Littérature scientifique sur le sujet « Adsorption, Density Functional Theory »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Adsorption, Density Functional Theory ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Adsorption, Density Functional Theory"
Ravikovitch, Peter I., et Alexander V. Neimark. « Density Functional Theory Model of Adsorption Deformation ». Langmuir 22, no 26 (décembre 2006) : 10864–68. http://dx.doi.org/10.1021/la061092u.
Texte intégralSchmidt, Matthias. « Density functional theory for random sequential adsorption ». Journal of Physics : Condensed Matter 14, no 46 (13 novembre 2002) : 12119–27. http://dx.doi.org/10.1088/0953-8984/14/46/316.
Texte intégralAhmad Zabidi, Noriza, Nazrul Ahmad Rosli, Hasan Abu Kassim et Keshav N. Shrivastava. « Density Functional Theory Adsorption of Atoms on Cytosine ». Malaysian Journal of Science 29, no 1 (29 avril 2010) : 62–72. http://dx.doi.org/10.22452/mjs.vol29no1.10.
Texte intégralKarami, A. R. « Density functional theory study of acrolein adsorption on graphyne ». Canadian Journal of Chemistry 93, no 11 (novembre 2015) : 1261–65. http://dx.doi.org/10.1139/cjc-2015-0267.
Texte intégralManzhos, Sergei, et Konstantinos Kotsis. « Adsorption and Light Absorption Properties of 2-Anthroic Acid on Titania : a Density Functional Theory – Time-Dependent Density Functional Theory Study ». MRS Advances 1, no 41 (2016) : 2795–800. http://dx.doi.org/10.1557/adv.2016.242.
Texte intégralSun, Y., J. Hu, H. Jin, G. Yang et J. He. « Adsorption of fatty acid and methanol via calcium sulfate-based catalyst using a density functional theory approach ». Journal of Physics : Conference Series 2047, no 1 (1 octobre 2021) : 012016. http://dx.doi.org/10.1088/1742-6596/2047/1/012016.
Texte intégralFANG, XIAOLIANG, XIAOLI FAN, RUNXIN RAN et PIN XIAO. « DENSITY FUNCTIONAL THEORY STUDIES ON THE ADSORPTION OF 4-METHYLBENZENETHIOL AND 4-ETHYLBENZENETHIOL MOLECULES ON Au(111) SURFACE ». Surface Review and Letters 21, no 06 (décembre 2014) : 1450087. http://dx.doi.org/10.1142/s0218625x14500875.
Texte intégralAmmar, H. Y., H. M. Badran, Ahmad Umar, H. Fouad et Othman Y. Alothman. « ZnO Nanocrystal-Based Chloroform Detection : Density Functional Theory (DFT) Study ». Coatings 9, no 11 (19 novembre 2019) : 769. http://dx.doi.org/10.3390/coatings9110769.
Texte intégralPrabowo, Wahyu Aji Eko, Supriadi Rustad, T. Sutojo, Nugraha, Subagjo et Hermawan Kresno Dipojono. « Methyl Butanoate Adsorption on MoS2 Surface : A Density Functional Theory Investigation ». MATEC Web of Conferences 156 (2018) : 06009. http://dx.doi.org/10.1051/matecconf/201815606009.
Texte intégralSupong, Aola, Upasana Bora Sinha et Dipak Sinha. « Density Functional Theory Calculations of the Effect of Oxygenated Functionals on Activated Carbon towards Cresol Adsorption ». Surfaces 5, no 2 (2 mai 2022) : 280–89. http://dx.doi.org/10.3390/surfaces5020020.
Texte intégralThèses sur le sujet "Adsorption, Density Functional Theory"
Mulakaluri, Narasimham. « Density functional theory investigation of water adsorption on the Fe3O4(001) surface ». Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-121376.
Texte intégralSayin, Ceren Sibel. « Density Functional Theory Investigation Of Tio2 Anatase Nanosheets ». Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611075/index.pdf.
Texte intégralGuhl, Hannes. « Density functional theory study of oxygen and water adsorption on SrTiO 3 (001) ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16276.
Texte intégralStrontium titanate is an extensively studied material with a wide range of application, for instance in photo-catalysis and most importantly, it is used as a substrate in growth of functional oxides. The surface chemistry is crucial and hence understanding the surface structure on atomic scale is essential for gaining insight into the fundamental processes in the aforementioned applications. Moreover, there exist a lot of evidence that this surface chemistry might be controlled to considerably by extrinsic species, such as residual hydrogen and water. Investigating the properties of water and oxygen on the strontium titanate surface is certainly a natural starting point for a theoretical study based on density functional theory, because these species are practically present on the surface on a wide range of experimental conditions and they are computationally feasible. For the oxygen and water adsorption the binding energy is controlled by long-range surface relaxations leading to an effective repulsion of the adsorbed specimen. The isolated oxygen ad-atom forms a covalently bonded “quasi-peroxide anion” in combination with a lattice oxygen atom. Contrariwise, in all investigated configurations containing water molecules and hydroxyl groups, the respective oxygen atoms assumed positions close to the oxygen sites of the continued perovskite lattice of the substrate. Most remarkably, on the strontium oxide termination, the water molecules adsorbs and dissociates effortlessly leading to the formation of a pair of hydroxyl groups. For the titanium dioxide termination, a coverage dependent adsorption mode is observed. Densely packings stabilize water molecules, whereas at lower coverage and finite temperatures the formation of hydroxyl groups is found. The energetics responsible for this behavior is consistent with recent experiments by Iwahori and coworkers.
Han, Jeong Woo. « Density functional theory studies for separation of enantiomers of a chiral species by enantiospecific adsorption on solid surfaces ». Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34848.
Texte intégralScaife, S. J. « The characterisation of porous carbons using computer modelling and experimental techniques ». Thesis, Bangor University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310862.
Texte intégralKIM, BO GYEONG. « Mercury-Containing Species and Carbon Dioxide Adsorption Studies on Inorganic Compounds Using Density Functional Theory ». Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/193659.
Texte intégralPatra, Abhirup. « Surface properties, adsorption, and phase transitions with a dispersion-corrected density functional ». Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/516784.
Texte intégralPh.D.
Understanding the “incomprehensible” world of materials is the biggest challenge to the materials science community. To access the properties of the materials and to utilize them for positive changes in the world are of great interest. Often scientists use approximate theories to get legitimate answers to the problems. Density functional theory (DFT) has emerged as one of the successful and powerful predictive methods in this regard. The accuracy of DFT relies on the approximate form of the exchange-correlation (EXC) functional. The most complicated form of this functional can be as accurate as more complicated and computationally robust method like Quantum Monte Carlo (QMC), Random Phase Approximation (RPA). Two newest meta-GGAs, SCAN and SCAN+rVV10 are among those functionals. Instantaneous charge fluctuation between any two objects gives rise to the van der Waals (vdW) interactions (often termed as dispersion interactions). It is a purely correlation effect of the interacting electrons and thus non-local in nature. Despite its small magnitude it plays a very important role in many systems such as weakly bound rare-gas dimers, molecular crystals, and molecule-surface interaction. The traditional semi-local functionals can not describe the non-local of vdW interactions; only short- and intermediate-range of the vdW are accounted for in these functionals. In this thesis we investigate the effect of the weak vdW interactions in surface properties, rare-gas dimers and how it can be captured seamlessly within the semi-local density functional approximation. We have used summed-up vdW series within the spherical-shell approximation to develop a new vdW correction to the meta-GGA-MS2 functional. This method has been utilized to calculate binding energy and equilibrium binding distance of different homo- and hetero-dimers and we found that this method systematically improves the MGGA-MS2 results with a very good agreement with the experimental data. The binding energy curves are plotted using this MGGA-MS2, MGGA-MS2-vdW and two other popular vdW-corrected functionals PBE-D2, vdW-DF2. From these plots it is clear that our summed-up vdW series captures the long-range part of the binding energy curve via C6, C8, and, C10 coefficients. The clean metallic surface properties such as surface energy, work functions are important and often play a crucial role in many catalytic reactions. The weak dispersion interactions present between the surfaces has significant effect on these properties. We used LDA, PBE, PBSEsol, SCAN and SCAN+rVV10 to compute the clean metallic surface properties. The SCAN+rVV10 seamlessly captures different ranges of the vdW interactions at the surface and predicts very accurate values of surface energy ( ) , and work function (𝞥) and inter-layer relaxations (𝞭%). Our conclusion is adding non-local vdW correction to a good semi-local density functional such as SCAN is necessary in order to predict the weak attractive vdW forces at the metallic surface. The SCAN+rVV10 has also been employed to study the hydrogen evolution reaction (HER) on 1T-MoS2. We have chosen as a descriptor differential Gibbs free energy (𝚫 GH ) to understand the underlying mechanism of this catalytic reaction. Density functional theory calculations agree with the experimental findings. In the case of layered materials like 1T-MoS2, vdW interactions play an important role in hydrogen binding, that SCAN+rVV10 calculation was able to describe precisely. We have also used SCAN and SCAN+rVV10 functionals to understand bonding of CO on (111) metal surfaces, where many approximations to DFT fail to predict correct adsorption site and adsorption energy. In this case SCAN and SCAN+rVV10 do not show systematic improvements compared to LDA or PBE, rather, both SCAN and SCAN+rVV10 overbind CO more compared to PBE but less compared to the LDA. This overbinding of CO is associated with the incorrect charge transfer from metal to molecule and presumably comes from the density-driven self-interaction error of the functionals. In this thesis we assessed different semi-local functionals to investigate molecule surface systems of 𝞹-conjugated molecules (thiophene, pyridine) adsorbed on Cu(111), Cu(110), Cu(100) surfaces. We find the binding mechanism of these molecules on the metallic surface is mediated by short and intermediate range vdW interactions. Calculated values of binding energies and adsorbed geometries imply that this kind of adsorption falls in the weak chemisorption regime. Structural phase transitions due to applied pressure are very important in materials science. However, pressure induced structural phase transition in early lanthanide elements such as Ce are considered as abnormal first order phase transition. The Ce 𝝰-to-𝝲 isostructural phase transition is one of them. The volume collapse and change of magnetic properties associated with this transition are mediated by the localized f-electron. Semi-local density functionals like LDA, GGA delocalize this f-electron due to the inherent self-interaction error (SIE) of these functionals. We have tested the SCAN functional for this particular problem, and, it was found that the spin-orbit coupling calculations with SCAN not only predicts the correct magnetic ordering of the two phases, but also gives a correct minima for the high-pressure 𝝰-Ce phase and a shoulder for the low-pressure 𝝲-Ce phase.
Temple University--Theses
Muscenti, Thomas Michael. « Density Functional Theory Study of Rutile SiO₂ Stishovite : An Electron Pair Description of Bulk and Surface Properties ». Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/10179.
Texte intégralMaster of Science
Edwards, Angela Celeste. « Probing the Hydrogen Bonding Interaction at the Gas-Surface Interface using Dispersion Corrected Density Functional Theory ». Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/71784.
Texte intégralMaster of Science
Widjaja, Hantarto. « Geometrical and orientation investigations on the electronic structures of elements adsorption on graphene via density functional theory ». Thesis, Widjaja, Hantarto (2016) Geometrical and orientation investigations on the electronic structures of elements adsorption on graphene via density functional theory. PhD thesis, Murdoch University, 2016. https://researchrepository.murdoch.edu.au/id/eprint/31440/.
Texte intégralLivres sur le sujet "Adsorption, Density Functional Theory"
Ramasami, Ponnadurai, dir. Density Functional Theory. Berlin, Boston : De Gruyter, 2018. http://dx.doi.org/10.1515/9783110568196.
Texte intégralDreizler, Reiner M., et Eberhard K. U. Gross. Density Functional Theory. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-86105-5.
Texte intégralGross, Eberhard K. U., et Reiner M. Dreizler, dir. Density Functional Theory. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9975-0.
Texte intégralEngel, Eberhard, et Reiner M. Dreizler. Density Functional Theory. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14090-7.
Texte intégralF, Nalewajski R., dir. Density functional theory. Berlin : Springer, 1996.
Trouver le texte intégralGross, E. K. U. 1953-, Dreizler Reiner M, North Atlantic Treaty Organization. Scientific Affairs Division. et NATO Advanced Study Institute on Density Functional Theory (1993 : Il Ciocco, Italy), dir. Density functional theory. New York : Plenum Press, 1995.
Trouver le texte intégralGross, Eberhard K. U. Density Functional Theory. Boston, MA : Springer US, 1995.
Trouver le texte intégralSahni, Viraht. Quantal Density Functional Theory. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09624-6.
Texte intégralSahni, Viraht. Quantal Density Functional Theory. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49842-2.
Texte intégralNalewajski, R. F., dir. Density Functional Theory II. Berlin/Heidelberg : Springer-Verlag, 1996. http://dx.doi.org/10.1007/bfb0016641.
Texte intégralChapitres de livres sur le sujet "Adsorption, Density Functional Theory"
Gulati, Archa, et Rita Kakkar. « 6. DFT studies on storage and adsorption capacities of gases on MOFs ». Dans Density Functional Theory, sous la direction de Ponnadurai Ramasami, 83–112. Berlin, Boston : De Gruyter, 2018. http://dx.doi.org/10.1515/9783110568196-006.
Texte intégralYatsyshin, Peter, et Serafim Kalliadasis. « Classical Density-Functional Theory Studies of Fluid Adsorption on Nanopatterned Planar Surfaces ». Dans Springer Proceedings in Mathematics & ; Statistics, 171–85. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76599-0_10.
Texte intégralYatsyshin, P., M. A. Durán-Olivencia et S. Kalliadasis. « Classical Density Functional Theory and Nanofluidics : Adsorption and the Interface Binding Potential ». Dans 21st Century Nanoscience – A Handbook, 14–1. Boca Raton, Florida : CRC Press, [2020] : CRC Press, 2020. http://dx.doi.org/10.1201/9780429347313-14.
Texte intégralHuang, Yu-Wei, Ren-Shiou Ke, Wei-Chang Hao et Shyi-Long Lee. « An Evaluation of Density Functional Theory for CO Adsorption on Pt(111) ». Dans Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology, 195–210. Cham : Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01529-3_11.
Texte intégralLu, Nai-Xia, Jing-Cong Tao et Xin Xu. « NO adsorption and transformation on the BaO surfaces from density functional theory calculations ». Dans Highlights in Theoretical Chemistry, 121–34. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-47845-5_15.
Texte intégralHöffling, B., F. Ortmann, K. Hannewald et F. Bechstedt. « Adsorption of Cysteine on the Au(110)-surface : A Density Functional Theory Study ». Dans High Performance Computing in Science and Engineering '09, 53–60. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04665-0_4.
Texte intégralSowers, Susanne L., et Keith E. Gubbins. « Removal of Trace Pollutants by Adsorption : Density Functional Theory and Monte Carlo Simulation ». Dans The Kluwer International Series in Engineering and Computer Science, 855–63. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1375-5_107.
Texte intégralAkdim, Brahim, Saber Hussain et Ruth Pachter. « A Density Functional Theory Study of Oxygen Adsorption at Silver Surfaces : Implications for Nanotoxicity ». Dans Computational Science – ICCS 2008, 353–59. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69387-1_39.
Texte intégralAikens, Christine M., et George C. Schatz. « Time-Dependent Density Functional Theory Examination of the Effects of Ligand Adsorption on Metal Nanoparticles ». Dans ACS Symposium Series, 108–21. Washington, DC : American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0996.ch009.
Texte intégralPrabowo, Wahyu Aji Eko, Mohammad Kemal Agusta, Nugraha, Subagjo, Ahmad Husin Lubis et Hermawan Kresno Dipojono. « The Investigation of the Adsorption of Thiophene on NiMoS Surface : A Density Functional Theory Study ». Dans Lecture Notes in Electrical Engineering, 25–39. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7684-5_3.
Texte intégralActes de conférences sur le sujet "Adsorption, Density Functional Theory"
Kubicki, James D. « DENSITY FUNCTIONAL THEORY MODELING OF FERRIHYDRITE NANOPARTICLE OXYANION ADSORPTION ». Dans GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-281499.
Texte intégralAkimenko, Ju Y., S. S. Akimenko et V. A. Gorbunov. « Modeling butadiene adsorption on oxidized graphene surface using density functional theory ». Dans OIL AND GAS ENGINEERING (OGE-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4998828.
Texte intégralWungu, Triati Dewi Kencana, Widayani, Irfan Dwi Aditya, Adhitya Gandaryus Saputro et Suprijadi. « Adsorption of CO2 on Fe-montmorillonite : A density functional theory study ». Dans THE 4TH INTERNATIONAL CONFERENCE ON MATERIALS AND METALLURGICAL ENGINEERING AND TECHNOLOGY (ICOMMET) 2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0071477.
Texte intégralPeng, Yanhua, Fenghui Tian, Yan Zhang et Jianqiang Yu. « Adsorption of CO2 on Bi2MoO6 (010) surface : A density functional theory study ». Dans 2015 6th International Conference on Manufacturing Science and Engineering. Paris, France : Atlantis Press, 2015. http://dx.doi.org/10.2991/icmse-15.2015.133.
Texte intégralRan, Zhuo, Luo Yan, Wang Dibo, Song Haoyong, Huang Qingdan et Wang Wei. « Density Functional Theory Study of Heptafluoroisobutyronitrile and its Decompositions Adsorption on γ-Al2O3 ». Dans 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). IEEE, 2021. http://dx.doi.org/10.1109/cieec50170.2021.9510645.
Texte intégralKubicki, James, et Nadine Kabengi. « Oxyanion adsorption structures, thermodynamics and kinetics : Review of density functional theory results in comparison to experimental observations ». Dans Goldschmidt2021. France : European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.4458.
Texte intégralGOMEZ DIAZ, J., A. P. SEITSONEN, M. IANNUZZI et J. HUTTER. « ADSORPTION OF AN ORGANIC MOLECULE ON A CORRUGATED BN/Rh(111) “NANOMESH” : ATOMISTIC SIMULATION USING DENSITY FUNCTIONAL THEORY ». Dans Proceedings of International Conference Nanomeeting – 2013. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814460187_0069.
Texte intégralMOUSSOUNDA, P. S., B. M'PASSI–MABIALA, M. F. HAROUN, P. LEGARE, G. RAKOTOVELO, A. RAKOTOMAHEVITRA et C. DEMANGEAT. « A DENSITY FUNCTIONAL THEORY STUDY OF THE ADSORPTION OF CH3 ON THE Pt(100) AND Ni(111) SURFACES ». Dans Proceedings of the Fourth International Workshop. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773241_0012.
Texte intégralYin, Meng, Xiangyu Qiao, Qinqiang Zhang, Ken Suzuki et Lei Wang. « Strain-Induced Change of Adsorption Behaviour of Gas Molecules on Graphene Analyzed by Density Functional Method ». Dans ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94892.
Texte intégralCheplya, V. S., et S. N. Shahab. « QUANTUM CHEMICAL ANALYSIS OF THE SORPTION INTERACTION BETWEEN PSORALENE AND CARBON DIOXIDE (II) ». Dans SAKHAROV READINGS 2021 : ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-358-360.
Texte intégralRapports d'organisations sur le sujet "Adsorption, Density Functional Theory"
Nilson, R. H., et S. K. Griffiths. A locally analytic density functional theory describing adsorption and condensation in microporous materials. Office of Scientific and Technical Information (OSTI), février 1997. http://dx.doi.org/10.2172/477615.
Texte intégralSalsbury Jr., Freddie. Magnetic fields and density functional theory. Office of Scientific and Technical Information (OSTI), février 1999. http://dx.doi.org/10.2172/753893.
Texte intégralWu, Jianzhong. Density Functional Theory for Phase-Ordering Transitions. Office of Scientific and Technical Information (OSTI), mars 2016. http://dx.doi.org/10.2172/1244653.
Texte intégralFeinblum, David V., Daniel Burrill, Charles Edward Starrett et Marc Robert Joseph Charest. Simulating Warm Dense Matter using Density Functional Theory. Office of Scientific and Technical Information (OSTI), août 2015. http://dx.doi.org/10.2172/1209460.
Texte intégralRingnalda, Murco N. Novel Electron Correlation Methods : Multiconfigurational Density Functional Theory. Fort Belvoir, VA : Defense Technical Information Center, avril 1997. http://dx.doi.org/10.21236/ada329569.
Texte intégralBurke, Kieron. Density Functional Theory with Dissipation : Transport through Single Molecules. Office of Scientific and Technical Information (OSTI), avril 2012. http://dx.doi.org/10.2172/1039302.
Texte intégralMattsson, Ann Elisabet, Normand Arthur Modine, Michael Paul Desjarlais, Richard Partain Muller, Mark P. Sears et Alan Francis Wright. Beyond the local density approximation : improving density functional theory for high energy density physics applications. Office of Scientific and Technical Information (OSTI), novembre 2006. http://dx.doi.org/10.2172/976954.
Texte intégralDesjarlais, Michael Paul, et Thomas Kjell Rene Mattsson. High energy-density water : density functional theory calculations of structure and electrical conductivity. Office of Scientific and Technical Information (OSTI), mars 2006. http://dx.doi.org/10.2172/902882.
Texte intégralPachter, Ruth, Kiet A. Nguyen et Paul N. Day. Density functional Theory Based Generalized Effective Fragment Potential Method (Postprint). Fort Belvoir, VA : Defense Technical Information Center, juillet 2014. http://dx.doi.org/10.21236/ada609687.
Texte intégralHuang, L., S. G. Lambrakos, N. Bernstein, A. Shabaev et L. Massa. Absorption Spectra of Water Clusters Calculated Using Density Functional Theory. Fort Belvoir, VA : Defense Technical Information Center, juillet 2013. http://dx.doi.org/10.21236/ada587440.
Texte intégral