Littérature scientifique sur le sujet « ALANINE:GLYOXYLATE AMINOTRANSFERASE »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « ALANINE:GLYOXYLATE AMINOTRANSFERASE ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "ALANINE:GLYOXYLATE AMINOTRANSFERASE"

1

Orzechowski, S., J. Socha-Hanc et A. Paszkowski. « Alanine aminotransferase and glycine aminotransferase from maize (Zea mays L.) leaves. » Acta Biochimica Polonica 46, no 2 (30 juin 1999) : 447–57. http://dx.doi.org/10.18388/abp.1999_4176.

Texte intégral
Résumé :
Alanine aminotransferase (AlaAT, EC 2.6.1.2) and glycine aminotransferase (GlyAT, EC 2.6.1.4), two different enzymes catalyzing transamination reactions with L-alanine as the amino-acid substrate, were examined in maize in which alanine participates substantially in nitrogen transport. Preparative PAGE of a partially purified preparation of aminotransferases from maize leaves gave 6 fractions differing in electrophoretic mobility. The fastest migrating fraction I represents AlaAT specific for L-alanine as amino donor and 2-oxoglutarate as amino acceptor. The remaining fractions showed three aminotransferase activities: L-alanine-2-oxoglutarate, L-alanine-glyoxylate and L-glutamate-glyoxylate. By means of molecular sieving on Zorbax SE-250 two groups of enzymes were distinguished in the PAGE fractions: of about 100 kDa and 50 kDa. Molecular mass of 104 kDa was ascribed to AlaAT in fraction I, while the molecular mass of the three enzymatic activities in 3 fractions of the low electrophoretic mobility was about 50 kDa. The response of these fractions to: aminooxyacetate, 3-chloro-L-alanine and competing amino acids prompted us to suggest that five out of the six preparative PAGE fractions represented GlyAT isoforms, differing from each other by the L-glutamate-glyoxylate:L-alanine-glyoxylate:L-alanine-2-oxoglutarate activity ratio.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Han, Qian, Cihan Yang, Jun Lu, Yinai Zhang et Jianyong Li. « Metabolism of Oxalate in Humans : A Potential Role Kynurenine Aminotransferase/Glutamine Transaminase/Cysteine Conjugate Betalyase Plays in Hyperoxaluria ». Current Medicinal Chemistry 26, no 26 (22 octobre 2019) : 4944–63. http://dx.doi.org/10.2174/0929867326666190325095223.

Texte intégral
Résumé :
Hyperoxaluria, excessive urinary oxalate excretion, is a significant health problem worldwide. Disrupted oxalate metabolism has been implicated in hyperoxaluria and accordingly, an enzymatic disturbance in oxalate biosynthesis can result in the primary hyperoxaluria. Alanine-glyoxylate aminotransferase-1 and glyoxylate reductase, the enzymes involving glyoxylate (precursor for oxalate) metabolism, have been related to primary hyperoxalurias. Some studies suggest that other enzymes such as glycolate oxidase and alanine-glyoxylate aminotransferase-2 might be associated with primary hyperoxaluria as well, but evidence of a definitive link is not strong between the clinical cases and gene mutations. There are still some idiopathic hyperoxalurias, which require a further study for the etiologies. Some aminotransferases, particularly kynurenine aminotransferases, can convert glyoxylate to glycine. Based on biochemical and structural characteristics, expression level, and subcellular localization of some aminotransferases, a number of them appear able to catalyze the transamination of glyoxylate to glycine more efficiently than alanine glyoxylate aminotransferase-1. The aim of this minireview is to explore other undermining causes of primary hyperoxaluria and stimulate research toward achieving a comprehensive understanding of underlying mechanisms leading to the disease. Herein, we reviewed all aminotransferases in the liver for their functions in glyoxylate metabolism. Particularly, kynurenine aminotransferase-I and III were carefully discussed regarding their biochemical and structural characteristics, cellular localization, and enzyme inhibition. Kynurenine aminotransferase-III is, so far, the most efficient putative mitochondrial enzyme to transaminate glyoxylate to glycine in mammalian livers, which might be an interesting enzyme to look for in hyperoxaluria etiology of primary hyperoxaluria and should be carefully investigated for its involvement in oxalate metabolism.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pey, Angel L., Armando Albert et Eduardo Salido. « Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase : New Therapeutic Strategies in Primary Hyperoxaluria Type I ». BioMed Research International 2013 (2013) : 1–15. http://dx.doi.org/10.1155/2013/687658.

Texte intégral
Résumé :
Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Donini, Stefano, Manuela Ferrari, Chiara Fedeli, Marco Faini, Ilaria Lamberto, Ada Serena Marletta, Lara Mellini et al. « Recombinant production of eight human cytosolic aminotransferases and assessment of their potential involvement in glyoxylate metabolism ». Biochemical Journal 422, no 2 (13 août 2009) : 265–72. http://dx.doi.org/10.1042/bj20090748.

Texte intégral
Résumé :
PH1 (primary hyperoxaluria type 1) is a severe inborn disorder of glyoxylate metabolism caused by a functional deficiency of the peroxisomal enzyme AGXT (alanine-glyoxylate aminotransferase), which converts glyoxylate into glycine using L-alanine as the amino-group donor. Even though pre-genomic studies indicate that other human transaminases can convert glyoxylate into glycine, in PH1 patients these enzymes are apparently unable to compensate for the lack of AGXT, perhaps due to their limited levels of expression, their localization in an inappropriate cell compartment or the scarcity of the required amino-group donor. In the present paper, we describe the cloning of eight human cytosolic aminotransferases, their recombinant expression as His6-tagged proteins and a comparative study on their ability to transaminate glyoxylate, using any standard amino acid as an amino-group donor. To selectively quantify the glycine formed, we have developed and validated an assay based on bacterial GO (glycine oxidase); this assay allows the detection of enzymes that produce glycine by transamination in the presence of mixtures of potential amino-group donors and without separation of the product from the substrates. We show that among the eight enzymes tested, only GPT (alanine transaminase) and PSAT1 (phosphoserine aminotransferase 1) can transaminate glyoxylate with good efficiency, using L-glutamate (and, for GPT, also L-alanine) as the best amino-group donor. These findings confirm that glyoxylate transamination can occur in the cytosol, in direct competition with the conversion of glyoxylate into oxalate. The potential implications for the treatment of primary hyperoxaluria are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sakuraba, Haruhiko. « Studies on Avian Peroxisomal Alanine : Glyoxylate Aminotransferase ». Journal of the Kyushu Dental Society 45, no 3 (1991) : 390–408. http://dx.doi.org/10.2504/kds.45.390.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Takada, Y., et T. Noguchi. « Characteristics of alanine : glyoxylate aminotransferase from Saccharomyces cerevisiae, a regulatory enzyme in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates ». Biochemical Journal 231, no 1 (1 octobre 1985) : 157–63. http://dx.doi.org/10.1042/bj2310157.

Texte intégral
Résumé :
Alanine: glyoxylate aminotransferase (EC 2.6.1.44), which is involved in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates in Saccharomyces cerevisiae, was highly purified and characterized. The enzyme had Mr about 80 000, with two identical subunits. It was highly specific for L-alanine and glyoxylate and contained pyridoxal 5′-phosphate as cofactor. The apparent Km values were 2.1 mM and 0.7 mM for L-alanine and glyoxylate respectively. The activity was low (10 nmol/min per mg of protein) with glucose as sole carbon source, but was remarkably high with ethanol or acetate as carbon source (930 and 430 nmol/min per mg respectively). The transamination of glyoxylate is mainly catalysed by this enzyme in ethanol-grown cells. When glucose-grown cells were incubated in medium containing ethanol as sole carbon source, the activity markedly increased, and the increase was completely blocked by cycloheximide, suggesting that the enzyme is synthesized de novo during the incubation period. Similarity in the amino acid composition was observed, but immunological cross-reactivity was not observed among alanine: glyoxylate aminotransferases from yeast and vertebrate liver.
Styles APA, Harvard, Vancouver, ISO, etc.
7

夏, 敬明. « Introduction and Research Progress of Alanine-Glyoxylate Aminotransferase ». Open Journal of Nature Science 06, no 05 (2018) : 409–15. http://dx.doi.org/10.12677/ojns.2018.65053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rumsby, G., T. Weir et C. T. Samuell. « A Semiautomated Alanine : Glyoxylate Aminotransferase Assay for the Tissue Diagnosis of Primary Hyperoxaluria Type 1 ». Annals of Clinical Biochemistry : International Journal of Laboratory Medicine 34, no 4 (juillet 1997) : 400–404. http://dx.doi.org/10.1177/000456329703400411.

Texte intégral
Résumé :
We have developed a sensitive assay for the measurement of alanine:glyoxylate aminotransferase (EC 2.6.1.44) activity in human liver. The assay is partly automated, and takes into consideration the sensitivity of the reaction to pH and to glyoxylate concentration. It is less subject to interference from other enzymes utilizing glyoxylate and to chemical interference from glyoxylate itself and can therefore be used without correction for cross-over by glutamate:glyoxylate aminotransferase (EC 2.6.1.4). The assay allows clear discrimination between normal and affected livers and is sufficiently sensitive to measure enzyme activity in fetal liver samples. Enzyme activity ranged from 17·9 to 38·5 μmol/h/mg protein in control livers ( n = 9) and 0·8 to 9·5 μmol/h/mg protein in 30 of 39 hyperoxaluric patients studied. Normal alanine: glyoxylate aminotransferase activity (from 22·8 to 45·5 μmol/h/mg protein) allowed exclusion of primary hyperoxaluria type 1 in the other nine hyperoxaluric patients.
Styles APA, Harvard, Vancouver, ISO, etc.
9

COOPER, Arthur J. L., Boris F. KRASNIKOV, Etsuo OKUNO et Thomas M. JEITNER. « l-Alanine–glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate β-lyase activity : a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes ? » Biochemical Journal 376, no 1 (15 novembre 2003) : 169–78. http://dx.doi.org/10.1042/bj20030988.

Texte intégral
Résumé :
Several halogenated alkenes are metabolized in part to cysteine S-conjugates, which are mitochondrial toxicants of kidney and, to a lesser extent, other organs. Toxicity is due to cysteine S-conjugate β-lyases, which convert the cysteine S-conjugate into pyruvate, ammonia and a reactive sulphur-containing fragment. A section of the human population is exposed to halogenated alkenes. To understand the health effects of such exposure, it is important to identify cysteine S-conjugate β-lyases that contribute to mitochondrial damage. Mitochondrial aspartate aminotransferase [Cooper, Bruschi, Iriarte and Martinez-Carrion (2002) Biochem. J. 368, 253–261] and mitochondrial branched-chain aminotransferase [Cooper, Bruschi, Conway and Hutson (2003) Biochem. Pharmacol. 65, 181–192] exhibit β-lyase activity toward S-(1,2-dichlorovinyl)-l-cysteine (the cysteine S-conjugate of trichloroethylene) and S-(1,1,2,2-tetrafluoroethyl)-l-cysteine (the cysteine S-conjugate of tetrafluoroethylene). Turnover leads to eventual inactivation of these enzymes. Here we report that mitochondrial l-alanine–glyoxylate aminotransferase II, which, in the rat, is most active in kidney, catalyses cysteine S-conjugate β-lyase reactions with S-(1,1,2,2-tetrafluoroethyl)-l-cysteine, S-(1,2-dichlorovinyl)-l-cysteine and S-(benzothiazolyl-l-cysteine); turnover leads to inactivation. Previous workers showed that the reactive-sulphur-containing fragment released from S-(1,1,2,2-tetrafluoroethyl)-l-cysteine and S-(1,2-dichlorovinyl)-l-cysteine is toxic by acting as a thioacylating agent – particularly of lysine residues in nearby proteins. Toxicity, however, may also involve ‘self-inactivation’ of key enzymes. The present findings suggest that alanine–glyoxylate aminotransferase II may be an important factor in the well-established targeting of rat kidney mitochondria by toxic halogenated cysteine S-conjugates. Previous reports suggest that alanine–glyoxylate aminotransferase II is absent in some humans, but present in others. Alanine–glyoxylate aminotransferase II may contribute to the bioactivation (toxification) of halogenated cysteine S-conjugates in a subset of individuals exposed to halogenated alkenes.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kontani, Yasuhide, Masae Kaneko, Mariko Kikugawa, Shigeko Fujimoto et Nanaya Tamaki. « Identity of D-3-aminoisobutyrate-pyruvate aminotransferase with alanine-glyoxylate aminotransferase 2 ». Biochimica et Biophysica Acta (BBA) - General Subjects 1156, no 2 (février 1993) : 161–66. http://dx.doi.org/10.1016/0304-4165(93)90131-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "ALANINE:GLYOXYLATE AMINOTRANSFERASE"

1

Holbrook, Joanna Dawn. « Molecular evolution of the intracellular targeting of alanine glyoxylate aminotransferase ». Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272486.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Birdsey, Graeme Miles. « Molecular analysis of the peroxisomal targeting of guinea-pig alanine : glyoxylate aminotransferase ». Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300508.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Burdin, Dmitry V., Alexey A. Kolobov, Chad Brocker, Alexey A. Soshnev, Nikolay Samusik, Anton v. Demyanov, Silke Brilloff et al. « Diabetes-linked transcription factor HNF4α regulates metabolism of endogenous methylarginines and β-aminoisobutyric acid by controlling expression of alanine-glyoxylate aminotransferase 2 ». Nature Publishing Group, 2016. https://tud.qucosa.de/id/qucosa%3A30404.

Texte intégral
Résumé :
Elevated levels of circulating asymmetric and symmetric dimethylarginines (ADMA and SDMA) predict and potentially contribute to end organ damage in cardiovascular diseases. Alanine-glyoxylate aminotransferase 2 (AGXT2) regulates systemic levels of ADMA and SDMA, and also of beta-aminoisobutyric acid (BAIB)-a modulator of lipid metabolism. We identified a putative binding site for hepatic nuclear factor 4 α (HNF4α) in AGXT2 promoter sequence. In a luciferase reporter assay we found a 75% decrease in activity of Agxt2 core promoter after disruption of the HNF4α binding site. Direct binding of HNF4α to Agxt2 promoter was confirmed by chromatin immunoprecipitation assay. siRNA-mediated knockdown of Hnf4a led to an almost 50% reduction in Agxt2 mRNA levels in Hepa 1–6 cells. Liver-specific Hnf4a knockout mice exhibited a 90% decrease in liver Agxt2 expression and activity, and elevated plasma levels of ADMA, SDMA and BAIB, compared to wild-type littermates. Thus we identified HNF4α as a major regulator of Agxt2 expression. Considering a strong association between human HNF4A polymorphisms and increased risk of type 2 diabetes our current findings suggest that downregulation of AGXT2 and subsequent impairment in metabolism of dimethylarginines and BAIB caused by HNF4α deficiency might contribute to development of cardiovascular complications in diabetic patients.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Burdin, Dmitry V., Alexey A. Kolobov, Chad Brocker, Alexey A. Soshnev, Nikolay Samusik, Anton v. Demyanov, Silke Brilloff et al. « Diabetes-linked transcription factor HNF4α regulates metabolism of endogenous methylarginines and β-aminoisobutyric acid by controlling expression of alanine-glyoxylate aminotransferase 2 ». Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-226882.

Texte intégral
Résumé :
Elevated levels of circulating asymmetric and symmetric dimethylarginines (ADMA and SDMA) predict and potentially contribute to end organ damage in cardiovascular diseases. Alanine-glyoxylate aminotransferase 2 (AGXT2) regulates systemic levels of ADMA and SDMA, and also of beta-aminoisobutyric acid (BAIB)-a modulator of lipid metabolism. We identified a putative binding site for hepatic nuclear factor 4 α (HNF4α) in AGXT2 promoter sequence. In a luciferase reporter assay we found a 75% decrease in activity of Agxt2 core promoter after disruption of the HNF4α binding site. Direct binding of HNF4α to Agxt2 promoter was confirmed by chromatin immunoprecipitation assay. siRNA-mediated knockdown of Hnf4a led to an almost 50% reduction in Agxt2 mRNA levels in Hepa 1–6 cells. Liver-specific Hnf4a knockout mice exhibited a 90% decrease in liver Agxt2 expression and activity, and elevated plasma levels of ADMA, SDMA and BAIB, compared to wild-type littermates. Thus we identified HNF4α as a major regulator of Agxt2 expression. Considering a strong association between human HNF4A polymorphisms and increased risk of type 2 diabetes our current findings suggest that downregulation of AGXT2 and subsequent impairment in metabolism of dimethylarginines and BAIB caused by HNF4α deficiency might contribute to development of cardiovascular complications in diabetic patients.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "ALANINE:GLYOXYLATE AMINOTRANSFERASE"

1

Danpure, C. J., et P. R. Jennings. « Deficiency of Peroxisomal Alanine : Glyoxylate Aminotransferase in Primary Hyperoxaluria Type 1 ». Dans Proceedings in Life Sciences, 374–78. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71325-5_40.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Danpure, C. J., et P. R. Jennings. « Enzymatic Heterogeneity in Primary Hyperoxaluria Type 1 (Hepatic Peroxisomal Alanine : Glyoxylate Aminotransferase Deficiency) ». Dans Studies in Inherited Metabolic Disease, 205–7. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1259-5_32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wanders, R. J. A., C. W. T. van Roermund, S. Jurriaans, R. B. H. Schutgens, J. M. Tager, H. van den Bosch, E. D. Wolff et al. « Diversity in Residual Alanine Glyoxylate Aminotransferase Activity in Hyperoxaluria Type I : Correlation with Pyridoxine Responsiveness ». Dans Studies in Inherited Metabolic Disease, 208–11. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1259-5_33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Suzuki, Toshiaki, Kozo Nishiyama, Tsuneyoshi Funai, Keiji Tanaka, Akira Ichihara et Arata Ichiyama. « Energy-Dependent Degration of a Mutant Serine:Pyruvate/Alanin : Glyoxylate Aminotransferase in a Primary Hyperoxaluria Type 1 C ». Dans Intracellular Protein Catabolism, 137–40. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0335-0_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie