Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Aerodynamic of plasmas.

Thèses sur le sujet « Aerodynamic of plasmas »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 32 meilleures thèses pour votre recherche sur le sujet « Aerodynamic of plasmas ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.

1

Gonçalves, Duarte. « Aerodynamic study of atmospheric-pressure plasma jets ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP101.

Texte intégral
Résumé :
Les jets de plasma à pression atmosphérique (JPPAs) étendent le plasma au-delà des parois d'un réacteur. Ces sources de plasma produisent et délivrent des espèces réactives à des matériaux sensibles. En conséquence, les JPPAs ont de nombreuses applications en biologie, médecine, analyse chimique et traitement des matériaux. Les JPPAs sont produits par le passage répétitif d'ondes d'ionisation (OI), guidées en aval par l'écoulement. À leur tour, les OI perturbent l'écoulement à chaque passage. L'étude de l'aérodynamique des JPPAs offre un chemin pour comprendre le couplage plasma-écoulement. Dans ce travail, nous étudions un JPPA d'argon coaxial, avec du gaz de blindage de N₂ et O₂, à travers des expérimentations et de la modélisation. Les expériences montrent deux décharges produites par une impulsion de tension appliquée : une à la montée et une autre à la descente. Chaque décharge produit des métastables d'argon, dont la densité peut être modulée en variant la fraction d'O₂ dans le gaz de blindage. Les températures rotationnelles et vibrationnelles augmentent pendant les décharges, indiquant des transferts d'énergie des électrons aux espèces lourdes. Nous visualisons le jet par imagerie de Schlieren, y compris comment une seule décharge crée des perturbations d'écoulement. En parallèle, nous avons adapté le code SPARK-CFD, initialement écrit pour les plasmas de rentrée, pour simuler les JPPAs sur plusieurs impulsions. Les simulations non réactives montrent comment la géométrie du réacteur affecte la vitesse et la composition chimique dans les jets simples et coaxiaux. Les simulations de JPPA montrent un chauffage des électrons et une excitation et ionisation subséquentes des atomes et molécules. Ce transfert d'énergie provoque une augmentation rapide de la température/pression, modifiant le champ de vitesse du jet. Ces effets s'accumulent sur plusieurs impulsions, changeant les profils spatiaux et temporels du jet et des espèces réactives. Finalement, la version adaptée de SPARK-CFD sera publiée en open-source, fournissant un code pour des simulations des plasmas subsoniques et hypersoniques
Cold atmospheric pressure plasma jets (APPJs) extend plasma beyond the walls of a reactor. These versatile plasma sources produce and deliver reactive species to sensitive materials. Accordingly, APPJs have many applications in biology, medicine, chemical analysis, and material processing. APPJs are produced by the repetitive passage of ionization waves (IWs), which are guided downstream by the flow. In turn, IWs perturb the flow at each passage. Studying the aerodynamics of APPJs provides a path to understanding the plasma-flow coupling. In this work, we study a co-axial argon APPJ with varying N₂ and O₂ shielding gas mixtures through experimental approaches and computational modelling. Experiments show two discharges produced by a square pulse of applied voltage: one at the rising and another at the falling edge. Each discharge produces argon metastables, whose maximum density can be modulated by varying the fraction of O₂ in the shielding gas. Rotational and vibrational temperatures increase during the discharges, indicating fast energy transfers from electrons to heavy species. We visualize the jet through Schlieren imaging, including how a single discharge creates coherent flow perturbations. In parallel, we adapted the SPARK code, initially designed for reentry plasmas, to simulate APPJs pulse-by-pulse and across multiple pulses. Non-reactive simulations show how the reactor's geometry affects the velocity and chemical composition in single and co-axial jet flows. In agreement with experiments, plasma jet simulations show electron heating and subsequent excitation and ionization of atoms and molecules. This energy transfer to heavy species causes a fast temperature/pressure increase, altering the velocity field of the jet. These effects accumulate over multiple pulses, changing the jet and reactive species' spatial and temporal profiles. Finally, the adapted version of SPARK will be released as open-source, providing a code for temporally accurate simulations of plasmas, including flows in subsonic and hypersonic conditions
Os jatos de plasma à pressão atmosférica (JPPAs) estendem um plasma além das paredes do reator. Estes plasmas são versáteis, produzindo e transportando espécies reativas que podem ser aplicadas em materiais sensíveis. São assim usados por em várias indústrias como a biológica, médica, de análise química e de processamento de materiais. Os JPPAs são produzidos pela passagem repetitiva de ondas de ionização (OIs), que são guiadas a jusante pelo escoamento. sendo este também perturbado pelo próprio plasma. Estudar a aerodinâmica dos JPPAs fornece um caminho para entender o acoplamento plasma-escoamento. Nesta tese, estudámos um JPPA coaxial de árgon, blindado por uma mistura de N₂ e O₂, através de experiências e modelização numérica. Experimentalmente observam-se duas descargas elétricas durante cada pulso de tensão aplicada: uma na subida e outra na descida do pulso. Cada descarga produz metaestáveis de árgon, cuja densidade pode ser modulada variando a fração de O₂ no gás de blindagem. Temperaturas rotacionais e vibracionais aumentam durante as descargas, indicando uma transferência rápida de energia entre eletrões e espécies pesadas. Imagiologia de Schlieren permite-nos ver o escoamento, incluindo como uma única descarga cria perturbações coerentes no mesmo. Paralelamente, adaptamos o código SPARK, inicialmente escrito para plasmas de reentrada atmosférica, para simular APPJs ao longo de múltiplos pulsos. Simulações mostram como a geometria do reator afeta a velocidade e a composição química do escoamento em jatos simples e coaxiais. Com plasma, nota-se o aquecimento dos eletrões e subsequente excitação e ionização de átomos e moléculas. Esta transferência de energia para espécies pesadas causa um aumento de temperatura e pressão, alterando o campo de velocidade do jato. Estes efeitos acumulam-se ao longo de múltiplos pulsos, mudando o perfil espaciotemporal do jato e das espécies reativas. Por fim, a versão adaptada do SPARK-CFD será lançada em código aberto, fornecendo uma ferramenta para simulações temporalmente precisas de plasmas subsónicos e hipersónicos
Styles APA, Harvard, Vancouver, ISO, etc.
2

BIGANZOLI, ILARIA. « Characterization of atmospheric pressure plasmas for aerodynamic applications ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/53249.

Texte intégral
Résumé :
The use of plasmas in aerodynamics has become a recent topic of interest. In particular, over the last ten years, plasma actuation has received much attention as a promising active method for airflow control. Flow control consists of manipulating the properties of a generic moving fluid with the aim of achieving a desired change, but flow dynamics in proximity of a solid object is usually considered, being a consistent and significant issue in many engineering applications, such as engine, automobile or airplane design. Plasma control of airflows along surfaces has been the subject of several experimental studies whose aim was to reduce turbulence, to decrease drag, to enhance airfoil lift or to prevent flow detachment. The fast temporal response and the absence of moving parts are the most promising features from which plasma actuators could benefit. Different types of plasma sources are currently studied as good candidates for plasma actuation, but Dielectric Barrier Discharges (DBDs) are usually preferred, being characterized by the presence of an insulating barrier between the electrodes. This allows the generation of a non-thermal plasma at atmospheric pressure and prevents the discharge from collapsing into an arc. Surface Dielectric Barrier Discharges (SDBDs) are particularly suitable for these kinds of applications, since plasma is created by ionizing a thin portion of air nearby the surface of the dielectric barrier and this can effectively influence the local properties of the boundary layer associated to an external flow. This thesis deals with SDBDs in an asymmetric configuration where one electrode is glued into an insulating material and to other one is exposed to air, so that plasma is created in correspondence of just one side of the dielectric barrier. The buried electrode is connected to the ground, whereas a sinusoidal high-voltage is applied to the exposed one. It has been noticed that, when these discharges are operated in quiescent air, an airflow of several metres per second is observed above the dielectric sheet and near the plasma region. This is usually called ionic wind because the main mechanism responsible for its generation is believed to be momentum transfer from the ions drifting in the discharge electric field to the surrounding fluid, by particle-particle collisions. When the electric field imposed by the voltage difference between the electrodes is sufficiently high, plasma is created and electrical charges are transported through the gap and accumulated on the insulating surfaces. This charge accumulation generates an electric field that locally weakens the external one. When the total electric field falls below the threshold necessary for plasma ignition, the discharge extinguishes. If the voltage imposed to the fed electrode is increased, the discharge can be locally initiated again, and that is the reason why a sinusoidal high-voltage supply is adopted instead of a continuous one. Consequently, the presence of the insulating barrier usually leads to a regime where charge is mainly transported in sub-millimetre regions consisting of current filaments with temporal duration limited to a few tens of nanoseconds. These plasma microdischarges are concentrated into two phase intervals of the sinusoidal voltage supply, when the modulus of the applied voltage difference is high enough and is increasing in time. These two phases of plasma activity are often called Backward Stroke (BD) and Forward Stroke (FD), depending if the high-voltage signal is rising from its minimum to its maximum or decreasing from its maximum to its minimum. This thesis is motivated by the fact new studies focusing on plasma properties and dynamics are required in order to get better and better aerodynamic results, to understand which parameters mainly affect the actuator performances and to validate numerical models trying to forecast the aerodynamic effects induced by the discharge. This has brought to a scientific collaboration between the Centre of Excellence PlasmaPrometeo of University of Milano-Bicocca and the Aerodynamics and Wind Tunnel Department of the aerospace company Alenia Aermacchi. During these years I have studied the properties of these discharges by means of electrical and optical diagnostics (mainly Rogowski coils, capacitive probes, a photomultiplier tube and a thermal camera). With some of them a temporal resolution high enough for studying several characteristics of plasma microdischarges has been achieved. This is important because these strokes manifest as series of current and light pulses, lasting tens of nanoseconds and a few nanoseconds respectively. I have first of all carried out a detailed investigation of the properties of these events and of their evolution in space and time in the course of the FD and BD. It has been pointed out that there are several analogies between the BD and FD, but that not all plasma properties are identical for the two semi-cycles, because of the asymmetrical configuration adopted. These investigations let think that light and current signals give insights about different microdischarge properties. Light is presumably ascribable to electrons that excite nitrogen immediately after the passage of the ionizing wave that initiates the microdischarge. In contrast, the current signal is due to the movement of charges into the plasma channel and thus reflects the microdischarge temporal evolution, rather than its formation. In the following experiments I have thus focused mainly on the electrical properties of plasma microdicharges, with the aim of better understanding which plasma characteristics are responsible for the ionic wind generation and properties. Several SDBDs with different geometrical configurations and operating parameters have been considered. It has been found that both the discharge and ionic wind characteristics are mainly affected by the dielectric thickness, whereas other properties of the SDBD are less decisive. These studies are of practical interest because optimizations of SDBD characteristics are still needed for adopting these discharges as plasma actuators for active flow control. In particular, it has been found that at first the speed of the induced wind increases quite linearly with the voltage amplitude, but then this velocity and thus the aerodynamic effects induced by the discharge tend to saturate. This is particularly evident when thin panels are adopted as dielectric barriers. I thus focused on this topic and I found that an asymmetry in the total charge transported by plasma microdischarges during the backward and forward strokes is favourable for obtaining a ionic wind with a greater velocity, and that the velocity saturation at the highest voltages is associated to a change in discharge regime, which is visible first of all because a pattern of plasma filaments appears superimposed to the more homogeneous plasma. I have thus characterized how this regime transition affects the dynamics of the backward and forward strokes. Three groups of microdischarges have been identified, depending on their temporal duration, and results let think that they don't contribute equally to the electric wind generation. These studies pave the way to a better understanding of the discharge peculiarities and ionic wind formation, with the aim of understanding if an intrinsic limit exists in plasma actuator potentialities or if new optimization strategies are possible. Eventually, I proposed to implement the Background Oriented Schlieren (BOS) technique for the visualization and characterization of the airflow induced by the discharge. The potentialities of this technique have been evaluated in relation to the specifics of the available scientific equipment. The technique has then been proved to be able to visualize density changes induced by plasma. A spatial characterization of the air near the discharge was made in stationary wall jet conditions as well as in the transient period following the discharge ignition when a starting vortex is generated.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Arcese, Emanuele. « Numerical modeling of microwave plasma actuators for aerodynamic flow control ». Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0020/document.

Texte intégral
Résumé :
Au cours des dernières décennies, les plasmas créés par une décharge micro-ondes ont de plusen plus attiré l’attention de la communauté scientifique aérospatiale sur le sujet du contrôled’écoulements. En effet, il a été démontré expérimentalement que le dépôt d’énergie obtenu parle plasma peut modifier les propriétés aérodynamiques de l’écoulement autour d’un objet telleque la trainée de frottement. Or, la conception et l’optimisation de ces actionneurs plasma entant que technique de contrôle d’écoulements nécessitent une compréhension approfondie de laphysique sous-jacente que les seules expériences sont incapables de fournir.Dans ce contexte, nous nous intéressons à la modélisation numérique de l’interaction desondes électromagnétiques avec un plasma et le gaz afin de mieux comprendre la nature desdécharges micro-ondes et leur applicabilité. La modélisation de ces phénomènes présente desdifficultés importantes en raison du couplage multi-physique et donc de la multitude des échellesspatiales et temporelles qui apparaissent. Ce travail de thèse traite des questions de physiqueet de mathématiques appliquées soulevées par la modélisation numérique de ces plasmas.La première partie du travail se focalise sur les questions de validité du modèle physique duclaquage micro-onde fondé sur l’approximation de champ effectif local. En raison des gradientsde densité du plasma très élevés, la validité du concept de champ effectif local peut être misen doute. Pour cela, un modèle fluide du second ordre est développé en incluant une equationd’énergie électronique non-locale. Cette modélisation permet de décrire de façon plus précisele dépôt d’énergie par plasma induisant la formation d’ondes de choc dans le gaz. Une analysedimensionnelle du système d’équations fluide permet de caractériser la non-localité en espace dubilan d’énergie électronique en fonction du champ électrique réduit et de la fréquence de l’onderéduite. Une discussion est également menée sur d’autres approximations des coefficients detransport électronique. Dans une deuxième partie, la construction et l’analyse d’une méthode multi-échelles derésolution numérique du problème de propagation des ondes électromagnétiques dans le plasmasont réalisées. Il s’agit du couplage entre les équations de Maxwell dans le domaine temporel avecune équation de quantité de mouvement pour les électrons. L’approche s’appuie sur la méthodede décomposition de domaine de type Schwartz, basée sur une formulation variationnelle duschéma de Yee et utilisant deux niveaux de grilles Cartésiennes emboitées. Une grille locale,appelée patch, est utilisée pour calculer de manière itérative la solution dans la région du plasmaoù une meilleure précision est requise. La méthode proposée permet le raffinement local etdynamique du maillage spatial tout en conservant l’énergie du système. Une analyse théorique dela convergence de l’algorithme pour les résolutions temporelles explicite et implicite est égalementréalisée. Dans la dernière partie, des simulations numériques sur le claquage micro-ondes et la formation de structures filamentaires de plasma sont conduites. Les effets de différents types d’approximations sur le modèle physique du plasma sont analysés. Puis, ces expériences numériques démontre la précision et l’efficacité, en terme de temps de calcul, de la méthode multi-échelleproposée. Enfin, on étudie les effets de chauffage du gaz sur la formation et l’entretien de structures filamentaires dans l’air à pression atmosphérique. Pour cela, le modèle micro-onde-plasma développé est couplé avec les équations de Navier-Stokes instationnaires pour les écoulements compressibles. Les simulations montrent des caractéristiques intéressantes de la dynamique deces structures plasma pendant le processus de chauffage du gaz, qui sont en accord étroit avec les données expérimentales
In recent decades, microwave discharge plasmas have attracted increasing attention of aerospace scientific community to the subject of aerodynamic flow control because of their capability of sub- stantially modifying the properties of the flow around bodies by effective energy deposition. The design and optimization of these plasma actuators as flow control technique require a compre- hensive understanding of the complex physics involved that the sole experiments are incapable to provide.In this context, we have interest in the numerical modeling of the mutual interaction of elec- tromagnetic waves with plasma and gas in order to better understand the nature of microwave discharges and their applicability. A challenging problem arises when modeling such phenomena because of the coupling of different physics and therefore the multiplicity of spatial and tempo- ral scales involved. A solution is provided by this thesis work which addresses both physics and applied mathematics questions related to microwave plasma modeling.The first part of this doctorate deals with validity matters of the physical model of microwave breakdown based on the local effective field concept. Because of large plasma density gradients, the local effective field approximation is questionable and thus a second-order plasma fluid model is developed, where the latter approximation is replaced by the local mean energy approximation. This modeling approach enables to take into account the non-locality in space of the electron energy balance that provides a more accurate description of the energy deposition by microwave plasma leading to the shock waves formation into the gas. A dimensionless analysis of the plasma fluid system is performed in order to theoretically characterize the non-locality of the introduced electron energy equation as function of the reduced electric field and wave frequency. It also discusses other approximations related to the choice and method of calculation of electron transport coefficients.Concerning the mathematical aspects, the thesis work focuses on the design and the analysis of a multiscale method for numerically solving the problem of electromagnetic wave propagation in microwave plasma. The system of interest consists of time-dependent Maxwell’s equations coupled with a momentum transfer equation for electrons. The developed approach consists of a Schwartz type domain decomposition method based on a variational formulation of the standard Yee’s scheme and using two levels of nested Cartesian grids. A local patch of finite elements is used to calculate in an iterative manner the solution in the plasma region where a better precision is required. The proposed technique enables a conservative local and dynamic refinement of the spatial mesh. The convergence behavior of the iterative resolution algorithm both in an explicit and implicit time-stepping formulation is then analyzed.In the last part of the doctorate, a series of numerical simulations of microwave breakdown and the filamentary plasma array formation in air are performed. They allow to study in detail the consequences of the different types of physical approximations adopted in the plasma fluid model. Then, these numerical experiments demonstrate the accuracy and the computational efficiency of the proposed patch correction method for the problem of interest. Lastly, a numerically investigation of the effects of gas heating on the formation and sustaining of the filamentary plasma array in atmospheric-pressure air is carried out. For doing this, the developed microwave-plasma model is coupled with unsteady Navier-Stokes equations for compressible flows. The simulations provide interesting features of the plasma array dynamics during the process of gas heating, in close agreement with experimental data
Styles APA, Harvard, Vancouver, ISO, etc.
4

Audier, Pierre. « Etude d'une décharge à barrière diélectrique surfacique. Application au contrôle d'écoulement autour d'un profil d'aile de type NACA 0012 ». Phd thesis, Université d'Orléans, 2012. http://tel.archives-ouvertes.fr/tel-00843633.

Texte intégral
Résumé :
Dans un contexte de croissance du trafic aérien et dans le but de réduire la consommation de carburant ainsi que les émissions de polluants dans l'atmosphère, l'avion de demain se doit d'être plus respectueux de l'environnement. Dans un objectif d'optimisation de ses performances aérodynamiques,d'importantes activités de recherche sont menées dans le monde pour étudier de nouveaux dispositifs de contrôle actif des écoulements en temps réel. Depuis une dizaine d'années, l'utilisation de la décharge à barrière diélectrique surfacique comme actionneur plasma pour le contrôle d'écoulements suscite un intérêt grandissant. Ce type d'actionneur permet de créer un plasma non-thermique capable de générer un écoulement basse vitesse, appelé vent ionique, qui interagit avec l'écoulement naturel en proche paroi pour l'amener dans un état souhaité. Les études expérimentales présentées dans cette thèse portent, d'une part, sur la caractérisation de l'actionneur plasma sous atmosphère contrôlée pour étudier le rôle de l'azote et de l'oxygène sur le comportement de la décharge et d'autre part, sur l'évaluation des potentialités de cet actionneur à contrôler le décollement massif naissant au bord d'attaque d'un profil d'aile placé à forte incidence. Les résultats mettent en évidence l'importance du rôle joué par O2 dans l'amorçage des filaments de plasma et dans la production de vent ionique. Le taux de production d'ozone de l'actionneur plasma a été quantifié en fonction de la puissance électrique. Les essais en soufflerie, réalisés dans le cadre du projet européen PLASMAERO, montrent l'effet de la fréquence de pulsation du signal d'alimentation haute tension sur la réponse de l'écoulement décollé et des ses instabilités naturelles. Il est ainsi possible, pour le profil placé à des incidences au-delà de l'incidence de décrochage naturel, d'augmenter la portance du profil en supprimant le décollement ou en favorisant la formation de tourbillons portants à l'extrados du profil.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Starkey, Ryan P., Mark J. Lewis et Charles H. Jones. « PLASMA TELEMETRY IN HYPERSONIC FLIGHT ». International Foundation for Telemetering, 2002. http://hdl.handle.net/10150/607506.

Texte intégral
Résumé :
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California
Problems associated with telemetry blackout caused by the plasma sheath surrounding a hypersonic vehicle are addressed. In particular, the critical nature of overcoming this limitation for test and evaluation purposes is detailed. Since the telemetry blackout causes great concern for atmospheric cruise vehicles, ballistic missiles, and reentry vehicles, there have been many proposed approaches to solving the problem. This paper overviews aerodynamic design methodologies, for which the required technologies are only now being realized, which may allow for uninterrupted transmission through a plasma sheath. The severity of the signal attenuation is dependent on vehicle configuration, trajectory, flightpath, and mission.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Starkey, Ryan P., Mark J. Lewis et Charles H. Jones. « PLASMA SHEATH CHARACTERIZATION FOR TELEMETRY IN HYPERSONIC FLIGHT ». International Foundation for Telemetering, 2003. http://hdl.handle.net/10150/606733.

Texte intégral
Résumé :
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada
During certain hypersonic flight regimes, shock heating of air creates a plasma sheath resulting in telemetry attenuation or blackout. The severity of the signal attenuation is dependent on vehicle configuration, flight trajectory, and transmission frequency. This phenomenon is investigated with a focus placed on the nonequilibrium plasma sheath properties (electron concentration, plasma frequency, collision frequency, and temperature) for a range of flight conditions and vehicle design considerations. Trajectory and transmission frequency requirements for air-breathing hypersonic vehicle design are then addressed, with comparisons made to both shuttle orbiter and RAM-C II reentry flights.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jacobsen, Lance Steven. « An Integrated Aerodynamic-Ramp-Injector/ Plasma-Torch-Igniter for Supersonic Combustion Applications with Hydrocarbon Fuels ». Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/28858.

Texte intégral
Résumé :
The first integrated, flush-wall, aero-ramp-fuel-injector/plasma-torch igniter and flame propagation system for supersonic combustion applications with hydrocarbon fuels was developed and tested. The main goal of this project was to develop a device which could be used to demonstrate that the correct placement of a plasma-torch-igniter/flame-holder in the wake of the fuel jets of an aero-ramp injector array could make sustained, efficient supersonic combustion with low losses and thermal loading possible in a high enthalpy environment. Three phases of research were performed to develop the device using the supersonic cold flow facilities at Virginia Tech. The experimental investigations included some of the following methods: shadowgraphs, surface oil flow, pressure-sensitive paint, high- or low-speed photography, aerothermodynamic sampling, and spectroscopy. During this research effort, a new mixing parameter was also developed to quantify the injector plume mass fraction concentration values using successive profiles of ambient or heated air as the injectant. The first phase of the research effort was conducted at Mach 3.0 at a static pressure and temperature of 0.19 atm and 101 K. This phase involved component analyses to improve on the designs of the aero-ramp and plasma-torch as well as address integration and incorporation difficulties. The information learned from these experiments lead to the creation of the first prototype integrated aero-ramp/plasma torch design featuring a new simplified four-hole aero-ramp design. The second phase of the project consisted of experiments at Mach 2.4 involving a cold-flow mixing evaluation of the new aero-ramp design and a resizing of the device for incorporation into a scramjet flow path test rig at the Air Force Research Laboratories (AFRL). Experiments were performed at a static pressure and temperature of 0.25 atm and 131 K, and at injector-jet to freestream momentum flux ratios ranging from 1.0 to 3.3. Results showed the aero-ramp to mix at a considerably faster rate than the injector used in the AFRL baseline combustor configuration due to high levels of vorticity created by the injector array. In addition, the plume of the aero-ramp lifted off the test section wall without trapping a secondary core inside the shear layer near the surface, unlike the earlier nine-hole aero-ramp arrays. The mitigation of the secondary fuel core leads to a lower level of combustion near the surface and a lower potential for thermal loading on the wall. The last phase of the research involved testing the final device design in a cold-flow environment at Mach 2.4 with ethylene fuel injection and an operational plasma torch with methane, nitrogen, a 90-percent nitrogen 10-percent hydrogen (by volume) mixture, and air feedstock gases. Experiments were performed with injector jet to freestream momentum flux ratios ranging from 1.4 to 3.3, and 1.2 with the plasma torch at a nominal power level 2000 watts. Overall, the final integrated design showed a high mixing efficiency and a higher potential for repeatable main fuel ignition and flame propagation with the plasma torch placed at the middle of the three downstream torch stations tested (x/dinjector = 8 downstream from the center of the injector area), with nitrogen as the torch feedstock. Furthermore, the integrated device created a sustained flame, demonstrating main fuel ignition in a cold and low pressure supersonic environment with a plasma-torch. Local intensity distributions of the major excited species generated from the interaction of the plasma-torch with the main fuel plume were also identified with a spectrometer. As a result of the research and development process, an injector block for scramjet combustor experiments consisting of four integrated aero-ramp-injector/plasma-torch-igniters was created for near future tests at the AFRL.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yugulis, Kevin Lee. « High Subsonic Cavity Flow Control Using Plasma Actuators ». The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345552086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Miki, Kenji. « Simulation of magnetohydrodynamics turbulence with application to plasma-assisted supersonic combustion ». Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/26605.

Texte intégral
Résumé :
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Menon Suresh; Committee Co-Chair: Jagoda Jeff; Committee Member: Ruffin Stephen; Committee Member: Thorsten Stoesser; Committee Member: Walker Mitchell. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Görtz, Stefan. « Realistic simulations of delta wing aerodynamics using novel CFD methods ». Doctoral thesis, KTH, Aeronautical and Vehicle Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125.

Texte intégral
Résumé :

The overall goal of the research presented in this thesis is to extend the physical understanding of the unsteady external aerodynamics associated with highly maneuverable delta-wing aircraft by using and developing novel, more efficient computational fluid dynamics (CFD) tools. More specific, the main purpose is to simulate and better understand the basic fluid phenomena, such as vortex breakdown, that limit the performance of delta-wing aircraft. The problem is approached by going from the most simple aircraft configuration - a pure delta wing - to more complex configurations. As the flow computations of delta wings at high angle of attack have a variety of unusual aspects that make accurate predictions challenging, best practices for the CFD codes used are developed and documented so as to raise their technology readiness level when applied to this class of flows.

Initially, emphasis is put on subsonic steady-state CFD simulations of stand-alone delta wings to keep the phenomenon of vortex breakdown as clean as possible. For half-span models it is established that the essential characteristics of vortex breakdown are captured by a structured CFD code. The influence of viscosity on vortex breakdown is studied and numerical results for the aerodynamic coefficients, the surface pressure distribution and breakdown locations are compared to experimental data where possible.

In a second step, structured grid generation issues, numerical aspects of the simulation of this nonlinear type of flow and the interaction of a forebody with a delta wing are explored.

Then, on an increasing level of complexity, time-accurate numerical studies are performed to resolve the unsteady flow field over half and full-span, stationary delta wings at high angle of attack. Both Euler and Detached Eddy Simulations (DES) are performed to predict the streamwise oscillations of the vortex breakdown location about some mean position, asymmetry in the breakdown location due to the interaction between the left and right vortices, as well as the rotation of the spiral structure downstream of breakdown in a time-accurate manner. The computed flow-field solutions are visualized and analyzed in a virtual-reality environment.

Ultimately, steady-state and time-dependent simulations of a full-scale fighter-type aircraft configuration in steady flight are performed using the advanced turbulence models and the detached-eddy simulation capability of an edge-based, unstructured flow solver. The computed results are compared to flight-test data.

The thesis also addresses algorithmic efficiency and presents a novel implicit-explicit algorithm, the Recursive Projection Method (RPM), for computations of both steady and unsteady flows. It is demonstrated that RPM can accelerate such computations by up to 2.5 times.

Styles APA, Harvard, Vancouver, ISO, etc.
11

Stouffer, Scott David. « The development and operating characteristics of an improved plasma torch for supersonic combustion applications ». Thesis, Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/76046.

Texte intégral
Résumé :
The design of the VPI plasma torch, which has been used as an ignitor and flameholder in supersonic combustion studies, has been modified in order to decrease the electrode wear and to increase stability. The plasma torch can be used as a source of hydrogen or nitrogen radicals which initiate and stabilize combustion. During previous testing of the unmodified torch, electrode erosion limited operation of the torch to about two hours. The improved torch features a flow swirler in the gas inlet, which adds vortex stabilization to the arc. The vortex stabilization causes the anode attachment point of the arc to be anchored in the low pressure region, downstream of the constrictor. This lowers the heat flux to the anode, so that erosion is decreased. The torch body was redesigned with an emphasis on the alignment of the electrodes. Also, the electrode gap in the improved torch was made continuously adjustable, allowing fine adjustment of the electrode gap during operation of the torch. The operational characteristics of the improved torch were monitored by a microcomputer-based data acquisition system. Stable operation of the improved torch with pure nitrogen was demonstrated, thus eliminating the requirement for argon to stabilize the arc. Operational characteristics of the improved torch running on argon, nitrogen, argon/hydrogen and argon/nitrogen mixtures as feedstocks, are reported. The electrode wear was studied between tests by observation with a microscope, and by measuring the mass change of the electrodes. The electrode erosion of the improved torch was reduced significantly. Anode lifetimes of greater than 20 hours have been demonstrated with operation on mixtures of nitrogen and argon.
Master of Science
Styles APA, Harvard, Vancouver, ISO, etc.
12

Bonanos, Aristides Michael. « Scramjet Operability Range Studies of an Integrated Aerodynamic-Ramp-Injector/Plasma-Torch Igniter with Hydrogen and Hydrocarbon Fuels ». Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/28847.

Texte intégral
Résumé :
An integrated aerodynamic-ramp-injector/plasma-torch-igniter of original design was tested in a Mâ = 2, unvitiated, heated flow facility arranged as a diverging duct scramjet combustor. The facility operated at a total temperature of 1000 K and total pressure of 330 kPa. Hydrogen (H2), ethylene (C2H4) and methane (CH4) were used as fuels, and a wide range of global equivalence ratios were tested. The main data obtained were wall static pressure measurements, and the presence of combustion was determined based on the pressure rises obtained. Supersonic and dual-mode combustion were achieved with hydrogen and ethylene fuel, whereas very limited heat release was obtained with the methane. Global operability limits were determined to be 0.07 < Ï < 0.31 for hydrogen, and 0.14 < Ï < 0.48 for ethylene. The hydrogen fuel data for the aeroramp/torch system was compared to data from a physical 10º unswept compression ramp injector and similar performance was found with the two arrangements. With hydrogen and ethylene as fuels and the aeroramp/plasma-torch system, the effect of varying the air total temperature was investigated. Supersonic combustion was achieved with temperatures as low as 530K and 680K for the two fuels, respectively. These temperatures are facility/operational limits, not combustion limits. The pressure profiles were analyzed using the Ramjet Propulsion Analysis (RJPA) code. Results indicate that both supersonic and dual-mode ramjet combustion were achieved. Combustion efficiencies varied with Ï from a high of about 75% to a low of about 45% at the highest Ï . With a theoretical diffuser and nozzle assumed for the configuration and engine, thrust was computed for each fuel. Fuel specific impulse was on average 3000 and 1000 seconds for hydrogen and ethylene respectively, and air specific impulse varied from a low of about 9 sec to a high of about 24 sec (for both fuels) for the To = 1000K test condition. The GASP RANS code was used to numerically simulate the injection and mixing process of the fuels. The results of this study were very useful in determining the suitability of the selected plasma torch locations. Further, this tool can be used to determine whether combustion is theoretically possible or not.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Vieira, Débora Gleice da Silva Del Rio [Verfasser], Schäfer [Akademischer Betreuer] Michael et Tropea [Akademischer Betreuer] Cameron. « Numerical simulation of aerodynamic plasma actuator effects / Debora Gleice da Silva Del Rio Vieira. Betreuer : Schäfer Michael ; Tropea Cameron ». Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://d-nb.info/1107771420/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Nilsson, Stefan. « Flow Separation Control Utilizing Plasma Actuators ». Thesis, Luleå tekniska universitet, Rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69107.

Texte intégral
Résumé :
The goal of this thesis was to both theoretically and experimentally show the effect of a plasma actuator for flow separation control.  In the theoretical part a solver was implemented in MATLAB code, to solve the governing equations describing the plasma actuator.  The experimental part included PIV (Particle Image Velocimetry) measurements of the velocity field induced by the plasma actuator, visualization of the effect in a wind tunnel and the development of a simple model of the plasma actuator based on the empirical result whose purpose is to be used in CFD (Computational Fluid Dynamics). The PIV measurements were performed with an acceptable result even though a lot of disturbance occurred in and near the plasma region.  The empirical result was used to develop the empirical plasma actuator model for CFD, which showed some interesting result.  The model implies that the induced force by the plasma actuator grows exponential with the applied peak-to-peak voltage.   The model was also used to predict airfoil performance with plasma actuators which showed an increase of the lift coefficient on a NACA0012 with a chord length of 0.1m.  Simulations were done for free-stream velocities up to 20m/s with three different configurations, without plasma actuator for comparison, with one actuator at the quarter-chord and one with three actuators on the airfoil.  With three actuators the increase of the lift coefficient was 108 percent at 5m/s and 14 percent at 20m/s. The simulations with one actuator were only performed up to 10m/s were the effect of the actuator still could be seen but for higher velocities the effect would probably be minor. The wind tunnel experiment clearly showed the effect and the advantages of utilizing plasma actuators for flow separation control.  The experiment showed that a single plasma actuator placed at the quarter chord of a fully stalled NACA0012 airfoil with a chord length of 0.1m, at approximately 20 degrees angle of attack and with a free-stream velocity of 1.5m/s, was able to reattach the flow behind the actuator. The result of the theoretical part was inconclusive, the code could not run with the appropriate voltage and frequency of the plasma actuator.  Some result was however obtained, implying that the time-average force induced by the plasma actuator was in the expected direction.  The theoretical model is however considered to have potential, the major problems concern the code which requires further development.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Rethmel, Christopher C. « Airfoil Leading Edge Flow Separation Control Using Nanosecond Pulse DBD Plasma Actuators ». The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306348260.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Eppard, William M. « Kinetic algorithms for non-equilibrium gas dynamics ». Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-165605/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Castañeda, Vergara David Armando. « Active Control of Flow over an Oscillating NACA 0012 Airfoil ». The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587420875168203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Suryanarayana, G. K. « On The Reduction Of Drag Of a Sphere By Natural Ventilation ». Thesis, Indian Institute of Science, 1995. https://etd.iisc.ac.in/handle/2005/125.

Texte intégral
Résumé :
The problem of bluff body flows and the drag associated with them has been the subject of numerous investigations in the literature. In the two-dimensional case, the flow past a circular cylinder has been most widely studied both experimentally and computationally. As a result, a well documented understanding of the gross features of the near-wake around a circular cylinder exists in the literature. In contrast, very little is understood on the general features of three-dimensional bluff body near-wakes, except that the vortex shedding is known to be less intense. Control or management of bluff body flows, both from the point of view of drag reduction as well as suppressing unsteady forces caused by vortex shedding, has been an area of considerable interest in engineering applications. The basic aim in the different control methods involves direct or indirect manipulation (or modification) of the near-wake structure leading to weakening or inhibition of vortex shedding. Many passive and energetic techniques (such as splitter plates, base and trailing edge modifications and base bleed) have been effective in the two-dimensional case in increasing the base pressure, leading to varying amounts of drag reduction; a large body of this work is centered around circular cylinders because of direct relevance in applications. The present work is an attempt to understand some of the major aspects of the near-wake structure of a sphere and to control the same for drag reduction employing a passive technique. Many of the passive control techniques found useful in two-dimensional flows are not appropriate in the context of a sphere. In this thesis, the effects of natural ventilation on the wake and drag of a sphere at low speeds have been studied experimentally in some detail. Natural bleed into the base is created when the stagnation and base regions of a sphere are connected through an internal duct. Although natural ventilation has features broadly similar to the well known base-bleed technique (both involve addition of mass, momentum and energy into the near-wake), there are many significant differences between the two methods; for example, in base bleed, the mass flow injected can be controlled independent of the outer flow, whereas in natural ventilation, it is determined by an interaction between the internal and the external flow around the body. Experiments have been conducted in both wind and water tunnels, which covered a wide range of Reynolds number (ReDj based on the diameter of the sphere) from of 1.7 x 103 to 8.5 x 105 with natural boundary layer transition. The ratio of the frontal vent area to the maximum cross sectional area of the sphere was varied from 1% to 2.25% and the effect of the internal duct geometry, including a convergent and a divergent duct was examined as well. After preliminary force measurements involving different duct geometries and vent areas, it was decided to make detailed measurements with a straight (parallel) duct with a vent area ratio of 2.25%. Extensive flow visualization studies involving dye-flow, hydrogen bubble, surface oil-flow and laser-light-sheet techniques were employed to gain insight into many aspects of the near-wake structure and the flow on the surface of the sphere. Measurements made included model static pressures, drag force using a strain gauge balance and velocity profiles in the near-wake and internal flow through the vent. In addition, wake vortex shedding frequency was measured using a hotwire. In the subcritical range of Reynolds numbers (ReD< 2 x 105), the near-wake of the sphere (without ventilation) was found to be vortex shedding, with laminar separation occurring around a value of0s = 80° (where 0s is the angle between the stagnation point and separation location). In contrast, there was little evidence of vortex shedding in the supercritical range (ReD> 4 x 105), consistent with many earlier observations in the literature; however, flow visualization studies in the near-wake clearly showed the existence of a three-dimensional vortex-like structure exhibiting random rotations about the streamwise axis. In this range of Reynolds numbers, surface flow visualization studies indicated the existence of a laminar separation bubble which was followed by a transitional/turbulent reattachment and an ultimate separation around 0S = 145°. All the above observations are broadly consistent with the results available in the literature. With ventilation at subcritical Reynolds numbers, the pressure distributions on the sphere including in the base region was only weakly altered, resulting in a marginal reduction in the total drag; because of the higher pressure difference between the stagnation and base regions, the mean velocity in the vent-flow was about 0.9 times the free-stream velocity. As may be expected, there was little change in the location of laminar separation on the sphere and the vortex shedding frequency was virtually unaltered due to ventilation. The relatively small effects on pressure distribution and drag suggest weak interaction between the vent-flow and the separated shear layer in the subcritical regime. The time-averaged near-wake flow revealed a stagnation point occurring between the vent-flow and the reverse flow in the near-wake, along with the formation of a torroidal vortex between the stagnation point and the near-wake closure; these features bear some resemblance to those observed with base bleed from a blunt base. With ventilation in the supercritical range of Reynolds numbers (ReD > 4 x 105), significant reduction in the total drag, of as much as 65%, was observed from force measurements. Pressure distributions showed higher pressures in the separated flow zone (consistent with reduced drag) as a result of which the internal mass and the mean velocity of the vent-flow were lower (0.69 times the free-stream velocity) compared to the value in the subcritical flow regime. Flow visualization studies clearly showed that the three-dimensional rotating structure (associated with the wake of the unvented sphere) was significantly modified by ventilation, leading to more symmetric and steady near-wake features. The larger effects on pressure distribution and drag suggest strong interaction between the vent-flow and the separated shear layer, promoted by their close proximity. The comparison of power spectral density of u1 signals in the near-wake showed significant reduction in the amplitude at all frequencies, consistent with observations from flow visualization studies. The time-averaged near-wake flow features a pair of counterrotating ring vortices which are trapped between the outer separated shear layer and the vent-flow shear layer; such a mean flow pattern is qualitatively similar to that behind an axisymmetric base with a central jet with unequal freestream velocities in the jet and outer flow. This study strongly suggests that natural ventilation can provide significant total drag reduction provided the vent-flow is in close proximity of the separated shear layer promoting a strong interaction between them. Drag reduction is associated with more symmetric and relatively steady near-wake features in contrast with the unvented sphere.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Suryanarayana, G. K. « On The Reduction Of Drag Of a Sphere By Natural Ventilation ». Thesis, Indian Institute of Science, 1995. http://hdl.handle.net/2005/125.

Texte intégral
Résumé :
The problem of bluff body flows and the drag associated with them has been the subject of numerous investigations in the literature. In the two-dimensional case, the flow past a circular cylinder has been most widely studied both experimentally and computationally. As a result, a well documented understanding of the gross features of the near-wake around a circular cylinder exists in the literature. In contrast, very little is understood on the general features of three-dimensional bluff body near-wakes, except that the vortex shedding is known to be less intense. Control or management of bluff body flows, both from the point of view of drag reduction as well as suppressing unsteady forces caused by vortex shedding, has been an area of considerable interest in engineering applications. The basic aim in the different control methods involves direct or indirect manipulation (or modification) of the near-wake structure leading to weakening or inhibition of vortex shedding. Many passive and energetic techniques (such as splitter plates, base and trailing edge modifications and base bleed) have been effective in the two-dimensional case in increasing the base pressure, leading to varying amounts of drag reduction; a large body of this work is centered around circular cylinders because of direct relevance in applications. The present work is an attempt to understand some of the major aspects of the near-wake structure of a sphere and to control the same for drag reduction employing a passive technique. Many of the passive control techniques found useful in two-dimensional flows are not appropriate in the context of a sphere. In this thesis, the effects of natural ventilation on the wake and drag of a sphere at low speeds have been studied experimentally in some detail. Natural bleed into the base is created when the stagnation and base regions of a sphere are connected through an internal duct. Although natural ventilation has features broadly similar to the well known base-bleed technique (both involve addition of mass, momentum and energy into the near-wake), there are many significant differences between the two methods; for example, in base bleed, the mass flow injected can be controlled independent of the outer flow, whereas in natural ventilation, it is determined by an interaction between the internal and the external flow around the body. Experiments have been conducted in both wind and water tunnels, which covered a wide range of Reynolds number (ReDj based on the diameter of the sphere) from of 1.7 x 103 to 8.5 x 105 with natural boundary layer transition. The ratio of the frontal vent area to the maximum cross sectional area of the sphere was varied from 1% to 2.25% and the effect of the internal duct geometry, including a convergent and a divergent duct was examined as well. After preliminary force measurements involving different duct geometries and vent areas, it was decided to make detailed measurements with a straight (parallel) duct with a vent area ratio of 2.25%. Extensive flow visualization studies involving dye-flow, hydrogen bubble, surface oil-flow and laser-light-sheet techniques were employed to gain insight into many aspects of the near-wake structure and the flow on the surface of the sphere. Measurements made included model static pressures, drag force using a strain gauge balance and velocity profiles in the near-wake and internal flow through the vent. In addition, wake vortex shedding frequency was measured using a hotwire. In the subcritical range of Reynolds numbers (ReD< 2 x 105), the near-wake of the sphere (without ventilation) was found to be vortex shedding, with laminar separation occurring around a value of0s = 80° (where 0s is the angle between the stagnation point and separation location). In contrast, there was little evidence of vortex shedding in the supercritical range (ReD> 4 x 105), consistent with many earlier observations in the literature; however, flow visualization studies in the near-wake clearly showed the existence of a three-dimensional vortex-like structure exhibiting random rotations about the streamwise axis. In this range of Reynolds numbers, surface flow visualization studies indicated the existence of a laminar separation bubble which was followed by a transitional/turbulent reattachment and an ultimate separation around 0S = 145°. All the above observations are broadly consistent with the results available in the literature. With ventilation at subcritical Reynolds numbers, the pressure distributions on the sphere including in the base region was only weakly altered, resulting in a marginal reduction in the total drag; because of the higher pressure difference between the stagnation and base regions, the mean velocity in the vent-flow was about 0.9 times the free-stream velocity. As may be expected, there was little change in the location of laminar separation on the sphere and the vortex shedding frequency was virtually unaltered due to ventilation. The relatively small effects on pressure distribution and drag suggest weak interaction between the vent-flow and the separated shear layer in the subcritical regime. The time-averaged near-wake flow revealed a stagnation point occurring between the vent-flow and the reverse flow in the near-wake, along with the formation of a torroidal vortex between the stagnation point and the near-wake closure; these features bear some resemblance to those observed with base bleed from a blunt base. With ventilation in the supercritical range of Reynolds numbers (ReD > 4 x 105), significant reduction in the total drag, of as much as 65%, was observed from force measurements. Pressure distributions showed higher pressures in the separated flow zone (consistent with reduced drag) as a result of which the internal mass and the mean velocity of the vent-flow were lower (0.69 times the free-stream velocity) compared to the value in the subcritical flow regime. Flow visualization studies clearly showed that the three-dimensional rotating structure (associated with the wake of the unvented sphere) was significantly modified by ventilation, leading to more symmetric and steady near-wake features. The larger effects on pressure distribution and drag suggest strong interaction between the vent-flow and the separated shear layer, promoted by their close proximity. The comparison of power spectral density of u1 signals in the near-wake showed significant reduction in the amplitude at all frequencies, consistent with observations from flow visualization studies. The time-averaged near-wake flow features a pair of counterrotating ring vortices which are trapped between the outer separated shear layer and the vent-flow shear layer; such a mean flow pattern is qualitatively similar to that behind an axisymmetric base with a central jet with unequal freestream velocities in the jet and outer flow. This study strongly suggests that natural ventilation can provide significant total drag reduction provided the vent-flow is in close proximity of the separated shear layer promoting a strong interaction between them. Drag reduction is associated with more symmetric and relatively steady near-wake features in contrast with the unvented sphere.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lunde, Dominic Charles. « A Homegrown DSMC-PIC Model for Electric Propulsion ». DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2066.

Texte intégral
Résumé :
Powering spacecraft with electric propulsion is becoming more common, especially in CubeSat-class satellites. On account of the risk of spacecraft interactions, it is important to have robust analysis and modeling tools of electric propulsion engines, particularly of the plasma plume. The Navier-Stokes equations used in classic continuum computational fluid dynamics do not apply to the rarefied plasma, and therefore another method must be used to model the flow. A good solution is to use the DSMC method, which uses a combination of particle modeling and statistical methods for modeling the simulated molecules. A DSMC simulation known as SINATRA has been developed with the goal to model electric propulsion plumes. SINATRA uses an octree mesh, is written in C++, and is designed to be expanded by further research. SINATRA has been initially validated through several tests and comparisons to theoretical data and other DSMC models. This thesis examines expanding the functionality of SINATRA to simulate charged particles and make SINATRA a DSMC-PIC hybrid. The electric potential is calculated through a 7-point 3D stencil on the mesh nodes and solved with a Gauss-Seidel solver. It is validated through test cases of charged particles to demonstrate the accuracy and capabilities of the model. An ambipolar diffusion test case is compared to a neutral diffusion case and the electric field is shown to stabilize the diffusion rate. A steady state flow test case shows the simulation is able to stabilize and solve the electric potential for a plume-like scenario. It includes additional features to simplify further research including a comprehensive user manual, industry-standard version control, text file inputs, GUI control, and simple parallelism of the simulation. Compilation and execution are standardized to be simple and platform independent to allow longevity of the code base. Finally, the execution bottlenecks of linking particles to cells and particle moving were removed to reduce the simulation time by 95%.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Clifford, Christopher J. « An Investigation of Physics and Control of Flow Passing a NACA 0015 in Fully-Reversed Condition ». The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1440156651.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Coumar, Sandra. « Etude des mécanismes physiques induits pas un actionneur plasma appliqué au contrôle d’écoulements raréfiés super/hypersoniques dans le cadre de rentrées atmosphériques ». Thesis, Orléans, 2017. http://www.theses.fr/2017ORLE2025/document.

Texte intégral
Résumé :
Ces dernières années, les missions spatiales bénéficient d'un regain d'intérêt. Cependant, lorsqu’arrive laphase d’entrée dans l’atmosphère, nous faisons encore face à d’importantes difficultés. Afin de répondre àce problème, une nouvelle technique est proposée : le contrôle par plasma pour augmenter la force detraînée sur le véhicule et ainsi, décroître sa vitesse. Dans cette thèse, un actionneur plasma est testé danstrois écoulements supersoniques (N1(M2-8Pa), N2(M4-8Pa) and N3(M4-71Pa)) et un hypersonique (M20-0.062Pa), ces écoulements étant simulés par la soufflerie MARHy.L’actionneur plasma induit des modifications de l’écoulement autour du modèle étudié, comme unemodification de la géométrie de l’onde de choc et une augmentation de l’angle de choc. Afin de mieuxcomprendre les phénomènes gouvernant ces modifications, la pression Pitot, la température surfacique etvolumique, les données électroniques et des mesures spectroscopiques ont été analysées. Les résultatsmontrèrent que deux types d’effets interviennent : thermiques (surface et volume) et l’ionisation. De plus, il aété démontré que ces effets n’ont pas la même importance suivant les conditions d’écoulements.L’actionneur plasma lui-même a été modifié dans un but d’amélioration. En particulier, deux types degénérateurs ont été étudiés pour alimenter la cathode : DC et pulsé. Finalement, il est montré que pour unepuissance de décharge de 80 W, une augmentation de 13% de la traînée et donc, une diminution de plus de25% des flux de chaleur peuvent être attendus. Par conséquent, les actionneurs plasma semblent être descandidats idéaux pour les missions spatiales et les (r)entrées atmosphérique
Space missions are arousing renewed interest in these recent years. However, when coming to the entryinto the atmosphere, major issues are still to be considered. To answer this problem, a new Entry DescentLanding technique is proposed: plasma actuation to increase the drag force over the vehicle body and thus,decrease its speed. In this thesis, a plasma actuator is tested in three supersonic rarefied flows (N1(M2-8Pa), N2(M4-8Pa) and N3(M4-71Pa)) and a hypersonic one (M20-0.062Pa), all generated by the wind tunnelMARHy.The plasma actuator induces flow modifications over the studied model, such as a change in the shock waveshape and an increase in the shock wave angle. In order to better understand the phenomena governingthese modifications, Pitot pressure, surface and gas temperature, electron data and spectroscopicmeasurements were analyzed. The results shown that two types of effects are involved: thermal (bulk andsurface) and ionization. Moreover, it was demonstrated that these effects had not the same importancedepending on the flow conditions.The plasma actuator was also modified in order to improve it. In particular, two types of generators wereused to biase the cathode: DC and pulsed. Finally, it was shown that, for a discharge power of 80 W, a 13%increase in the drag force could be expected and thus, a decrease in the heat load over the model body ofmore than 25%. Therefore, plasma actuators seem to be promising applications for space missions andatmospheric entries
Styles APA, Harvard, Vancouver, ISO, etc.
23

da, Silva Del Rio Vieira Debora Gleice. « Numerical simulation of aerodynamic plasma actuator effects ». Phd thesis, 2013. https://tuprints.ulb.tu-darmstadt.de/3608/1/Vieira.pdf.

Texte intégral
Résumé :
The present work used an in-house code (FASTEST) for solving the incompressible Navier-Stokes equations with Finite Volume Method applied to the flow over a flat plate influenced by plasma actuators. The actuators were modeled using experimental data (from PIV) for a precise evaluation of the plasma body force and its fluid mechanic effects. This method is proven and found to have a good accuracy suitable for a quantitative analysis of the proposed test cases. Tollmien-Schlichting waves were artificially excited upstream the actuators position. The waves develop downstream of the excitation point and are amplified in certain frequency modes. The use of plasma actuators can attenuate or cancel the Tollmien-Schlichting waves. This process can be used for turbulence delay and reduction of drag coefficients in aircraft wings. Several modes of operation of the plasma actuators were tested in different arrangements and power supply. For cycle operational mode of the plasma actuator, one sensor was used a few millimeters downstream the actuator and the setup parameters are optimized with the help of an optimization algorithm. Linear Stability Analysis was also performed with the data obtained from Direct Numerical Simulations to investigate the influence of the actuator in the flow stability proprieties.
Styles APA, Harvard, Vancouver, ISO, etc.
24

(6760871), Tugba Piskin. « Numerical Simulations of Gas Discharges for Flow Control Applications ». Thesis, 2019.

Trouver le texte intégral
Résumé :
In the aerospace industry, gas discharges have gained importance with the exploration of their performance and capabilities for flow control and combustion. Tunable properties of plasma make gas discharges efficient tools for various purposes. Since the scales of plasma and the available technology limit the knowledge gained from experimental studies, computational studies are essential to understand the results of experimental studies. The temporal and spatial scales of plasma also restrict the numerical studies. It is a necessity to use an idealized model, in which enough physics is captured, while the computational costs are acceptable.

In this work, numerical simulations of different low-pressure gas discharges are presented with a detailed analysis of the numerical approach. A one moment model is employed for DC glow discharges and nanosecond-pulse discharges. The cheap-est method regarding the modeling and simulation costs is chosen by checking the requirements of the fundamental processes of gas discharges. The verification of one-moment 1-D glow discharges with constant electron temperature variation is achieved by comparing other computational results.

The one moment model for pulse discharge simulation aims to capture the information from the experimental data for low-pressure argon discharges. Since the constant temperature assumption is crude, the local field approximation is investigated to obtain the data for electron temperature. It was observed that experimental data and computational data do not match because of the stagnant decay of electron number densities and temperatures. At the suggestion of the experimental group, water vapor was added as an impurity to the plasma chemistry. Although there was an improvement with the addition of water vapor, the results were still not in good agreement with experiment.

The applicability of the local field approximation was investigated, and non-local effects were included in the context of an averaged energy equation. A 0-D electron temperature equation was employed with the collision frequencies obtained from the local field approximation. It was observed that the shape of the decay profiles matched with the experimental data. The number densities; however, are less almost an order of magnitude.

As a final step, the two-moment model, one-moment model plus thermal electron energy equation, was solved to involve non-local effects. The two-moment model allows capturing of non-local effects and improves agreement with the experimental data. Overall, it was observed that non-local regions dominate low-pressure pulsed discharges. The local field approximation is not adequate to solve these types of discharges.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Pafford, Brent Joel. « Investigation of magnetohydrodynamic plasma actuators for aerodynamic flow control ». 2013. http://hdl.handle.net/2152/21205.

Texte intégral
Résumé :
This thesis describes the analysis, fabrication and testing of a novel magnetohydrodynamic plasma actuator for aerodynamic flow control, specifically, retreating blade stall. A magnetohydrodynamic plasma actuator is comprised of two parallel rail electrodes embedded chord-wise on the upper surface of an airfoil. A pulse forming network generates a low-voltage, high-current repetitive pulsed arc. Self-induced electromagnetic fields force the pulsed arc along the length of the rail electrodes at high velocities, transferring momentum to the surrounding air, creating a high-velocity pulsed air wall jet. A systematic experimental investigation of the effect of plasma actuators on the surrounding air is conducted in stagnant air conditions to gain an understanding of the physical characteristics. These characteristics include voltage and current measurements, pulsed arc velocity measurements, and high speed video imaging. The results show typical pulsed arc velocities of about 100 m/s can be induced with discharge energies of about 300 J per pulse. Additional experimental studies are conducted to quantify the performance of the pulsed arc for potential use in subsonic flow control applications. To gain an estimate of the momentum transferred from the pulsed arc to the surrounding air the plasma actuator is placed in a subsonic open-circuit wind tunnel at a Reynolds number of 4.5 x 105. The induced velocity of the pulsed wall jet is measured using a Laser Doppler Anemometer. The measurements show that the pulsed arc creates a high-velocity pulsed wall jet that extends 40 mm above the airfoils surface and has an induced velocity of 15 m/s greater than the unaltered air flow over the airfoil, with peak velocities of 32 m/s. The magnetohydrodynamic plasma actuator proved to induce velocities an order of magnitude greater than the velocities attained by current state-of-the-art plasma actuators. Moreover, the RailPAc is found to posses the potential for alleviation of retreating blade stall. Future work will include experiments to gain a detailed understanding of the improvements to the static stall angle, the optimal actuator geometry, excitation duty cycle, magnetic field augmentation, and behavior of the plasma armature at high Mach/Reynolds numbers. Particle Image Velocimetry (PIV) will be utilized to improve the induced flow velocity measurements acquired with the LDA.
text
Styles APA, Harvard, Vancouver, ISO, etc.
26

Chu, Kuo-Yuan, et 朱國源. « An Aerodynamic Analysis on Cone Body in Weakly Ionized Plasma Flow ». Thesis, 2005. http://ndltd.ncl.edu.tw/handle/62099624385690160012.

Texte intégral
Résumé :
碩士
國立成功大學
航空太空工程學系碩博士班
93
According to the increasing requirements of global transportation, the applications in supersonic flight are getting more and more important. Due to the increased drag of supersonic flight, the economic benefits of the higher speed would be reduced. There are many studies are introduced. Joining energy in and ionize the gas is one of the methods to solve the problem. After the gas is ionized, the ions could decrease the aerodynamic drag, but the physical mechanism is very complicated.  This study utilizes CFD-FASTRAN software. The software calculates Navier-Stokes equations, includes kinetic theory, thermal non-equilibrium, mass diffusivity, source term, and turbulence models. The weakly ionized plasma flow field is calculated by the species of the gas, which is based on the assumption of a fixed ionized degree.  It is found that the molecular internal temperatures and the ionized degrees are changed in this study. The results show that the drag coefficient of the flying body is decreased by 2~4% when the molecular internal temperature and the ionized degree become higher.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wen, Ching-Po, et 文鏡博. « Aerodynamic Drag Reduction for a Truck Model Using DBD Plasma Actuators ». Thesis, 2018. http://ndltd.ncl.edu.tw/handle/3s6dwj.

Texte intégral
Résumé :
碩士
元智大學
機械工程學系
106
We present an experimental investigation of the effect of DBD plasma actuators based active flow control for a truck model. We have considered two different kinds of electrode shapes which are linear and comb-shaped actuators. The DBD plasma actuators are placed at the leading and/or trailing edges of the trailer, respectively. There are three different tests for the drag reduction. The first test is the drag measurement at the Reynolds number varying from 25000 to 40000. At Re = 25000, the results show that the drag reduction of the three-comb-shaped actuator reaches a maximum of 9%, while the linear actuator has much less effect about 1-2%. The second test is the flow visualization for the wake region of the truck at Re = 3500 to 7000. The results show that the higher voltage input of the plasma actuator mounted at the trailing edge of the trailer produces significant size reduction of the wake region. The last test is PIV measurement to quantize the flow field at Re = 3500. The effect of the comb-shaped actuator to the wake reduction is much better than that using the linear actuator at the same location. Thus, this study proves the drag reduction qualitatively and quantitatively using DBD plasma actuators.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Raja, Chandra Mohan Madhan. « Boundary layer flow acceleration by paraelectric and peristaltic EHD effects of aerodynamic plasma actuators ». 2004. http://etd.utk.edu/2004/RajaChandraMohanMadhan.pdf.

Texte intégral
Résumé :
Thesis (M.S.)--University of Tennessee, Knoxville, 2004.
Title from title page screen (viewed Sept. 30, 2004). Thesis advisor: J. Reece Roth. Document formatted into pages (xi, 107 p. : ill. (some col.)). Vita. Includes bibliographical references (p. 101-106).
Styles APA, Harvard, Vancouver, ISO, etc.
29

Shin, Jichul 1971. « A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control ». Thesis, 2007. http://hdl.handle.net/2152/3303.

Texte intégral
Résumé :
A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation") is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (~10 W) for the diffuse discharge mode but is absent for the higher power (~100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 [mu]sec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N₂ and N⁺₂ rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (~1500 K) in the absence of a flow but drop sharply (~500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the constricted mode suggests that electrostatic forces may also play an important role in supersonic plasma-flow actuation phenomena. Analytical estimates using cathode sheath theory indicates that ion pressure within the cathode sheath can be significant resulting in gas compression in the sheath and a corresponding expansion above it. The expansion in turn may fully negate the dilatational effect in the constricted case resulting in an apparent absence of forcing in the constricted case. Plasma-induced flow velocity reaches about 1 m/s in stagnant air at the discharge current of order tens of milliamps. This electrostatic forcing in the direction from anode to cathode can play an important role in the boundary layer of supersonic flow.
text
Styles APA, Harvard, Vancouver, ISO, etc.
30

(8960978), Lalit Rajendran. « DEVELOPMENT OF IMAGE-BASED DENSITY DIAGNOSTICS WITH BACKGROUND-ORIENTED SCHLIEREN AND APPLICATION TO PLASMA INDUCED FLOW ». Thesis, 2021.

Trouver le texte intégral
Résumé :

There is growing interest in the use of nanosecond surface dielectric barrier discharge (ns-SDBD) actuators for high-speed (supersonic/hypersonic) flow control. A plasma discharge is created using a nanosecond-duration pulse of several kilovolts, and leads to a rapid heat release and a complex three-dimensional flow field. Past work has been limited to qualitative visualizations such as schlieren imaging, and detailed measurements of the induced flow are required to develop a mechanistic model of the actuator performance.


Background-Oriented Schlieren (BOS) is a quantitative variant of schlieren imaging and measures density gradients in a flow field by tracking the apparent distortion of a target dot pattern. The distortion is estimated by cross-correlation, and the density gradients can be integrated spatially to obtain the density field. Owing to the simple setup and ease of use, BOS has been applied widely, and is becoming the preferred density measurement technique. However, there are several unaddressed limitations with potential for improvement, especially for application to complex flow fields such as those induced by plasma actuators.

This thesis presents a series of developments aimed at improving the various aspects of the BOS measurement chain to provide an overall improvement in the accuracy, precision, spatial resolution and dynamic range. A brief summary of the contributions are:

1) a synthetic image generation methodology to perform error and uncertainty analysis for PIV/BOS experiments,

2) an uncertainty quantification methodology to report local, instantaneous, a-posteriori uncertainty bounds on the density field, by propagating displacement uncertainties through the measurement chain,

3) an improved displacement uncertainty estimation method using a meta-uncertainty framework whereby uncertainties estimated by different methods are combined based on the sensitivities to image perturbations,

4) the development of a Weighted Least Squares-based density integration methodology to reduce the sensitivity of the density estimation procedure to measurement noise.

5) a tracking-based processing algorithm to improve the accuracy, precision and spatial resolution of the measurements,

6) a theoretical model of the measurement process to demonstrate the effect of density gradients on the position uncertainty, and an uncertainty quantification methodology for tracking-based BOS,

Then the improvements to BOS are applied to perform a detailed characterization of the flow induced by a filamentary surface plasma discharge to develop a reduced-order model for the length and time scales of the induced flow. The measurements show that the induced flow consists of a hot gas kernel filled with vorticity in a vortex ring that expands and cools over time. A reduced-order model is developed to describe the induced flow and applying the model to the experimental data reveals that the vortex ring's properties govern the time scale associated with the kernel dynamics. The model predictions for the actuator-induced flow length and time scales can guide the choice of filament spacing and pulse frequencies for practical multi-pulse ns-SDBD configurations.

Styles APA, Harvard, Vancouver, ISO, etc.
31

Hsin-AnChen et 陳信安. « Study of the Effects of Dielectric Barrier Discharge Plasma Actuators on the Aerodynamics of a Delta Wing ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/33863593226869603944.

Texte intégral
Résumé :
碩士
國立成功大學
航空太空工程學系碩博士班
98
The working principle of plasma actuators is to apply a high voltage electric field to ionize the air around the surface of electrodes attached to an aerial vehicle. Ions produced at the electrode drift from the injection electrode to the collecting one under the effect of electric field. These ions exchange momentum with the neutral fluid particles and induce fluid movement, so called electric ionic wind. Its objective is to accelerate the airflow tangentially and very close to the wall, in order to modify the airflow profile inside the boundary layer and change the aerodynamic characteristics of the aerial vehicle, for example, delaying the flow separation, reducing the vehicle drag…etc. Plasma actuators can be categorized as corona discharge and dielectric barrier discharge (DBD) types.   This research focuses on the application of the dielectric barrier discharge actuators on a delta wing. The effects of the DBD actuators on the aerodynamics of a delta wing at different angles of attack and Reynolds numbers are investigated. The actuator is composed of two copper strips separated by a dielectric Kapton film. The ionic wind velocity profiles at different positions from the delta wing edge are measured by a glass pitot tube. The experiments are conducted in a low speed wind tunnel. The force balance is used to measure the aerodynamic force, and the smoke wire technique is adopted to visualize the leading edge vortices of the delta wing. The results show that the plasma actuator when put on one side has a significant effect on the leading edge vortex structure of the other side and delays its breakdown, which enhance the lift and roll moment accordingly. The actuators are more effective in the fore positions than in the aft ones. Finally, the actuators show the largest increases in the lift and roll moment coefficients at Reynolds number 75,000 and high angles of attack near stall.
Styles APA, Harvard, Vancouver, ISO, etc.
32

(8292123), Julien Keith Louis Brillon. « Modeling Thermochemical Nonequilibrium Processes and Flow Field Simulations of Spark-Induced Plasma ». Thesis, 2020.

Trouver le texte intégral
Résumé :
This study is comprised of two separate parts: (1) modeling thermochemical nonequilibrium processes, and (2) flow field simulations of spark-induced plasma. In the first part, the methodology and literature for modeling thermochemical nonequilibrium processes in partially ionized air is presented and implemented in a zero-dimensional solver, termed as NEQZD. The solver was verified for a purely reacting flow case as well as two thermochemical nonequilibrium flow cases. A three-temperature electron-electronic model for thermochemical nonequilibrium partially ionizing air mixture was implemented and demonstrated the ability to capture additional physics compared to the legacy two-temperature model through the inclusion of electronic energy nonequilibrium. In the second part of this work, full scale axisymmetric simulations of the flow field produced by the abrupt heat release of spark-induced plasma were presented and analyzed for two electrode configurations. The heat release was modeled based on data from experiments and assumed that all electrical power supplied to the electrodes is converted to thermal energy. It was found that steeper electrode walls lead to a greater region of hot gas, a stronger shock front, and slightly larger vortices.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie