Littérature scientifique sur le sujet « Advanced-Device »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Advanced-Device ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Advanced-Device"
Smathers, Ralph L. « Advanced Breast Biopsy Instrumentation Device ». American Journal of Roentgenology 175, no 3 (septembre 2000) : 801–3. http://dx.doi.org/10.2214/ajr.175.3.1750801.
Texte intégralPriporov, I. E. « ADVANCED DEVICE FOR FEED’S MIXING ». Техника и технологии в животноводстве, no 3 (2022) : 63–68. http://dx.doi.org/10.51794/27132064-2022-3-63.
Texte intégralHicham, Magri, Noreddine Abghour et Mohammed Ouzzif. « Device-To-Device (D2D) Communication Under LTE-Advanced Networks ». International Journal of Wireless & ; Mobile Networks 8, no 1 (29 février 2016) : 11–22. http://dx.doi.org/10.5121/ijwmn.2016.8102.
Texte intégralLei Lei, Zhangdui Zhong, Chuang Lin et Xuemin Shen. « Operator controlled device-to-device communications in LTE-advanced networks ». IEEE Wireless Communications 19, no 3 (juin 2012) : 96–104. http://dx.doi.org/10.1109/mwc.2012.6231164.
Texte intégralLiu, Jiajia, Nei Kato, Jianfeng Ma et Naoto Kadowaki. « Device-to-Device Communication in LTE-Advanced Networks : A Survey ». IEEE Communications Surveys & ; Tutorials 17, no 4 (2015) : 1923–40. http://dx.doi.org/10.1109/comst.2014.2375934.
Texte intégralZhang, Dan, Xiaojing Su, Hao Chang, Hao Xu, Xiaolei Wang, Xiaobin He, Junjie Li et al. « Advanced process and electron device technology ». Tsinghua Science and Technology 27, no 3 (juin 2022) : 534–58. http://dx.doi.org/10.26599/tst.2021.9010049.
Texte intégralSingh, Sonali. « Advanced CO2 Sensing Device in Vehicle ». International Journal for Research in Applied Science and Engineering Technology 8, no 7 (31 juillet 2020) : 28–33. http://dx.doi.org/10.22214/ijraset.2020.7007.
Texte intégralLee, A., T. Usmonov, B. Norov et S. Melikuziev. « Advanced device for cleaning drain wells ». IOP Conference Series : Materials Science and Engineering 883 (21 juillet 2020) : 012181. http://dx.doi.org/10.1088/1757-899x/883/1/012181.
Texte intégralIWASAKI, Kiyotaka. « Advanced Medical Device and Regulatory Science ». Journal of the Society of Mechanical Engineers 118, no 1155 (2015) : 85–88. http://dx.doi.org/10.1299/jsmemag.118.1155_85.
Texte intégralHasegawa, Hideki. « Advanced mesoscopic device concepts and technology ». Microelectronic Engineering 53, no 1-4 (juin 2000) : 29–36. http://dx.doi.org/10.1016/s0167-9317(00)00262-8.
Texte intégralThèses sur le sujet "Advanced-Device"
Feng, Junyi. « Device-to-Device Communications in LTE-Advanced Network ». Télécom Bretagne, 2013. http://www.telecom-bretagne.eu/publications/publication.php?idpublication=14215.
Texte intégralDevice-to-device (D2D) communication is a promising new feature in LTE-Advanced networks. It is brought up to enable efficient discovery and communication between proximate devices. With D2D capability, devices in physical proximity could be able to discover each other using LTE radio technology and to communicate with each other via a direct data path. This thesis is concerned with the design, coordination and testing of a hybrid D2D and cellular network. Design requirements and choices in physical and MAC layer functions to support D2D discovery and communication underlaying LTE networks are analyzed. In addition, a centralized scheduling strategy in base station is proposed to coordinate D2D data communication operating in LTE spectrum. The scheduling strategy combines multiple techniques, including mode selection, resource and power allocation, to jointly achieve an overall user performance improvement in a cell. Finally the performances of D2D data communication underlaying LTE system are calibrated in a multi-link scenario via system-level simulation
Wu, Yue. « Advanced technologies for device-to-device communications underlaying cellular networks ». Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/15391/.
Texte intégralLin, Meifang. « Robust organic light emitting device with advanced functional materials and novel device structures ». HKBU Institutional Repository, 2008. http://repository.hkbu.edu.hk/etd_ra/939.
Texte intégralHadimani, Ravi L. « Advanced magnetoelastic and magnetocaloric materials for device applications ». Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/54960/.
Texte intégralRickard, Jonathan James Stanley. « Advanced micro-engineered platforms for novel device technologies ». Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8303/.
Texte intégralWu, Dongping. « Novel concepts for advanced CMOS : Materials, process and device architecture ». Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3805.
Texte intégralThe continuous and aggressive dimensional miniaturization ofthe conventional complementary-metal-oxide semiconductor (CMOS)architecture has been the main impetus for the vast growth ofIC industry over the past decades. As the CMOS downscalingapproaches the fundamental limits, unconventional materials andnovel device architectures are required in order to guaranteethe ultimate scaling in device dimensions and maintain theperformance gain expected from the scaling. This thesisinvestigates both unconventional materials for the gate stackand the channel and a novel notched-gate device architecture,with the emphasis on the challenging issues in processintegration.
High-κ gate dielectrics will become indispensable forCMOS technology beyond the 65-nm technology node in order toachieve a small equivalent oxide thickness (EOT) whilemaintaining a low gate leakage current. HfO2and Al2O3as well as their mixtures are investigated assubstitutes for the traditionally used SiO2in our MOS transistors. These high-κ filmsare deposited by means of atomic layer deposition (ALD) for anexcellent control of film composition, thickness, uniformityand conformality. Surface treatments prior to ALD are found tohave a crucial influence on the growth of the high-κdielectrics and the performance of the resultant transistors.Alternative gate materials such as TiN and poly-SiGe are alsostudied. The challenging issues encountered in processintegration of the TiN or poly-SiGe with the high-k are furtherelaborated. Transistors with TiN or poly-SiGe/high-k gate stackare successfully fabricated and characterized. Furthermore,proof-of-concept strained-SiGe surface-channel pMOSFETs withALD high-κ dielectrics are demonstrated. The pMOSFETs witha strained SiGe channel exhibit a higher hole mobility than theuniversal hole mobility in Si. A new procedure for extractionof carrier mobility in the presence of a high density ofinterface states found in MOSFETs with high-κ dielectricsis developed.
A notched-gate architecture aiming at reducing the parasiticcapacitance of a MOSFET is studied. The notched gate is usuallyreferred to as a local thickness increase of the gatedielectric at the feet of the gate above the source/drainextensions. Two-dimensional simulations are carried out toinvestigate the influence of the notched gate on the static anddynamic characteristics of MOSFETs. MOSFETs with optimizednotch profile exhibit a substantial enhancement in the dynamiccharacteristics with a negligible effect on the staticcharacteristics. Notched-gate MOSFETs are also experimentallyimplemented with the integration of a high-κ gatedielectric and a poly-SiGe/TiN bi-layer gate electrode.
Key words:CMOS technology, MOSFET, high-κ, gatedielectric, ALD, surface pre-treatment, metal gate, poly-SiGe,strained SiGe, surface-channel, buried-channel, notchedgate.
Chang, Ruey-dar. « Physics and modeling of dopant diffusion for advanced device applications / ». Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Texte intégralXu, Zhenxue. « Advanced Semiconductor Device and Topology for High Power Current Source Converter ». Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/11068.
Texte intégralPh. D.
Wong, Chun Wai. « Device technology and baseband switch for the advanced on-board processing satellites ». Thesis, University of Surrey, 1988. http://epubs.surrey.ac.uk/843454/.
Texte intégralTanenbaum, Laura Melanie. « Design of an intraperitoneal drug-release device for advanced ovarian cancer therapy ». Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104610.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 111-121).
More than 14,000 women in the United States die from ovarian cancer each year. The standard of care is tumor-debulking surgery followed by adjuvant chemotherapy. Combination intraperitoneal (IP) and intravenous (IV) chemotherapy has been shown to lengthen survival over IV therapy alone. Large-volume infusions, drug-associated toxicity, and catheter-associated complications, however, increase morbidity and limit patient adherence, often resulting in discontinuation of IP therapy. The technical skill required for catheter implantation and IP chemotherapy administration has also limited its clinical adoption. The proposed solution is an implantable IP device capable of localized drug delivery that maintains the efficacy of the standard of care and overcomes current clinical challenges. A reservoir-based device was developed to release cisplatin at a constant rate. In vivo studies demonstrated that continuous dosing reduces tumor burden to the same extent as weekly IP injections. The implanted device induced significantly less systemic toxicity compared to IP injections, despite administration of higher cumulative doses. A subsequent in vitro study revealed that greater tumor shrinkage following continuous cisplatin exposure was achieved with smaller tumor nodules. These results support that an implanted device would be maximally effective against microscopic residual disease. In vitro results also illustrated that a human-scale device fabricated from orifice-lined silicone can be designed to release cisplatin continuously at the desired rate. The promising preclinical results in this thesis highlight the potential for this novel IP dosing regimen to improve the treatment of late-stage ovarian cancer and set the stage for development of the proposed human device.
by Laura Melanie Tanenbaum.
Ph. D. in Medical Engineering and Medical Physics
Livres sur le sujet "Advanced-Device"
C, Hopkins Robert, et United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., dir. Advanced underwater lift device. [Washington, DC] : National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1993.
Trouver le texte intégralG, Einspruch Norman, et Gildenblat Gennady Sh, dir. Advanced MOS device physics. San Diego : Academic Press, 1989.
Trouver le texte intégralTibor, Grasser, dir. Advanced device modeling and simulation. Singapore : World Scientific, 2003.
Trouver le texte intégralHanrahan, Jamie E. VMS advanced device driver techniques. Spring House, PA : Professional Press, 1988.
Trouver le texte intégralBaliga, B. Jayant. Advanced High Voltage Power Device Concepts. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0269-5.
Texte intégralAdvanced semiconductor device physics and modeling. Boston : Artech House, 1993.
Trouver le texte intégralSchenk, Andreas. Advanced physical models for silicon device simulation. Wien : Springer, 1998.
Trouver le texte intégralSchenk, Andreas. Advanced Physical Models for Silicon Device Simulation. Vienna : Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-6494-5.
Texte intégralSemenov, Oleg, Hossein Sarbishaei et Manoj Sachdev. ESD Protection Device and Circuit Design for Advanced CMOS Technologies. Dordrecht : Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8301-3.
Texte intégralHossein, Sarbishaei, et Sachdev Manoj, dir. ESD protection device and circuit design for advanced CMOS technologies. [Dordrecht] : Springer, 2008.
Trouver le texte intégralChapitres de livres sur le sujet "Advanced-Device"
Jiang, Fengyi. « Advanced Optoelectronic Device Processing ». Dans Handbook of GaN Semiconductor Materials and Devices, 285–301. Boca Raton : Taylor & Francis, CRC Press, 2017. | Series : Series in optics and optoelectronics : CRC Press, 2017. http://dx.doi.org/10.1201/9781315152011-8.
Texte intégralDegiorgis, Giorgio, et Francesca Illuzzi. « Advanced Technologies for ULSI Device Production ». Dans High Energy Density Technologies in Materials Science, 133–38. Dordrecht : Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0499-6_11.
Texte intégralJeong, Yong Mu, Ki-Taek Lim et Seung Eun Lee. « Advanced Sensing Device for Gesture Recognition ». Dans Lecture Notes in Electrical Engineering, 63–66. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27296-7_11.
Texte intégralKolbesen, B. O. « Defect Aspects of Advanced Device Technologies ». Dans Crucial Issues in Semiconductor Materials and Processing Technologies, 3–25. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2714-1_1.
Texte intégralLi, Simon, et Yue Fu. « Advanced Theory of TCAD Device Simulation ». Dans 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics, 41–80. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0481-1_3.
Texte intégralCham, Kit Man, Soo-Young Oh, John L. Moll, Keunmyung Lee, Paul Vande Voorde et Daeje Chin. « Simulation Techniques for Advanced Device Development ». Dans The Kluwer International Series in Engineering and Computer Science, 167–95. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1695-4_8.
Texte intégralKazmerski, Lawrence L. « Advanced Materials and Device Analytical Techniques ». Dans Advances in Solar Energy, 1–123. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2227-6_1.
Texte intégralSivula, Kevin. « Advanced Device Architectures and Tandem Devices ». Dans Photoelectrochemical Solar Fuel Production, 493–512. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29641-8_12.
Texte intégralDas, Koushik. « Advanced Topic 1 : Adding Device Management Functions ». Dans Create an Enterprise-Level Test Automation Framework with Appium, 271–310. Berkeley, CA : Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8197-0_17.
Texte intégralNishi, Yoshitake, et Kazunori Tanaka. « Advanced CFRM Joint Device for Mover Engineering ». Dans Solid State Phenomena, 185–88. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-33-7.185.
Texte intégralActes de conférences sur le sujet "Advanced-Device"
« Advanced Device Structures ». Dans 2006 International Semiconductor Conference. IEEE, 2006. http://dx.doi.org/10.1109/smicnd.2006.284000.
Texte intégralChang, Chih-Sheng, et Akira Hokazono. « CMOS Devices - Advanced Device Structures ». Dans 2007 IEEE International Electron Devices Meeting. IEEE, 2007. http://dx.doi.org/10.1109/iedm.2007.4419091.
Texte intégralHumphreys, Heather, Wayne J. Book et Grace Deetjen. « Advanced patient transfer assist device ». Dans 2018 International Symposium on Medical Robotics (ISMR). IEEE, 2018. http://dx.doi.org/10.1109/ismr.2018.8333290.
Texte intégralDoppler, K., M. P. Rinne, P. Janis, C. Ribeiro et K. Hugl. « Device-to-Device Communications ; Functional Prospects for LTE-Advanced Networks ». Dans 2009 IEEE International Conference on Communications Workshops. IEEE, 2009. http://dx.doi.org/10.1109/iccw.2009.5208020.
Texte intégralThrimurthulu, V., et N. S. Murti Sarma. « Device-to-device communications in long term evaluation-advanced network ». Dans 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2017. http://dx.doi.org/10.1109/iccons.2017.8250577.
Texte intégralYang, MiJeong, KwangRyul Jung, SoonYong Lim et JaeWook Shin. « Development of device-to-device communication in LTE-Advanced system ». Dans 2014 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2014. http://dx.doi.org/10.1109/icce.2014.6776080.
Texte intégralShrestha, P., K. P. Cheung, J. P. Campbell, J. T. Ryan et H. Baumgart. « Fast-capacitance for advanced device characterization ». Dans 2013 IEEE International Integrated Reliability Workshop (IIRW). IEEE, 2013. http://dx.doi.org/10.1109/iirw.2013.6804147.
Texte intégralRavaioli, Umberto. « Advanced methods for silicon device modeling ». Dans 2010 10th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF). IEEE, 2010. http://dx.doi.org/10.1109/smic.2010.5422994.
Texte intégralZolper, John C. « Advanced device technologies for defense systems ». Dans 2012 70th Annual Device Research Conference (DRC). IEEE, 2012. http://dx.doi.org/10.1109/drc.2012.6256988.
Texte intégralWang, Yun, Shaoyin Chen, Xiaoru Wang et Michael Shen. « Millisecond annealing for advanced device fabrications ». Dans 2014 20th International Conference on Ion Implantation Technology (IIT). IEEE, 2014. http://dx.doi.org/10.1109/iit.2014.6940020.
Texte intégralRapports d'organisations sur le sujet "Advanced-Device"
Beasley, M. R., A. Kapitulnik, T. H. Geballe et R. H. Hammond. Advanced Superconducting Materials and Device Concepts. Fort Belvoir, VA : Defense Technical Information Center, juillet 2001. http://dx.doi.org/10.21236/ada388285.
Texte intégralHu, Chenming, et Jeffrey Bokor. Advanced Silicon FET Physics and Device Structures. Fort Belvoir, VA : Defense Technical Information Center, décembre 1998. http://dx.doi.org/10.21236/ada372474.
Texte intégralAndrew, Marilee, et Lawrence Crum. An Acoustic Hemostasis Device for Advanced Trauma Care. Fort Belvoir, VA : Defense Technical Information Center, octobre 2001. http://dx.doi.org/10.21236/ada398720.
Texte intégralStout, P., et A. J. Przekwas. An Advanced CAD Tool for Quantum Device Simulation. Fort Belvoir, VA : Defense Technical Information Center, juin 1999. http://dx.doi.org/10.21236/ada364061.
Texte intégralMekhiche, Mike, Hiz Dufera et Deb Montagna. Advanced, High Power, Next Scale, Wave Energy Conversion Device. Office of Scientific and Technical Information (OSTI), octobre 2012. http://dx.doi.org/10.2172/1097434.
Texte intégralMcCall, Alan, et Alex Fleming. Advanced Controls for the Multi-pod Centipod WEC device. Office of Scientific and Technical Information (OSTI), février 2016. http://dx.doi.org/10.2172/1237967.
Texte intégralSchaff, William J., S. D. Offsey et Lester F. Eastman. Advanced Technology for Improved Quantum Device Properties Using Highly Strained Materials. Fort Belvoir, VA : Defense Technical Information Center, mars 1991. http://dx.doi.org/10.21236/ada233109.
Texte intégralSchaff, W. J., S. D. Offsey, H. Park et L. F. Eastman. Advanced Technology for Improved Quantum Device Properties Using Highly Strained Materials. Fort Belvoir, VA : Defense Technical Information Center, juin 1989. http://dx.doi.org/10.21236/ada225695.
Texte intégralLing, Bradley A. Final Technical and Scientific Report : Advanced Control of the Azura Wave Energy Device. Office of Scientific and Technical Information (OSTI), juillet 2018. http://dx.doi.org/10.2172/1608489.
Texte intégralBooske, J. H., J. Scharer, R. M. Gilgenbach et Y. Y. Lau. Instrumentation for Advanced, Slow-Waved, Microwave Vacuum Electron Device Research and Graduate Education. Fort Belvoir, VA : Defense Technical Information Center, mars 2001. http://dx.doi.org/10.21236/ada389249.
Texte intégral