Littérature scientifique sur le sujet « AI security »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « AI security ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "AI security"
Chen, Hsinchun. « AI and Security Informatics ». IEEE Intelligent Systems 25, no 5 (septembre 2010) : 82–90. http://dx.doi.org/10.1109/mis.2010.116.
Texte intégralAgrawal, Jatin, Samarjeet Singh Kalra et Himanshu Gidwani. « AI in cyber security ». International Journal of Communication and Information Technology 4, no 1 (1 janvier 2023) : 46–53. http://dx.doi.org/10.33545/2707661x.2023.v4.i1a.59.
Texte intégralBS, Guru Prasad, Dr Kiran GM et Dr Dinesha HA. « AI-Driven cyber security : Security intelligence modelling ». International Journal of Multidisciplinary Research and Growth Evaluation 4, no 6 (2023) : 961–65. http://dx.doi.org/10.54660/.ijmrge.2023.4.6.961-965.
Texte intégralAbudalou, Mohammad Ali. « Security DevOps : Enhancing Application Delivery with Speed and Security ». International Journal of Computer Science and Mobile Computing 13, no 5 (30 mai 2024) : 100–104. http://dx.doi.org/10.47760/ijcsmc.2024.v13i05.009.
Texte intégralReddy, Haritha Madhava. « Role of AI in Security Compliance ». INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no 11 (23 novembre 2024) : 1–6. http://dx.doi.org/10.55041/ijsrem32650.
Texte intégralGudimetla, Sandeep Reddy, et Niranjan Reddy Kotha. « AI-POWERED THREAT DETECTION IN CLOUD ENVIRONMENTS ». Turkish Journal of Computer and Mathematics Education (TURCOMAT) 9, no 1 (8 avril 2018) : 638–42. http://dx.doi.org/10.61841/turcomat.v9i1.14730.
Texte intégralPoonia, Ramesh Chandra. « Securing the Sustainable Future : Cryptography and Security in AI & ; IoT ». Journal of Discrete Mathematical Sciences and Cryptography 27, no 4 (2024) : i—vii. http://dx.doi.org/10.47974/jdmsc-27-4-foreword.
Texte intégralSengupta, Abhijeet. « Securing the Autonomous Future A Comprehensive Analysis of Security Challenges and Mitigation Strategies for AI Agents ». INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no 12 (24 décembre 2024) : 1–2. https://doi.org/10.55041/ijsrem40091.
Texte intégralSamijonov, Nurmukhammad Y. « AI FOR INFORMATION SECURITY AND CYBERSPACE ». American Journal of Applied Science and Technology 3, no 10 (1 octobre 2023) : 39–43. http://dx.doi.org/10.37547/ajast/volume03issue10-08.
Texte intégralSamijonov, Nurmukhammad Y. « EMERGING SECURITY CONCERNS BECAUSE OF AI USAGE ». Journal of Social Sciences and Humanities Research Fundamentals 3, no 11 (1 novembre 2023) : 43–46. http://dx.doi.org/10.55640/jsshrf-03-11-10.
Texte intégralThèses sur le sujet "AI security"
Djaidja, Taki Eddine Toufik. « Advancing the Security of 5G and Beyond Vehicular Networks through AI/DL ». Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK009.
Texte intégralThe emergence of Fifth Generation (5G) and Vehicle-to-Everything (V2X) networks has ushered in an era of unparalleled connectivity and associated services. These networks facilitate seamless interactions among vehicles, infrastructure, and more, providing a range of services through network slices, each tailored to specific requirements. Future generations are even expected to bring further advancements to these networks. However, this remarkable progress also exposes them to a myriad of security threats, many of which current measures struggle to detect and mitigate effectively. This underscores the need for advanced intrusion detection mechanisms to ensure the integrity, confidentiality, and availability of data and services.One area of increasing interest in both academia and industry spheres is Artificial Intelligence (AI), particularly its application in addressing cybersecurity threats. Notably, neural networks (NNs) have demonstrated promise in this context, although AI-based solutions do come with inherent challenges. These challenges can be summarized as concerns about effectiveness and efficiency. The former pertains to the need for Intrusion Detection Systems (IDSs) to accurately detect threats, while the latter involves achieving time efficiency and early threat detection.This dissertation represents the culmination of our research findings on investigating the aforementioned challenges of AI-based IDSs in 5G systems in general and 5G-V2X in particular. We initiated our investigation by conducting a comprehensive review of the existing literature. Throughout this thesis, we explore the utilization of Fuzzy Inference Systems (FISs) and NNs, with a specific emphasis on the latter. We leveraged state-of-the-art NN learning, referred to as Deep Learning (DL), including the incorporation of recurrent neural networks and attention mechanisms. These techniques are innovatively harnessed to making significant progress in addressing the concerns of enhancing the effectiveness and efficiency of IDSs. Moreover, our research delves into additional challenges related to data privacy when employing DL-based IDSs. We achieve this by leveraging and experimenting state-of-the-art federated learning (FL) algorithms
Hatoum, Makram. « Digital watermarking for PDF documents and images : security, robustness and AI-based attack ». Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD016.
Texte intégralTechnological development has its pros and cons. Nowadays, we can easily share, download, and upload digital content using the Internet. Also, malicious users can illegally change, duplicate, and distribute any kind of information, such as images and documents. Therefore, we should protect such contents and arrest the perpetrator. The goal of this thesis is to protect PDF documents and images using the Spread Transform Dither Modulation (STDM), as a digital watermarking technique, while taking into consideration the main requirements of transparency, robustness, and security. STDM watermarking scheme achieved a good level of transparency and robustness against noise attacks. The key to this scheme is the projection vector that aims to spreads the embedded message over a set of cover elements. However, such a key vector can be estimated by unauthorized users using the Blind Source Separation (BSS) techniques. In our first contribution, we present our proposed CAR-STDM (Component Analysis Resistant-STDM) watermarking scheme, which guarantees security while preserving the transparency and robustness against noise attacks. STDM is also affected by the Fixed Gain Attack (FGA). In the second contribution, we present our proposed N-STDM watermarking scheme that resists the FGA attack and enhances the robustness against the Additive White Gaussian Noise (AWGN) attack, JPEG compression attack, and variety of filtering and geometric attacks. Experimentations have been conducted distinctly on PDF documents and images in the spatial domain and frequency domain. Recently, Deep Learning and Neural Networks achieved noticeable development and improvement, especially in image processing, segmentation, and classification. Diverse models such as Convolutional Neural Network (CNN) are exploited for modeling image priors for denoising. CNN has a suitable denoising performance, and it could be harmful to watermarked images. In the third contribution, we present the effect of a Fully Convolutional Neural Network (FCNN), as a denoising attack, on watermarked images. STDM and Spread Spectrum (SS) are used as watermarking schemes to embed the watermarks in the images using several scenarios. This evaluation shows that such type of denoising attack preserves the image quality while breaking the robustness of all evaluated watermarked schemes
Radosavljevic, Bojan, et Axel Kimblad. « Etik och säkerhet när AI möter IoT ». Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20613.
Texte intégralIn today's society, technological developments are moving fast. Artificial intelligence and the Internet of Things are two technologies within the development whose popularity has increased in recent years. These technologies in integration have proven to be able to contribute with major business benefits, including in the form of increased precision with regard to analyzes, better customer value and efficiency of downtime. New technology also presents challenges. As the technologies are constantly growing, issues arise regarding safety and ethics and how this should be managed. The aim of this study is to find out how experts value ethical issues when using artificial intelligence in combination with the Internet of Things devices. We focused on the following research question to reach our goal: How are ethical issues evaluated when using artificial intelligence in combination with the Internet of Things? The result we found shows that both researchers and the business world value the ethical aspects highly. The study also shows that they considered the techniques to be the solution to many societal problems, but that ethics should be a topic that should be discussed on an ongoing basis.
KRAYANI, ALI. « Learning Self-Awareness Models for Physical Layer Security in Cognitive and AI-enabled Radios ». Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1074612.
Texte intégralRanang, Martin Thorsen. « An Artificial Immune System Approach to Preserving Security in Computer Networks ». Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-255.
Texte intégralIt is believed that many of the mechanisms present in the biological immune system are well suited for adoption to the field of computer intrusion detection, in the form of artificial immune systems. In this report mechanisms in the biological immune system are introduced, their parallels in artificial immune systems are presented, and how they may be applied to intrusion detection in a computer environment is discussed. An artificial immune system is designed, implemented and applied to detect intrusive behavior in real network data in a simulated network environment. The effect of costimulation and clonal proliferation combined with somatic hypermutation to perform affinity maturation of detectors in the artificial immune system is explored through experiments. An exact expression for the probability of a match between two randomly chosen strings using the r-contiguous matching rule is developed. The use of affinity maturation makes it possible to perform anomaly detection by using smaller sets of detectors with a high level of specificity while maintaining a high level of cover and diversity, which increases the number of true positives, while keeping a low level of false negatives.
TOMA, ANDREA. « PHY-layer Security in Cognitive Radio Networks through Learning Deep Generative Models : an AI-based approach ». Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1003576.
Texte intégralMusgrave, John. « Cognitive Malice Representation and Identification ». University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1565348664149804.
Texte intégralZhang, Yueqian. « Resource Clogging Attacks in Mobile Crowd-Sensing : AI-based Modeling, Detection and Mitigation ». Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40082.
Texte intégralSYED, MUHAMMAD FARRUKH SHAHID. « Data-Driven Approach based on Deep Learning and Probabilistic Models for PHY-Layer Security in AI-enabled Cognitive Radio IoT ». Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1048543.
Texte intégralSIGNORI, ROBERTA. « POLIZIA PENITENZIARIA E SORVEGLIANZA DINAMICA IN CARCERE Le risposte ai cambiamenti organizzativi e l’impatto sul benessere del personale ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/158284.
Texte intégralThe Italian prison system is affected by deep organisational changes which affect the work of prison officers. The implementation of the so called “dynamic security” within detention wings is likely to redefine the interaction patterns between the staff and offenders. The “dynamic security” is regarded as an innovative surveillance procedure which relies on the observation and the knowledge of the offenders, rather than on their physical control. According to policy makers, the “dynamic security” is not just an innovative way of ensuring security, but it should also represent a “new way of being” of prison officers (de Pascalis 2013). The implementation of this organisational change raises questions regarding its influence on the daily life of offenders and prison guards and their interaction within a changing environment. This research focuses on the influence of the implementation of the “dynamic security” on prison officers role identity. It aims to shed light on the identity related dimension of the prison work within a context that I defined as “liminal” by virtue of the coexistence of two antithetical institutional objectives, that is to say, rehabilitation and reclusion. Indeed, responses to organizational changes cannot be understood and interpreted without taking into consideration the dynamics and processes of identification in the role of prison officer. This research will highlight the conditions which can facilitate the transition to new work practices and foster prison officer wellbeing, through the analysis of the processes of identification within the changing environment of prison.
Livres sur le sujet "AI security"
Huang, Ken, Yang Wang, Ben Goertzel, Yale Li, Sean Wright et Jyoti Ponnapalli, dir. Generative AI Security. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7.
Texte intégralThakkar, Hiren Kumar, Mayank Swarnkar et Robin Singh Bhadoria, dir. Predictive Data Security using AI. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6290-5.
Texte intégralWhitlock, Chris, et Frank Strickland. Winning the National Security AI Competition. Berkeley, CA : Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-8814-6.
Texte intégralSehgal, Naresh Kumar, Manoj Saxena et Dhaval N. Shah. AI on the Edge with Security. Cham : Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-78272-5.
Texte intégralJaswal, Gaurav, Vivek Kanhangad et Raghavendra Ramachandra, dir. AI and Deep Learning in Biometric Security. First edition. | Boca Raton, FL : CRC Press, 2021. | : CRC Press, 2021. http://dx.doi.org/10.1201/9781003003489.
Texte intégralHewage, Chaminda, Liqaa Nawaf et Nishtha Kesswani, dir. AI Applications in Cyber Security and Communication Networks. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3973-8.
Texte intégralFilì, Valeria. Il reddito imponibile ai fini contributivi. Torino : G. Giappichelli, 2010.
Trouver le texte intégralKulkarni, Anand J., Patrick Siarry, Apoorva S. Shastri et Mangal Singh. AI-Based Metaheuristics for Information Security and Digital Media. Boca Raton : Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003107767.
Texte intégralKarimipour, Hadis, et Farnaz Derakhshan, dir. AI-Enabled Threat Detection and Security Analysis for Industrial IoT. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76613-9.
Texte intégralRaj, Balwinder, Brij B. Gupta, Shingo Yamaguchi et Sandeep Singh Gill. AI for Big Data-Based Engineering Applications from Security Perspectives. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003230113.
Texte intégralChapitres de livres sur le sujet "AI security"
Cagle, Anton, et Ahmed Ceifelnasr Ahmed. « Security ». Dans Architecting Enterprise AI Applications, 193–212. Berkeley, CA : Apress, 2024. https://doi.org/10.1007/979-8-8688-0902-6_10.
Texte intégralHuang, Ken, Aditi Joshi, Sandy Dun et Nick Hamilton. « AI Regulations ». Dans Generative AI Security, 61–98. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_3.
Texte intégralHuang, Ken, Ben Goertzel, Daniel Wu et Anita Xie. « GenAI Model Security ». Dans Generative AI Security, 163–98. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_6.
Texte intégralHuang, Ken, Jerry Huang et Daniele Catteddu. « GenAI Data Security ». Dans Generative AI Security, 133–62. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_5.
Texte intégralHuang, Ken, Grace Huang, Adam Dawson et Daniel Wu. « GenAI Application Level Security ». Dans Generative AI Security, 199–237. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_7.
Texte intégralHuang, Ken, Fan Zhang, Yale Li, Sean Wright, Vasan Kidambi et Vishwas Manral. « Security and Privacy Concerns in ChatGPT ». Dans Beyond AI, 297–328. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45282-6_11.
Texte intégralFrenkel, Edward. « AI Safety ». Dans Artificial Intelligence Safety and Security, 199–205. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. : Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781351251389-13.
Texte intégralHuang, Ken, Yang Wang et Xiaochen Zhang. « Foundations of Generative AI ». Dans Generative AI Security, 3–30. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_1.
Texte intégralHuang, Ken, Grace Huang, Yuyan Duan et Ju Hyun. « Utilizing Prompt Engineering to Operationalize Cybersecurity ». Dans Generative AI Security, 271–303. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_9.
Texte intégralHuang, Ken, John Yeoh, Sean Wright et Henry Wang. « Build Your Security Program for GenAI ». Dans Generative AI Security, 99–132. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54252-7_4.
Texte intégralActes de conférences sur le sujet "AI security"
Ünal, Hasan Tolga, Arif Furkan Mendi, Özgür Umut Vurgun, Ömer Özkan et Mehmet Akif Nacar. « AI – Supported Collective Security System ». Dans 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/idap64064.2024.10711160.
Texte intégralvan Oers, Alexander M., et Jorik T. Venema. « Anti-AI camouflage ». Dans Artificial Intelligence for Security and Defence Applications II, sous la direction de Henri Bouma, Yitzhak Yitzhaky, Radhakrishna Prabhu et Hugo J. Kuijf, 32. SPIE, 2024. http://dx.doi.org/10.1117/12.3031144.
Texte intégralDiyora, Vishal, et Nilesh Savani. « Blockchain or AI : Web Applications Security Mitigations ». Dans 2024 First International Conference on Pioneering Developments in Computer Science & ; Digital Technologies (IC2SDT), 418–23. IEEE, 2024. http://dx.doi.org/10.1109/ic2sdt62152.2024.10696861.
Texte intégralAmbati, Sri Haritha, Norah Ridley, Enrico Branca et Natalia Stakhanova. « Navigating (in)Security of AI-Generated Code ». Dans 2024 IEEE International Conference on Cyber Security and Resilience (CSR), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/csr61664.2024.10679468.
Texte intégralBertino, Elisa, Murat Kantarcioglu, Cuneyt Gurcan Akcora, Sagar Samtani, Sudip Mittal et Maanak Gupta. « AI for Security and Security for AI ». Dans CODASPY '21 : Eleventh ACM Conference on Data and Application Security and Privacy. New York, NY, USA : ACM, 2021. http://dx.doi.org/10.1145/3422337.3450357.
Texte intégralSong, Dawn. « AI and Security ». Dans ASIA CCS '20 : The 15th ACM Asia Conference on Computer and Communications Security. New York, NY, USA : ACM, 2020. http://dx.doi.org/10.1145/3320269.3384771.
Texte intégralSasaki, Ryoichi. « AI and Security - What Changes with Generative AI ». Dans 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). IEEE, 2023. http://dx.doi.org/10.1109/qrs-c60940.2023.00043.
Texte intégralWashizaki, Hironori, et Nobukazu Yoshioka. « AI Security Continuum : Concept and Challenges ». Dans CAIN 2024 : IEEE/ACM 3rd International Conference on AI Engineering - Software Engineering for AI. New York, NY, USA : ACM, 2024. http://dx.doi.org/10.1145/3644815.3644983.
Texte intégralJacobs, Arthur S., Roman Beltiukov, Walter Willinger, Ronaldo A. Ferreira, Arpit Gupta et Lisandro Z. Granville. « AI/ML for Network Security ». Dans CCS '22 : 2022 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3548606.3560609.
Texte intégralDeldari, Shohreh, Mohammad Goudarzi, Aditya Joshi, Arash Shaghaghi, Simon Finn, Flora D. Salim et Sanjay Jha. « AuditNet : Conversational AI Security Assistant ». Dans MobileHCI '24 : 26th International Conference on Mobile Human-Computer Interaction, 1–4. New York, NY, USA : ACM, 2024. http://dx.doi.org/10.1145/3640471.3680444.
Texte intégralRapports d'organisations sur le sujet "AI security"
Lewis, Daniel, et Josh Oxby. Energy security and AI. Parliamentary Office of Science and Technology, décembre 2024. https://doi.org/10.58248/pn735.
Texte intégralChristie, Lorna. AI in policing and security. Parliamentary Office of Science and Technology, avril 2021. http://dx.doi.org/10.58248/hs27.
Texte intégralGehlhaus, Diana. Staying Ahead : Strengthening Tomorrow's U.S. AI and AI-Enabled Workforce. Center for Security and Emerging Technology, novembre 2021. http://dx.doi.org/10.51593/20210075.
Texte intégralBennet, Karen, Gopi Krishnan Rajbahadur, Arthit Suriyawongkul et Kate Stewart. Implementing AI Bill of Materials (AI BOM) with SPDX 3.0 : A Comprehensive Guide to Creating AI and Dataset Bill of Materials. The Linux Foundation, octobre 2024. https://doi.org/10.70828/rned4427.
Texte intégralKim, Kyungmee, et Boulanin Vincent. Artificial Intelligence for Climate Security : Possibilities and Challenges. Stockholm International Peace Research Institute, décembre 2023. http://dx.doi.org/10.55163/qdse8934.
Texte intégralMurdick, Dewey, Daniel Chou, Ryan Fedasiuk et Emily Weinstein. The Public AI Research Portfolio of China’s Security Forces. Center for Security and Emerging Technology, mars 2021. http://dx.doi.org/10.51593/20200057.
Texte intégralMurdick, Dewey, James Dunham et Jennifer Melot. AI Definitions Affect Policymaking. Center for Security and Emerging Technology, juin 2020. http://dx.doi.org/10.51593/20200004.
Texte intégralHoffman, Wyatt. "Making AI Work for Cyber Defense : The Accuracy-Robustness Tradeoff ". Center for Security and Emerging Technology, décembre 2021. http://dx.doi.org/10.51593/2021ca007.
Texte intégralWeinstein, Emily, et Ngor Luong. U.S. Outbound Investment into Chinese AI Companies. Center for Security and Emerging Technology, février 2023. http://dx.doi.org/10.51593/20210067.
Texte intégralMutis, Santiago. Privately Held AI Companies by Sector. Center for Security and Emerging Technology, octobre 2020. http://dx.doi.org/10.51593/20200019.
Texte intégral