular targeting. Analysis of the feline gene ». European Journal of Biochemistry 221, no 1 (avril 1994) : 53–62. http://dx.doi.org/10.1111/j.1432-1033.1994.tb18714.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Danpure, C. J., P. R. Jennings et R. W. E. Watts. « Primary Hyperoxaluria Type 1 and Hepatic Alanine : Glyoxylate Aminotransferase, a Study of Five Cases ». Clinical Science 72, s16 (1 janvier 1987) : 23P. http://dx.doi.org/10.1042/cs072023pa.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Danpure, Christopher J. « Variable peroxisomal and mitochondrial targeting of alanine : Glyoxylate aminotransferase in mammalian evolution and disease ». BioEssays 19, no 4 (avril 1997) : 317–26. http://dx.doi.org/10.1002/bies.950190409.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Danpure, Christopher J., Patricia R. Jennings, Richard J. Penketh, Pauline J. Wise, Penelope J. Cooper et Charles H. Rodeck. « Fetal liver alanine : Glyoxylate aminotransferase and the prenatal diagnosis of primary hyperoxaluria type 1 ». Prenatal Diagnosis 9, no 4 (avril 1989) : 271–81. http://dx.doi.org/10.1002/pd.1970090406.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Chung, Eunsook, Kyoung Mi Kim, Jee Eun Heo, Chang-Woo Cho, Seon-Woo Lee et Jai-Heon Lee. « Molecular characterization of mungbean peroxisomal alanine glyoxylate aminotransferase gene induced by low temperature stress ». Genes & ; Genomics 31, no 1 (février 2009) : 11–18. http://dx.doi.org/10.1007/bf03191133.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Naidu, S., A. B. Moser, C. J. Danpure, L. Civitello et H. W. Moser. « New defect in peroxisome biogenesis with leukodystrophy, oxaluria, and normal hepatic alanine : Glyoxylate aminotransferase ». Pediatric Neurology 11, no 2 (septembre 1994) : 144. http://dx.doi.org/10.1016/0887-8994(94)90375-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie