Littérature scientifique sur le sujet « AI Generated Text Detection »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « AI Generated Text Detection ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "AI Generated Text Detection"
Bhattacharjee, Amrita, et Huan Liu. « Fighting Fire with Fire : Can ChatGPT Detect AI-generated Text ? » ACM SIGKDD Explorations Newsletter 25, no 2 (26 mars 2024) : 14–21. http://dx.doi.org/10.1145/3655103.3655106.
Texte intégralWang, Yu. « Survey for Detecting AI-generated Content ». Advances in Engineering Technology Research 11, no 1 (18 juillet 2024) : 643. http://dx.doi.org/10.56028/aetr.11.1.643.2024.
Texte intégralA, Nykonenko. « How Text Transformations Affect AI Detection ». Artificial Intelligence 29, AI.2024.29(4) (30 décembre 2024) : 233–41. https://doi.org/10.15407/jai2024.04.233.
Texte intégralSingh, Dr Viomesh, Bhavesh Agone, Aryan More, Aryan Mengawade, Atharva Deshmukh et Atharva Badgujar. « SAVANA- A Robust Framework for Deepfake Video Detection and Hybrid Double Paraphrasing with Probabilistic Analysis Approach for AI Text Detection ». International Journal for Research in Applied Science and Engineering Technology 12, no 11 (30 novembre 2024) : 2074–83. http://dx.doi.org/10.22214/ijraset.2024.65526.
Texte intégralVismay Vora, Et al. « A Multimodal Approach for Detecting AI Generated Content using BERT and CNN ». International Journal on Recent and Innovation Trends in Computing and Communication 11, no 9 (30 octobre 2023) : 691–701. http://dx.doi.org/10.17762/ijritcc.v11i9.8861.
Texte intégralSubramaniam, Raghav. « Identifying Text Classification Failures in Multilingual AI-Generated Content ». International Journal of Artificial Intelligence & ; Applications 14, no 5 (28 septembre 2023) : 57–63. http://dx.doi.org/10.5121/ijaia.2023.14505.
Texte intégralSushma D S, Pooja C N, Varsha H S, Yasir Hussain et P Yashash. « Detection and Classification of ChatGPT Generated Contents Using Deep Transformer Models ». International Research Journal on Advanced Engineering Hub (IRJAEH) 2, no 05 (23 mai 2024) : 1404–7. http://dx.doi.org/10.47392/irjaeh.2024.0193.
Texte intégralAlshammari, Hamed, et Khaled Elleithy. « Toward Robust Arabic AI-Generated Text Detection : Tackling Diacritics Challenges ». Information 15, no 7 (19 juillet 2024) : 419. http://dx.doi.org/10.3390/info15070419.
Texte intégralJeremie Busio Legaspi, Roan Joyce Ohoy Licuben, Emmanuel Alegado Legaspi et Joven Aguinaldo Tolentino. « Comparing ai detectors : evaluating performance and efficiency ». International Journal of Science and Research Archive 12, no 2 (30 juillet 2024) : 833–38. http://dx.doi.org/10.30574/ijsra.2024.12.2.1276.
Texte intégralKim, Min-Gyu, et Heather Desaire. « Detecting the Use of ChatGPT in University Newspapers by Analyzing Stylistic Differences with Machine Learning ». Information 15, no 6 (25 mai 2024) : 307. http://dx.doi.org/10.3390/info15060307.
Texte intégralThèses sur le sujet "AI Generated Text Detection"
Pilana, Liyanage Vijini. « Detection of automatically generated academic Content ». Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131014.
Texte intégralIn this thesis, we have focused our interest on identifying technologies /methodologies in detecting artificially generated academic content. The principal contributions of this thesis are threefold. First, we built several corpora that are composed of machine generated academic text. In this task we utilized several latest NLG models for the generation task. These corpora contain contents that are fully generated as well as contents that are composed in a hybrid manner (with human intervention). Then, we employed several statistical as well as deep learning models for the detection of generated contents from original (human written) content. In this scenario, we considered detection as a binary classification task. Thus several SOTA classification models were employed. The models were improved or modified using ensembling techniques to gain higher accuracies in detection. Moreover, we made use of several latest detection tools to identify their capability in distinguishing machine generated text. Finally, the generated corpora were tested against knowledge bases to find any mismatches that could help to improve the detection task. The results of this thesis underline the importance of mimicking human behavior in leveraging the generation models as well of using realistic and challenging corpora in future research aimed at detecting artificially generated text. Finally, we would like to highlight the fact that no matter how advanced the technology is, it is always crucial to concentrate on the ethical aspect of making use of such technology
Kurasinski, Lukas. « Machine Learning explainability in text classification for Fake News detection ». Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20058.
Texte intégralNguyen, Minh Tien. « Détection de textes générés automatiquement ». Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM025/document.
Texte intégralAutomatically generated text has been used in numerous occasions with distinct intentions. It can simply go from generated comments in an online discussion to a much more mischievous task, such as manipulating bibliography information. So, this thesis first introduces different methods of generating free texts that resemble a certain topic and how those texts can be used. Therefore, we try to tackle with multiple research questions. The first question is how and what is the best method to detect a fully generated document.Then, we take it one step further to address the possibility of detecting a couple of sentences or a small paragraph of automatically generated text by proposing a new method to calculate sentences similarity using their grammatical structure. The last question is how to detect an automatically generated document without any samples, this is used to address the case of a new generator or a generator that it is impossible to collect samples from.This thesis also deals with the industrial aspect of development. A simple overview of a publishing workflow from a high-profile publisher is presented. From there, an analysis is carried out to be able to best incorporate our method of detection into the production workflow.In conclusion, this thesis has shed light on multiple important research questions about the possibility of detecting automatically generated texts in different setting. Besides the researching aspect, important engineering work in a real life industrial environment is also carried out to demonstrate that it is important to have real application along with hypothetical research
Nahnsen, Thade, Ozlem Uzuner et Boris Katz. « Lexical Chains and Sliding Locality Windows in Content-based Text Similarity Detection ». 2005. http://hdl.handle.net/1721.1/30546.
Texte intégralLivres sur le sujet "AI Generated Text Detection"
Schuman, Corey. Specimens of AI Generated Text : Aphorism Edition. Independently Published, 2020.
Trouver le texte intégralChapitres de livres sur le sujet "AI Generated Text Detection"
Zhang, Yuehan, Yongqiang Ma, Jiawei Liu, Xiaozhong Liu, Xiaofeng Wang et Wei Lu. « Detection Vs. Anti-detection : Is Text Generated by AI Detectable ? » Dans Wisdom, Well-Being, Win-Win, 209–22. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57850-2_16.
Texte intégralNajee-Ullah, Ahmad, Luis Landeros, Yaroslav Balytskyi et Sang-Yoon Chang. « Towards Detection of AI-Generated Texts and Misinformation ». Dans Socio-Technical Aspects in Security, 194–205. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10183-0_10.
Texte intégralCarré, Marion. « Post-Truth ». Dans Edition Museum, 187–98. Bielefeld, Germany : transcript Verlag, 2023. http://dx.doi.org/10.14361/9783839467107-017.
Texte intégral(Mary) Tai, Hsueh-Yung. « Applications of Big Data and Artificial Intelligence ». Dans Digital Health Care in Taiwan, 207–17. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05160-9_11.
Texte intégralZhang, Huidi, Junming Gong et Wei Wu. « Artificial Intelligence for Text Generation : An Intellectual Property Perspective ». Dans AI-generated Content, 266–79. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7587-7_23.
Texte intégralBokolo, Biodoumoye George, Praise Onyehanere, Ebikela Ogegbene-Ise, Itunu Olufemi et Josiah Nii Armah Tettey. « Leveraging Machine Learning for Crime Intent Detection in Social Media Posts ». Dans AI-generated Content, 224–36. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7587-7_19.
Texte intégralGragnaniello, Diego, Francesco Marra et Luisa Verdoliva. « Detection of AI-Generated Synthetic Faces ». Dans Handbook of Digital Face Manipulation and Detection, 191–212. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_9.
Texte intégralCozzolino, Davide, Giovanni Poggi, Matthias Nießner et Luisa Verdoliva. « Zero-Shot Detection of AI-Generated Images ». Dans Lecture Notes in Computer Science, 54–72. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72649-1_4.
Texte intégralPham, Van Khien, et GueeSang Lee. « Robust Text Detection in Natural Scene Images ». Dans AI 2016 : Advances in Artificial Intelligence, 720–25. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50127-7_66.
Texte intégralLiu, Chien-Liang, et Hung-Yu Kao. « CopyCAT : Masking Strategy Conscious Augmented Text for Machine Generated Text Detection ». Dans Advances in Knowledge Discovery and Data Mining, 367–79. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33374-3_29.
Texte intégralActes de conférences sur le sujet "AI Generated Text Detection"
Chandana, Induri, Oruganti Mariya Reshma, Nerella Geetha Sree, Bommu Jagadeesh Reddy et Syed Shareefunnisa. « Detecting AI Generated Text ». Dans 2024 2nd World Conference on Communication & ; Computing (WCONF), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/wconf61366.2024.10692028.
Texte intégralGupta, Shreya, et Deepa Gupta. « Detection and Classification of AI-Generated Text ». Dans 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10724991.
Texte intégralJavaji, Prashanth, Pulaparthi Satya Sreeya et Sudha Rajesh. « Detection of AI Generated Text With BERT Model ». Dans 2024 2nd World Conference on Communication & ; Computing (WCONF), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/wconf61366.2024.10692072.
Texte intégralKalra, Mehar Prateek, Ansh Mathur et C. Patvardhan. « Detection of AI-generated Text : An Experimental Study ». Dans 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC), 552–57. IEEE, 2024. http://dx.doi.org/10.1109/aic61668.2024.10731116.
Texte intégralKuznetsov, Kristian, Eduard Tulchinskii, Laida Kushnareva, German Magai, Serguei Barannikov, Sergey Nikolenko et Irina Piontkovskaya. « Robust AI-Generated Text Detection by Restricted Embeddings ». Dans Findings of the Association for Computational Linguistics : EMNLP 2024, 17036–55. Stroudsburg, PA, USA : Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.992.
Texte intégralGakpetor, Joshua Mawudem, Martin Doe, Michael Yeboah-Sarpong Damoah, Dominic Dalyngton Damoah, John Kingsley Arthur et Michael Tetteh Asare. « AI-Generated and Human-Written Text Detection Using DistilBERT ». Dans 2024 IEEE SmartBlock4Africa, 1–7. IEEE, 2024. https://doi.org/10.1109/smartblock4africa61928.2024.10779494.
Texte intégralVacariu, Andrei-Nicolae, Marian Bucos, Marius Otesteanu et Bogdan Dragulescu. « Automated Detection of AI-Generated Text Using LLM Embedding-Driven ML Models ». Dans 2024 International Symposium on Electronics and Telecommunications (ISETC), 1–4. IEEE, 2024. https://doi.org/10.1109/isetc63109.2024.10797258.
Texte intégralAggarwal, Kush, Sahib Singh, Parul, Vipin Pal et Satyendra Singh Yadav. « A Framework for Enhancing Accuracy in AI Generated Text Detection Using Ensemble Modelling ». Dans 2024 IEEE Region 10 Symposium (TENSYMP), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/tensymp61132.2024.10752173.
Texte intégralKavathekar, Ishan, Anku Rani, Ashmit Chamoli, Ponnurangam Kumaraguru, Amit P. Sheth et Amitava Das. « Counter Turing Test (CT2) : Investigating AI-Generated Text Detection for Hindi - Ranking LLMs based on Hindi AI Detectability Index (ADI_hi) ». Dans Findings of the Association for Computational Linguistics : EMNLP 2024, 4902–26. Stroudsburg, PA, USA : Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.282.
Texte intégralHuang, Guanhua, Yuchen Zhang, Zhe Li, Yongjian You, Mingze Wang et Zhouwang Yang. « Are AI-Generated Text Detectors Robust to Adversarial Perturbations ? » Dans Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1 : Long Papers), 6005–24. Stroudsburg, PA, USA : Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.acl-long.327.
Texte intégral