Articles de revues sur le sujet « Aimants van der Waals »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Aimants van der Waals.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Aimants van der Waals ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Arunan, E. « van der Waals ». Resonance 15, no 7 (juillet 2010) : 584–87. http://dx.doi.org/10.1007/s12045-010-0043-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Han, Jianing. « Two-Dimensional Six-Body van der Waals Interactions ». Atoms 10, no 1 (24 janvier 2022) : 12. http://dx.doi.org/10.3390/atoms10010012.

Texte intégral
Résumé :
Van der Waals interactions, primarily attractive van der Waals interactions, have been studied over one and half centuries. However, repulsive van der Waals interactions are less widely studied than attractive van der Waals interactions. In this article, we focus on repulsive van der Waals interactions. Van der Waals interactions are dipole–dipole interactions. In this article, we study the van der Waals interactions between multiple dipoles. Specifically, we focus on two-dimensional six-body van der Waals interactions. This study has many potential applications. For example, the result may be applied to physics, chemistry, chemical engineering, and other fields of sciences and engineering, such as breaking molecules.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bernasek, Steven L. « Van der Waals rectifiers ». Nature Nanotechnology 8, no 2 (6 janvier 2013) : 80–81. http://dx.doi.org/10.1038/nnano.2012.242.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Geim, A. K., et I. V. Grigorieva. « Van der Waals heterostructures ». Nature 499, no 7459 (juillet 2013) : 419–25. http://dx.doi.org/10.1038/nature12385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Levitov, L. S. « Van Der Waals' Friction ». Europhysics Letters (EPL) 8, no 6 (15 mars 1989) : 499–504. http://dx.doi.org/10.1209/0295-5075/8/6/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Capozziello, S., S. De Martino et M. Falanga. « Van der Waals quintessence ». Physics Letters A 299, no 5-6 (juillet 2002) : 494–98. http://dx.doi.org/10.1016/s0375-9601(02)00753-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bärwinkel, Klaus, et Jürgen Schnack. « van der Waals revisited ». Physica A : Statistical Mechanics and its Applications 387, no 18 (juillet 2008) : 4581–88. http://dx.doi.org/10.1016/j.physa.2008.03.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Levelt Sengers, J. M. H., et J. V. Sengers. « van der Waals fund, van der Waals laboratory and Dutch high-pressure science ». Physica A : Statistical Mechanics and its Applications 156, no 1 (mars 1989) : 1–14. http://dx.doi.org/10.1016/0378-4371(89)90107-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wu, Yan-Fei, Meng-Yuan Zhu, Rui-Jie Zhao, Xin-Jie Liu, Yun-Chi Zhao, Hong-Xiang Wei, Jing-Yan Zhang et al. « The fabrication and physical properties of two-dimensional van der Waals heterostructures ». Acta Physica Sinica 71, no 4 (2022) : 048502. http://dx.doi.org/10.7498/aps.71.20212033.

Texte intégral
Résumé :
Two-dimensional van der Waals materials (2D materials for short) have developed into a novel material family that has attracted much attention, and thus the integration, performance and application of 2D van der Waals heterostructures has been one of the research hotspots in the field of condensed matter physics and materials science. The 2D van der Waals heterostructures provide a flexible and extensive platform for exploring diverse physical effects and novel physical phenomena, as well as for constructing novel spintronic devices. In this topical review article, starting with the transfer technology of 2D materials, we will introduce the construction, performance and application of 2D van der Waals heterostructures. Firstly, the preparation technology of 2D van der Waals heterostructures in detail will be presented according to the two classifications of wet transfer and dry transfer, including general equipment for transfer technology, the detailed steps of widely used transfer methods, a three-dimensional manipulating method for 2D materials, and hetero-interface cleaning methods. Then, we will introduce the performance and application of 2D van der Waals heterostructures, with a focus on 2D magnetic van der Waals heterostructures and their applications in the field of 2D van der Waals magnetic tunnel junctions and moiré superlattices. The development and optimization of 2D materials transfer technology will boost 2D van der Waals heterostructures to achieve breakthrough results in fundamental science research and practical application.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ao, Hong Rui, Ming Dong, Xi Chao Wang et Hong Yuan Jiang. « Analysis of Pressure Distribution on Head Disk Air Bearing Slider Involved Van der Waals Force ». Applied Mechanics and Materials 419 (octobre 2013) : 111–16. http://dx.doi.org/10.4028/www.scientific.net/amm.419.111.

Texte intégral
Résumé :
This paper focuses on the pressure distribution on the surface of slider in hard disk drive when its flying height is in nanoscale. The gas rarefaction effect and van der Waals force are involved in the analysis process. Here the air bearing force model is based on F-K model and we establish the equation of van der Waals force between the head and disk. Using the finite element method, the modified Reynolds equation and the van der Waals force were obtained. The air bearing force on slider before and after the van der Waals force involved were compared. The results illustrate that the effect of van der Waals force on the air bearing force is different according to the slider shapes and flying heights. As a result, van der Waals force plays an important role when the flying height of slider is below 10 nm.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Linder, Bruno, et Robert A. Kromhout. « van der Waals induced dipoles ». Journal of Chemical Physics 84, no 5 (mars 1986) : 2753–60. http://dx.doi.org/10.1063/1.450299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Han, Xiaodong. « Ductile van der Waals materials ». Science 369, no 6503 (30 juillet 2020) : 509. http://dx.doi.org/10.1126/science.abd4527.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wells, B. H., et S. Wilson. « van der Waals interaction potentials ». Molecular Physics 66, no 2 (10 février 1989) : 457–64. http://dx.doi.org/10.1080/00268978900100221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Holstein, Barry R. « The van der Waals interaction ». American Journal of Physics 69, no 4 (avril 2001) : 441–49. http://dx.doi.org/10.1119/1.1341251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Lu, J. X., et W. H. Marlow. « Nonsingular van der Waals potentials ». Physical Review A 52, no 3 (1 septembre 1995) : 2141–54. http://dx.doi.org/10.1103/physreva.52.2141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Wells, B. H., et S. Wilson. « van der Waals interaction potentials ». Molecular Physics 55, no 1 (mai 1985) : 199–210. http://dx.doi.org/10.1080/00268978500101271.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wells, Bryan H., et Stephen Wilson. « van der Waals interaction potentials ». Molecular Physics 54, no 4 (mars 1985) : 787–98. http://dx.doi.org/10.1080/00268978500103161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Wells, B. H., et S. Wilson. « van der Waals interaction potentials ». Molecular Physics 57, no 1 (janvier 1986) : 21–32. http://dx.doi.org/10.1080/00268978600100021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Wells, B. H., et S. Wilson. « van der Waals interaction potentials ». Molecular Physics 57, no 2 (10 février 1986) : 421–26. http://dx.doi.org/10.1080/00268978600100331.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wells, B. H. « Van der Waals interaction potentials ». Molecular Physics 61, no 5 (10 août 1987) : 1283–93. http://dx.doi.org/10.1080/00268978700101791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Wells, B. H., et S. Wilson. « van der Waals interaction potentials ». Molecular Physics 65, no 6 (20 décembre 1988) : 1363–76. http://dx.doi.org/10.1080/00268978800101851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Rajagopal, Aruna, David Kubizňák et Robert B. Mann. « Van der Waals black hole ». Physics Letters B 737 (octobre 2014) : 277–79. http://dx.doi.org/10.1016/j.physletb.2014.08.054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Han, Zhumin, Xinyuan Wei, Chen Xu, Chi-lun Chiang, Yanxing Zhang, Ruqian Wu et W. Ho. « Imaging van der Waals Interactions ». Journal of Physical Chemistry Letters 7, no 24 (5 décembre 2016) : 5205–11. http://dx.doi.org/10.1021/acs.jpclett.6b02749.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kiessling, M. K. H., et J. K. Percus. « Nonuniform van der Waals theory ». Journal of Statistical Physics 78, no 5-6 (mars 1995) : 1337–76. http://dx.doi.org/10.1007/bf02180135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Cole, Milton W., Darrell Velegol, Hye-Young Kim et Amand A. Lucas. « Nanoscale van der Waals interactions ». Molecular Simulation 35, no 10-11 (14 août 2009) : 849–66. http://dx.doi.org/10.1080/08927020902929794.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Magnasco, Valerio, Giuseppe Figari et Camilla Costa. « Understanding van der Waals bonding ». Journal of Molecular Structure : THEOCHEM 261 (juillet 1992) : 237–53. http://dx.doi.org/10.1016/0166-1280(92)87078-e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Feil, Sylvia. « Van der Waals : erstmals gemessen ». Chemie in unserer Zeit 50, no 5 (17 août 2016) : 303. http://dx.doi.org/10.1002/ciuz.201680049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Liu, Chang-Hua, Jiajiu Zheng, Shane Colburn, Taylor K. Fryett, Yueyang Chen, Xiaodong Xu et Arka Majumdar. « Ultrathin van der Waals Metalenses ». Nano Letters 18, no 11 (8 octobre 2018) : 6961–66. http://dx.doi.org/10.1021/acs.nanolett.8b02875.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kilian, H. G. « Filled van der Waals networks ». Progress in Colloid & ; Polymer Science 75, no 1 (décembre 1987) : 213–30. http://dx.doi.org/10.1007/bf01188373.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Avramenko, Andriy A., Igor V. Shevchuk et Margarita M. Kovetskaya. « An Analytical Investigation of Natural Convection of a Van Der Waals Gas over a Vertical Plate ». Fluids 6, no 3 (15 mars 2021) : 121. http://dx.doi.org/10.3390/fluids6030121.

Texte intégral
Résumé :
The study focused on a theoretical study of natural convection in a van der Waals gas near a vertical plate. A novel simplified form of the van der Waals equation derived in the study enabled analytical modeling of fluid flow and heat transfer. Analytical solutions were obtained for the velocity and temperature profiles, as well as the Nusselt numbers. It was revealed that nonlinear effects considered by the van der Waals equation of state contribute to acceleration or deceleration of the flow. This caused respective enhancement or deterioration of heat transfer. Results for a van der Waals gas were compared with respective computations using an ideal gas model. Limits of the applicability of the simplified van der Waals equations were pinpointed.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zhang, Ya-ni, Zhuo-ying Song, Dun Qiao, Xiao-hui Li, Zhe Guang, Shao-peng Li, Li-bin Zhou et Xiao-han Chen. « 2D van der Waals materials for ultrafast pulsed fiber lasers : review and prospect ». Nanotechnology 33, no 8 (3 décembre 2021) : 082003. http://dx.doi.org/10.1088/1361-6528/ac3611.

Texte intégral
Résumé :
Abstract 2D van der Waals materials are crystals composed of atomic layers, which have atomic thickness scale layers and rich distinct properties, including ultrafast optical response, surface effects, light-mater interaction, small size effects, quantum effects and macro quantum tunnel effects. With the exploration of saturable absorption characteristic of 2D van der Waals materials, a series of potential applications of 2D van der Waals materials as high threshold, broadband and fast response saturable absorbers (SAs) in ultrafast photonics have been proposed and confirmed. Herein, the photoelectric characteristics, nonlinear characteristic measurement technique of 2D van der Waals materials and the preparation technology of SAs are systematically described. Furthermore, the ultrafast pulsed fiber lasers based on classical 2D van der Waals materials including graphene, transition metal chalcogenides, topological insulators and black phosphorus have been fully summarized and analyzed. On this basis, opportunities and directions in this field, as well as the research results of ultrafast pulsed fiber lasers based on the latest 2D van der Waals materials (such as PbO, FePSe3, graphdiyne, bismuthene, Ag2S and MXene etc), are reviewed and summarized.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Gonzalez, R. I., J. Mella, P. Díaz, S. Allende, E. E. Vogel, C. Cardenas et F. Munoz. « Hematene : a 2D magnetic material in van der Waals or non-van der Waals heterostructures ». 2D Materials 6, no 4 (1 juillet 2019) : 045002. http://dx.doi.org/10.1088/2053-1583/ab2501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Motoc, I., G. R. Marshall, R. A. Dammkoehler et J. Labanowski. « Molecular Shape Descriptors. 1. Three-Dimensional Molecular Shape Descriptor ». Zeitschrift für Naturforschung A 40, no 11 (1 novembre 1985) : 1108–13. http://dx.doi.org/10.1515/zna-1985-1106.

Texte intégral
Résumé :
The paper presents and illustrates a method which uses numerical integration of the van der Waals envelope(s) to calculate with desired accuracy the molecular van der Waals volume and the three-dimensional molecular shape descriptor defined as the twin-number [OV(α, β); NOV(β, α), where OV and NOV represent the overlapping and, respectively, the nonoverlapping van der Waals volumes of the molecules α and ß superimposed according to appropriate criteria.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Avramenko, A. A., I. V. Shevchuk, Yu Yu Kovetskaya et N. P. Dmitrenko. « An Integral Method for Natural Convection of Van Der Waals Gases over a Vertical Plate ». Energies 14, no 15 (27 juillet 2021) : 4537. http://dx.doi.org/10.3390/en14154537.

Texte intégral
Résumé :
This paper focuses on a study of natural convection in a van der Waals gas over a vertical heated plate. In this paper, for the first time, an approximate analytical solution of the problem was obtained using an integral method for momentum and energy equations. A novel simplified form of the van der Waals equation for real gases enabled estimating the effects of the dimensionless van der Waals parameters on the normalized heat transfer coefficients and Nusselt numbers in an analytical form. Trends in the variation of the Nusselt number depending on the nature of the interaction between gas molecules and the wall were analyzed. The results of computations for a van der Waals gas were compared with the results for an ideal gas.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Zhao, Lu, Lijuan Zhang, Houfu Song, Hongda Du, Junqiao Wu, Feiyu Kang et Bo Sun. « Incoherent phonon transport dominates heat conduction across van der Waals superlattices ». Applied Physics Letters 121, no 2 (11 juillet 2022) : 022201. http://dx.doi.org/10.1063/5.0096861.

Texte intégral
Résumé :
Heat conduction mechanisms in superlattices could be different across different types of interfaces. Van der Waals superlattices are structures physically assembled through weak van der Waals interactions by design and may host properties beyond the traditional superlattices limited by lattice matching and processing compatibility, offering a different type of interface. In this work, natural van der Waals (SnS)1.17(NbS2)n superlattices are synthesized, and their thermal conductivities are measured by time-domain thermoreflectance as a function of interface density. Our results show that heat conduction of (SnS)1.17(NbS2)n superlattices is dominated by interface scattering when the coherent length of phonons is larger than the superlattice period, indicating that incoherent phonon transport dominates through-plane heat conduction in van der Waals superlattices even when the period is atomically thin and abrupt, in contrast to conventional superlattices. Our findings provide valuable insights into the understanding of the thermal behavior of van der Waals superlattices and devise approaches for effective thermal management of superlattices depending on the distinct types of interfaces.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Apostol, M. « On the Van der Waals equation ». Open Access Journal of Mathematical and Theoretical Physics 1, no 5 (15 octobre 2018) : 215–17. http://dx.doi.org/10.15406/oajmtp.2018.01.00037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Quevedo, Hernando, María N. Quevedo et Alberto Sánchez. « Geometrothermodynamics of van der Waals systems ». Journal of Geometry and Physics 176 (juin 2022) : 104495. http://dx.doi.org/10.1016/j.geomphys.2022.104495.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Housecroft, Catherine E. « Geckos, Ceilings and van der Waals ». CHIMIA International Journal for Chemistry 72, no 6 (27 juin 2018) : 428–29. http://dx.doi.org/10.2533/chimia.2018.428.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Tian, Shangjie, Jian-Feng Zhang, Chenghe Li, Tianping Ying, Shiyan Li, Xiao Zhang, Kai Liu et Hechang Lei. « Ferromagnetic van der Waals Crystal VI3 ». Journal of the American Chemical Society 141, no 13 (11 mars 2019) : 5326–33. http://dx.doi.org/10.1021/jacs.8b13584.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Xiang, Rong, Taiki Inoue, Yongjia Zheng, Akihito Kumamoto, Yang Qian, Yuta Sato, Ming Liu et al. « One-dimensional van der Waals heterostructures ». Science 367, no 6477 (30 janvier 2020) : 537–42. http://dx.doi.org/10.1126/science.aaz2570.

Texte intégral
Résumé :
We present the experimental synthesis of one-dimensional (1D) van der Waals heterostructures, a class of materials where different atomic layers are coaxially stacked. We demonstrate the growth of single-crystal layers of hexagonal boron nitride (BN) and molybdenum disulfide (MoS2) crystals on single-walled carbon nanotubes (SWCNTs). For the latter, larger-diameter nanotubes that overcome strain effect were more readily synthesized. We also report a 5-nanometer–diameter heterostructure consisting of an inner SWCNT, a middle three-layer BN nanotube, and an outer MoS2 nanotube. Electron diffraction verifies that all shells in the heterostructures are single crystals. This work suggests that all of the materials in the current 2D library could be rolled into their 1D counterparts and a plethora of function-designable 1D heterostructures could be realized.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Jariwala, Deep, Tobin J. Marks et Mark C. Hersam. « Mixed-dimensional van der Waals heterostructures ». Nature Materials 16, no 2 (1 août 2016) : 170–81. http://dx.doi.org/10.1038/nmat4703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Wentzell, R. A. « Van der Waals stabilization of bubbles ». Physical Review Letters 56, no 7 (17 février 1986) : 732–33. http://dx.doi.org/10.1103/physrevlett.56.732.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Manson, J. R., et R. H. Ritchie. « Corrections to van der Waals Forces ». Physical Review Letters 57, no 2 (14 juillet 1986) : 261. http://dx.doi.org/10.1103/physrevlett.57.261.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ajayan, Pulickel, Philip Kim et Kaustav Banerjee. « Two-dimensional van der Waals materials ». Physics Today 69, no 9 (septembre 2016) : 38–44. http://dx.doi.org/10.1063/pt.3.3297.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Yang, Ji-Hui, et Hongjun Xiang. « Van der Waals engineering of magnetism ». Nature Materials 18, no 12 (28 octobre 2019) : 1273–74. http://dx.doi.org/10.1038/s41563-019-0524-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Oukouiss, A., et A. Daanoun. « Nematic van der Waals Free-energy ». Journal of Scientific Research 1, no 3 (29 août 2009) : 409–21. http://dx.doi.org/10.3329/jsr.v1i3.2595.

Texte intégral
Résumé :
We develop the calculation of free energy in a nematic phase for a model of spherical particles with the long-range anisotropic interaction from the van der Waals theory. We map the gas-liquid equilibrium, which is coupled to a first-order isotropic-nematic transition. We discus how the topology of the phase diagrams changes upon varying the strengths of the isotropic and nematic interactions.Keywords: Phase diagrams; Nematic interactions; Free energy; Transitions.© 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.v1i3.2595 J. Sci. Res. 1(3), 409-421 (2009)
Styles APA, Harvard, Vancouver, ISO, etc.
47

Tomaš, Marin-Slobodan. « Surface enhanced van der Waals force ». Physica Scripta T135 (juillet 2009) : 014020. http://dx.doi.org/10.1088/0031-8949/2009/t135/014020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Basov, D. N., M. M. Fogler et F. J. Garcia de Abajo. « Polaritons in van der Waals materials ». Science 354, no 6309 (13 octobre 2016) : aag1992. http://dx.doi.org/10.1126/science.aag1992.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Sutter, Peter, Shawn Wimer et Eli Sutter. « Chiral twisted van der Waals nanowires ». Nature 570, no 7761 (22 avril 2019) : 354–57. http://dx.doi.org/10.1038/s41586-019-1147-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Kushima, Akihiro, Xiaofeng Qian, Peng Zhao, Sulin Zhang et Ju Li. « Ripplocations in van der Waals Layers ». Nano Letters 15, no 2 (14 janvier 2015) : 1302–8. http://dx.doi.org/10.1021/nl5045082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie