Articles de revues sur le sujet « Aggregation induced/enhanced emission »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Aggregation induced/enhanced emission.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Aggregation induced/enhanced emission ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Chandrasekharan, Swathi Vanaja, Nithiyanandan Krishnan, Siriki Atchimnaidu, Gowtham Raj, Anusree Krishna P. K., Soumya Sagar, Suresh Das et Reji Varghese. « Blue-emissive two-component supergelator with aggregation-induced enhanced emission ». RSC Advances 11, no 32 (2021) : 19856–63. http://dx.doi.org/10.1039/d1ra03751j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wu, Bingzhao, Zhewen Guo, Guangfeng Li, Jun Zhao, Yuhang Liu, Jinbing Wang, Huigang Wang et Xuzhou Yan. « Synergistic combination of ACQ and AIE moieties to enhance the emission of hexagonal metallacycles ». Chemical Communications 57, no 84 (2021) : 11056–59. http://dx.doi.org/10.1039/d1cc03787k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sheng, Xiaohai, et Yan Qian. « Photoswitchable Composite Organic Nanoparticles with Aggregation-Induced Enhanced Emission ». Journal of Nanoscience and Nanotechnology 10, no 12 (1 décembre 2010) : 8307–11. http://dx.doi.org/10.1166/jnn.2010.2993.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Malakar, Ashim, Manishekhar Kumar, Anki Reddy, Himadree T. Biswal, Biman B. Mandal et G. Krishnamoorthy. « Aggregation induced enhanced emission of 2-(2′-hydroxyphenyl)benzimidazole ». Photochemical & ; Photobiological Sciences 15, no 7 (2016) : 937–48. http://dx.doi.org/10.1039/c6pp00122j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Iasilli, Giuseppe, Marco Scatto et Andrea Pucci. « Vapochromic polyketone films based on aggregation‐induced enhanced emission ». Polymers for Advanced Technologies 30, no 5 (mai 2018) : 1160–64. http://dx.doi.org/10.1002/pat.4317.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Xu, Defang, Ying Wang, Li Li, Hongke Zhou et Xingliang Liu. « Aggregation-induced enhanced emission-type cruciform luminophore constructed by carbazole exhibiting mechanical force-induced luminescent enhancement and chromism ». RSC Advances 10, no 20 (2020) : 12025–34. http://dx.doi.org/10.1039/d0ra00283f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhou, Jiahe, Fen Qi, Yuncong Chen, Shuren Zhang, Xiaoxue Zheng, Weijiang He et Zijian Guo. « Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy : From Organelle Targeting to Tumor Targeting ». Biosensors 12, no 11 (16 novembre 2022) : 1027. http://dx.doi.org/10.3390/bios12111027.

Texte intégral
Résumé :
Photodynamic therapy (PDT) has attracted much attention in the field of anticancer treatment. However, PDT has to face challenges, such as aggregation caused by quenching of reactive oxygen species (ROS), and short 1O2 lifetime, which lead to unsatisfactory therapeutic effect. Aggregation-induced emission luminogen (AIEgens)-based photosensitizers (PSs) showed enhanced ROS generation upon aggregation, which showed great potential for hypoxic tumor treatment with enhanced PDT effect. In this review, we summarized the design strategies and applications of AIEgen-based PSs with improved PDT efficacy since 2019. Firstly, we introduce the research background and some basic knowledge in the related field. Secondly, the recent approaches of AIEgen-based PSs for enhanced PDT are summarized in two categories: (1) organelle-targeting PSs that could cause direct damage to organelles to enhance PDT effects, and (2) PSs with tumor-targeting abilities to selectively suppress tumor growth and reduce side effects. Finally, current challenges and future opportunities are discussed. We hope this review can offer new insights and inspirations for the development of AIEgen-based PSs for better PDT effect.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tang, Baolei, Huapeng Liu, Feng Li, Yue Wang et Hongyu Zhang. « Single-benzene solid emitters with lasing properties based on aggregation-induced emissions ». Chemical Communications 52, no 39 (2016) : 6577–80. http://dx.doi.org/10.1039/c6cc02616h.

Texte intégral
Résumé :
Highly efficient single-benzene solid emitters exhibiting aggregation-induced emission (AIE), crystallization-enhanced emission (CEE), as well as amplified spontaneous emission (ASE) have been obtained based on structurally simple ESIPT-active organic molecules.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sun, Guang-Xu, Ming-Gang Ju, Hang Zang, Yi Zhao et WanZhen Liang. « Mechanisms of large Stokes shift and aggregation-enhanced emission of osmapentalyne cations in solution : combined MD simulations and QM/MM calculations ». Physical Chemistry Chemical Physics 17, no 37 (2015) : 24438–45. http://dx.doi.org/10.1039/c5cp03800f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Khan, Faizal, Anupama Ekbote et Rajneesh Misra. « Reversible mechanochromism and aggregation induced enhanced emission in phenothiazine substituted tetraphenylethylene ». New Journal of Chemistry 43, no 41 (2019) : 16156–63. http://dx.doi.org/10.1039/c9nj03290h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Ravindran, Ezhakudiyan, Soundaram Jeevarathinam Ananthakrishnan, Elumalai Varathan, Venkatesan Subramanian et Narayanasastri Somanathan. « White light emitting single polymer from aggregation enhanced emission : a strategy through supramolecular assembly ». Journal of Materials Chemistry C 3, no 17 (2015) : 4359–71. http://dx.doi.org/10.1039/c5tc00289c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Li, Guojuan, Chunying Fan, Guo Cheng, Wanhua Wu et Cheng Yang. « Synthesis, enantioseparation and photophysical properties of planar-chiral pillar[5]arene derivatives bearing fluorophore fragments ». Beilstein Journal of Organic Chemistry 15 (18 juillet 2019) : 1601–11. http://dx.doi.org/10.3762/bjoc.15.164.

Texte intégral
Résumé :
Planar chiral pillar[5]arene derivatives (P5A-DPA and P5A-Py) bearing bulky fluorophores were obtained in high yield by click reaction. The photophysical properties of both compounds were investigated in detail. P5A-DPA with two 9,10-diphenylanthracene (DPA) pigments grafted on the pillar[5]arene showed a high fluorescence quantum yield of 89.5%. This is comparable to the monomer DPA-6, while P5A-Py with two perylene (Py) pigments grafted on the pillar[5]arene showed a significantly reduced quantum yield of 46.4% vs 78.2% for the monomer Py-6. The oxygen-through-annulus rotation of the phenolic units was inhibited for both compounds due to the bulky chromophore introduced, and the resolution of the enantiomers was achieved due to the bulky size of the fluorophores. The absolute configuration of the enantiomers was determined by circular dichroism (CD) spectra. The solvent-induced aggregation behavior was investigated with the enantiopure P5A-DPA and P5A-Py. It was found that the CD signals were enhanced by aggregation. P5A-DPA showed aggregation-induced emission enhancement, while P5A-Py showed aggregation-induced emission quenching, accompanied by excimer emission when aggregating in water and THF mixed solution.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Miao, Xinrui, Zhengkai Cai, Jinxing Li, Liqian Liu, Juntian Wu, Bang Li, Lei Ying, Fabien Silly, Wenli Deng et Yong Cao. « Elucidating Halogen‐Assisted Self‐Assembly Enhanced Mechanochromic Aggregation‐Induced Emission ». ChemPhotoChem 5, no 7 (28 avril 2021) : 626–31. http://dx.doi.org/10.1002/cptc.202100041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kumari, Beena, Surya Pratap Singh, Ranga Santosh, Arnab Dutta, Sairam S. Mallajosyula, Subhas Ghosal et Sriram Kanvah. « Branching effect on triphenylamine-CF3 cyanostilbenes : enhanced emission and aggregation in water ». New Journal of Chemistry 43, no 10 (2019) : 4106–15. http://dx.doi.org/10.1039/c8nj05907a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ota, Wataru, Ken Takahashi, Kenji Higashiguchi, Kenji Matsuda et Tohru Sato. « Origin of aggregation-induced enhanced emission : role of pseudo-degenerate electronic states of excimers formed in aggregation phases ». Journal of Materials Chemistry C 8, no 24 (2020) : 8036–46. http://dx.doi.org/10.1039/c9tc07067b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Liang, Zuo-Qin, Xiao-Mei Wang, Guo-Liang Dai, Chang-Qing Ye, Yu-Yang Zhou et Xu-Tang Tao. « The solvatochromism and aggregation-induced enhanced emission based on triphenylamine-propenone ». New Journal of Chemistry 39, no 11 (2015) : 8874–80. http://dx.doi.org/10.1039/c5nj01072a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Lianke, Zheng Zheng, Zhipeng Yu, Jun Zheng, Min Fang, Jieying Wu, Yupeng Tian et Hongping Zhou. « Schiff base particles with aggregation-induced enhanced emission : random aggregation preventing π–π stacking ». Journal of Materials Chemistry C 1, no 42 (2013) : 6952. http://dx.doi.org/10.1039/c3tc31626b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Jiang, Hong-Xin, Meng-Yao Zhao, Chen-Di Niu et De-Ming Kong. « Real-time monitoring of rolling circle amplification using aggregation-induced emission : applications in biological detection ». Chemical Communications 51, no 92 (2015) : 16518–21. http://dx.doi.org/10.1039/c5cc07340e.

Texte intégral
Résumé :
Real-time monitoring of rolling circle amplification (RCA) was achieved by the super-aggregation of a tetraphenylethene dye QAPTE along single-stranded DNA products and consequent enhanced aggregation-induced emission, it can work for all RCA reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Bin Chen, Bin Chen, Han Zhang, Wenwen Luo, Han Nie, Rongrong Hu, Anjun Qin, Zujin Zhao et Ben Zhong Tang. « Oxidation-enhanced emission : exploring novel AIEgens from thieno[3,2-b]thiophene S,S-dioxide ». Journal of Materials Chemistry C 5, no 4 (2017) : 960–68. http://dx.doi.org/10.1039/c6tc05116b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lu, Pei-Long, Kun Li, Lei Shi, Xin Liu, Mei-Lin Feng, Hui-Zi He, Hui Yang et Xiao-Qi Yu. « Donor and acceptor engineering for BINOL based AIEgens with enhanced fluorescence performance ». Materials Advances 1, no 1 (2020) : 61–70. http://dx.doi.org/10.1039/d0ma00022a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Xie, Nuo-Hua, Chong Li, Jun-Xia Liu, Wen-Liang Gong, Ben Zhong Tang, Guigen Li et Ming-Qiang Zhu. « The synthesis and aggregation-induced near-infrared emission of terrylenediimide–tetraphenylethene dyads ». Chemical Communications 52, no 34 (2016) : 5808–11. http://dx.doi.org/10.1039/c6cc01187j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Yu, Wei, Ying Wu, Jiachun Chen, Xiangyan Duan, Xiao-Fang Jiang, Xueqing Qiu et Yuan Li. « Sulfonated ethylenediamine–acetone–formaldehyde condensate : preparation, unconventional photoluminescence and aggregation enhanced emission ». RSC Advances 6, no 56 (2016) : 51257–63. http://dx.doi.org/10.1039/c6ra06227j.

Texte intégral
Résumé :
The water-soluble sulfonated ethylenediamine–acetone–formaldehyde (SEAF) with unconventional fluorescence and AEE effect was prepared. The emission mechanism was ascribed to the cluster-induced emission of carbonyl groups.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Yao, Maomao, Jinkun Huang, Zihao Deng, Wenying Jin, Yali Yuan, Jinfang Nie, Hua Wang, Fuyou Du et Yun Zhang. « Transforming glucose into fluorescent graphene quantum dots via microwave radiation for sensitive detection of Al3+ ions based on aggregation-induced enhanced emission ». Analyst 145, no 21 (2020) : 6981–86. http://dx.doi.org/10.1039/d0an01639j.

Texte intégral
Résumé :
This work initially describes the microwave-assisted synthesis of graphene quantum dots (GQDs) for fluorescence detection of Al3+ ions based on the analyte-mediated aggregation of GQDs leading to aggregation-induced enhanced emission (AIEE).
Styles APA, Harvard, Vancouver, ISO, etc.
24

Mu, Bin, Qian Li, Xiao Li, Shi Pan, Yang Zhou, Jianglin Fang et Dongzhong Chen. « Cyclic polymers with pendant triphenylene discogens : convenient synthesis and topological effect on thermotropic liquid crystal behavior and fluorescence enhancement ». Polymer Chemistry 7, no 39 (2016) : 6034–38. http://dx.doi.org/10.1039/c6py01135g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ji, Jinkai, Xiao Li, Tiantian Wu et Fude Feng. « Spiropyran in nanoassemblies as a photosensitizer for photoswitchable ROS generation in living cells ». Chemical Science 9, no 26 (2018) : 5816–21. http://dx.doi.org/10.1039/c8sc01148f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Liu, Renfei, Guanxing Zhu et Gang Zhang. « N-Substitution of acridone with electron-donating groups : crystal packing, intramolecular charge transfer and tuneable aggregation induced emission ». RSC Advances 10, no 12 (2020) : 7092–98. http://dx.doi.org/10.1039/c9ra10615d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Qu, Rui, Xu Zhen et Xiqun Jiang. « Emerging Designs of Aggregation-Induced Emission Agents for Enhanced Phototherapy Applications ». CCS Chemistry 4, no 2 (février 2022) : 401–19. http://dx.doi.org/10.31635/ccschem.021.202101302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Dong, Jinqiao, Yutong Pan, Kuiwei Yang, Yi Di Yuan, Vanessa Wee, Shidang Xu, Yuxiang Wang, Jianwen Jiang, Bin Liu et Dan Zhao. « Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages ». ACS Nano 16, no 2 (27 janvier 2022) : 2355–68. http://dx.doi.org/10.1021/acsnano.1c08605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kong, Lin, Ze Huang, Qi-Yu Chen, Hui-Chao Zhu, Hui Wang, Xian-Yun Xu et Jia-Xiang Yang. « Aggregation-induced enhanced emission of a carbazole derivative with asymmetric group ». Optical Materials 82 (août 2018) : 154–59. http://dx.doi.org/10.1016/j.optmat.2018.05.063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Pazini, Alessandra, Luis Maqueira, Fabiano da Silveira Santos, Arthur Rodrigues Jardim Barreto, Rafael dos Santos Carvalho, Felipe Miranda Valente, Davi Back et al. « Designing highly luminescent aryloxy-benzothiadiazole derivatives with aggregation-induced enhanced emission ». Dyes and Pigments 178 (juillet 2020) : 108377. http://dx.doi.org/10.1016/j.dyepig.2020.108377.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Xing, Ling-Bao, Xiao-Jun Wang, Jing-Li Zhang, Ziyan Zhou et Shuping Zhuo. « Tetraphenylethene-containing supramolecular hyperbranched polymers : aggregation-induced emission by supramolecular polymerization in aqueous solution ». Polymer Chemistry 7, no 3 (2016) : 515–18. http://dx.doi.org/10.1039/c5py01741f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Shao, Li, Jifu Sun, Bin Hua et Feihe Huang. « An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host–guest recognition : construction and application in explosive detection ». Chemical Communications 54, no 38 (2018) : 4866–69. http://dx.doi.org/10.1039/c8cc02077a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Dong, Yang, Zhaomin Yang, Zhongjie Ren et Shouke Yan. « Synthesis and the aggregation induced enhanced emission effect of pyrene based polysiloxanes ». Polymer Chemistry 6, no 45 (2015) : 7827–32. http://dx.doi.org/10.1039/c5py00992h.

Texte intégral
Résumé :
A pyrene based polysiloxane (PySQ) has been successfully synthesized, which shows aggregation induced enhanced emission (AIEE) and the AIEE effect endows PySQ with a longer photoluminescence lifetime as determined by transient photoluminescence decay measurements.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Murshid, Nimer, Ken-ichi Yuyama, San-Lien Wu, Kuan-Yi Wu, Hiroshi Masuhara, Chien-Lung Wang et Xiaosong Wang. « Highly-integrated, laser manipulable aqueous metal carbonyl vesicles (MCsomes) with aggregation-induced emission (AIE) and aggregation-enhanced IR absorption (AEIRA) ». Journal of Materials Chemistry C 4, no 23 (2016) : 5231–40. http://dx.doi.org/10.1039/c6tc01222a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Hariharan, P. S., M. Baby Mariyatra, E. M. Mothi, Antonia Neels, Georgina Rosair et Savarimuthu Philip Anthony. « Polymorphism and benzene solvent controlled stimuli responsive reversible fluorescence switching in triphenylphosphoniumfluorenylide crystals ». New Journal of Chemistry 41, no 11 (2017) : 4592–98. http://dx.doi.org/10.1039/c7nj01136a.

Texte intégral
Résumé :
Triphenylphosphoniumfluorenylide (TPPFY), a fluorescent fluorene attached molecule, showed polymorphism, benzene solvent induced aggregation enhanced emission (AEE) and external stimuli responsive on–off fluorescence switching.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Balamurugan, Gopal, Sivan Velmathi, Natesan Thirumalaivasan et Shu Pao Wu. « New phenazine based AIE probes for selective detection of aluminium(iii) ions in presence of other trivalent metal ions in living cells ». Analyst 142, no 24 (2017) : 4721–26. http://dx.doi.org/10.1039/c7an01478c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Feng, Zhihui, Dandan Li, Mingzhu Zhang, Tao Shao, Yu Shen, Xiaohe Tian, Qiong Zhang, Shengli Li, Jieying Wu et Yupeng Tian. « Enhanced three-photon activity triggered by the AIE behaviour of a novel terpyridine-based Zn(ii) complex bearing a thiophene bridge ». Chemical Science 10, no 30 (2019) : 7228–32. http://dx.doi.org/10.1039/c9sc01705d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Palakollu, Veerabhadraiah, et Sriram Kanvah. « Cholesterol-tethered AIEE fluorogens : formation of self-assembled nanostructures ». RSC Advances 5, no 42 (2015) : 33049–57. http://dx.doi.org/10.1039/c5ra04417k.

Texte intégral
Résumé :
Design and synthesis of cholesterol conjugated chromophores exhibiting intramolecular charge transfer (ICT) and Aggregation Induced Enhanced Emission (AIEE) and their self-assembling behavior is described.
Styles APA, Harvard, Vancouver, ISO, etc.
39

He, Jiangling, Shuang Li, Da Lyu, Dingfeng Zhang, Xiao Wu et Qing-Hua Xu. « Aggregation induced emission enhancement by plasmon coupling of noble metal nanoparticles ». Materials Chemistry Frontiers 3, no 11 (2019) : 2421–27. http://dx.doi.org/10.1039/c9qm00455f.

Texte intégral
Résumé :
Aggregation induced plasmon coupling enhanced fluorescence of a pre-quenched chromophore has been demonstrated by using Au and Au@Ag nanoparticles, which could be further utilized to develop highly sensitive chemical and biological sensing schemes.
Styles APA, Harvard, Vancouver, ISO, etc.
40

You, Jyun-Guo, et Wei-Lung Tseng. « Peptide-induced aggregation of glutathione-capped gold nanoclusters : A new strategy for designing aggregation-induced enhanced emission probes ». Analytica Chimica Acta 1078 (octobre 2019) : 101–11. http://dx.doi.org/10.1016/j.aca.2019.05.069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Chen, Jin-Fa, Guoyun Meng, Qian Zhu, Songhe Zhang et Pangkuan Chen. « Pillar[5]arenes : a new class of AIEgen macrocycles used for luminescence sensing of Fe3+ ions ». Journal of Materials Chemistry C 7, no 38 (2019) : 11747–51. http://dx.doi.org/10.1039/c9tc03831k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Liu, Xiaomei, et Gaolin Liang. « Dual aggregation-induced emission for enhanced fluorescence sensing of furin activity in vitro and in living cells ». Chemical Communications 53, no 6 (2017) : 1037–40. http://dx.doi.org/10.1039/c6cc09106g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Li, Yawen, Yihang Zhang, Xia Zuo et Yuze Lin. « Organic photovoltaic electron acceptors showing aggregation-induced emission for reduced nonradiative recombination ». Chemical Communications 57, no 42 (2021) : 5135–38. http://dx.doi.org/10.1039/d1cc01170g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Sun, Wenjing, Li Luo, Yushuo Feng, Yuting Cai, Yixi Zhuang, Rong‐Jun Xie, Xiaoyuan Chen et Hongmin Chen. « Aggregation‐Induced Emission Gold Clustoluminogens for Enhanced Low‐Dose X‐ray‐Induced Photodynamic Therapy ». Angewandte Chemie International Edition 59, no 25 (5 septembre 2019) : 9914–21. http://dx.doi.org/10.1002/anie.201908712.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Sun, Wenjing, Li Luo, Yushuo Feng, Yuting Cai, Yixi Zhuang, Rong‐Jun Xie, Xiaoyuan Chen et Hongmin Chen. « Aggregation‐Induced Emission Gold Clustoluminogens for Enhanced Low‐Dose X‐ray‐Induced Photodynamic Therapy ». Angewandte Chemie 132, no 25 (5 septembre 2019) : 10000–10007. http://dx.doi.org/10.1002/ange.201908712.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Pandey, Rakesh K., U. Chitgupi et V. Lakshminarayanan. « Porphyrin aggregates in the form of nanofibers and their unusual aggregation induced emission ». Journal of Porphyrins and Phthalocyanines 16, no 09 (septembre 2012) : 1055–58. http://dx.doi.org/10.1142/s1088424612500770.

Texte intégral
Résumé :
We present here the simple procedure for synthesizing elongated fibers like porphyrin aggregates. Usually whenever the aggregation in dye molecules takes place the emission always tends to quench. In this work we explore and discuss the unusual enhanced emission property of these aggregates. The nanofibers of porphyrin were characterized with the help of atomic force microscopy and UV-vis spectroscopy whereas photoluminescence spectroscopy was used to check their emission property.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Mukundam, Vanga, Kunchala Dhanunjayarao, Ramesh Mamidala et Krishnan Venkatasubbaiah. « Synthesis, characterization and aggregation induced enhanced emission properties of tetraaryl pyrazole decorated cyclophosphazenes ». Journal of Materials Chemistry C 4, no 16 (2016) : 3523–30. http://dx.doi.org/10.1039/c6tc00909c.

Texte intégral
Résumé :
We report the synthesis, characterization and aggregation induced enhanced emission (AIEE) properties of a series of tetraaryl pyrazole decorated cyclotriphosphazenes. The hexa-substituted cyclotriphosphazene was tested for its usefulness as a probe for the explosive picric acid.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Zheng, Tingting, Jia-Long Xu, Xiao-Jun Wang, Jian Zhang, Xiuling Jiao, Ting Wang et Dairong Chen. « A novel nanoscale organic–inorganic hybrid system with significantly enhanced AIE in aqueous media ». Chemical Communications 52, no 42 (2016) : 6922–25. http://dx.doi.org/10.1039/c6cc02857h.

Texte intégral
Résumé :
We report the design and fluorescence properties of a novel aggregation-induced emission (AIE) system obtained by grafting carboxyl group conjugated AIE molecules onto monodispersed colloidal GaOOH nanocubes.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Kassl, Christopher J., et F. Christopher Pigge. « Anion detection by aggregation-induced enhanced emission (AIEE) of urea-functionalized tetraphenylethylenes ». Tetrahedron Letters 55, no 34 (août 2014) : 4810–13. http://dx.doi.org/10.1016/j.tetlet.2014.06.115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zhang, Xiqi, Zhenguo Chi, Bingjia Xu, Chengjian Chen, Xie Zhou, Yi Zhang, Siwei Liu et Jiarui Xu. « End-group effects of piezofluorochromic aggregation-induced enhanced emission compounds containing distyrylanthracene ». Journal of Materials Chemistry 22, no 35 (2012) : 18505. http://dx.doi.org/10.1039/c2jm33140c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie