Littérature scientifique sur le sujet « ADER-DG »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « ADER-DG ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "ADER-DG"

1

Dumbser, Michael, Francesco Fambri, Maurizio Tavelli, Michael Bader et Tobias Weinzierl. « Efficient Implementation of ADER Discontinuous Galerkin Schemes for a Scalable Hyperbolic PDE Engine ». Axioms 7, no 3 (1 septembre 2018) : 63. http://dx.doi.org/10.3390/axioms7030063.

Texte intégral
Résumé :
In this paper we discuss a new and very efficient implementation of high order accurate arbitrary high order schemes using derivatives discontinuous Galerkin (ADER-DG) finite element schemes on modern massively parallel supercomputers. The numerical methods apply to a very broad class of nonlinear systems of hyperbolic partial differential equations. ADER-DG schemes are by construction communication-avoiding and cache-blocking, and are furthermore very well-suited for vectorization, and so they appear to be a good candidate for the future generation of exascale supercomputers. We introduce the numerical algorithm and show some applications to a set of hyperbolic equations with increasing levels of complexity, ranging from the compressible Euler equations over the equations of linear elasticity and the unified Godunov-Peshkov-Romenski (GPR) model of continuum mechanics to general relativistic magnetohydrodynamics (GRMHD) and the Einstein field equations of general relativity. We present strong scaling results of the new ADER-DG schemes up to 180,000 CPU cores. To our knowledge, these are the largest runs ever carried out with high order ADER-DG schemes for nonlinear hyperbolic PDE systems. We also provide a detailed performance comparison with traditional Runge-Kutta DG schemes.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wenk, S., C. Pelties, H. Igel et M. Käser. « Regional wave propagation using the discontinuous Galerkin method ». Solid Earth Discussions 4, no 2 (23 août 2012) : 1129–64. http://dx.doi.org/10.5194/sed-4-1129-2012.

Texte intégral
Résumé :
Abstract. We present an application of the discontinuous Galerkin (DG) method to regional wave propagation. The method makes use of unstructured tetrahedral meshes, combined with a time integration scheme solving the arbitrary high-order derivative (ADER) Riemann problem. The ADER-DG method is high-order accurate in space and time, beneficial for reliable simulations of high-frequency wavefields over long propagation distances. Due to the ease with which tetrahedral grids can be adapted to complex geometries, undulating topography of the Earth's surface and interior interfaces can be readily implemented in the computational domain. The ADER-DG method is benchmarked for the accurate radiation of elastic waves excited by an explosive and a shear dislocation source. We compare real data measurements with synthetics of the 2009 L'Aquila event (central Italy). We take advantage of the geometrical flexibility of the approach to generate a European model composed of the 3-D EPcrust model, combined with the depth-dependent ak135 velocity model in the upper-mantle. The results confirm the applicability of the ADER-DG method for regional scale earthquake simulations, which provides an alternative to existing methodologies.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wenk, S., C. Pelties, H. Igel et M. Käser. « Regional wave propagation using the discontinuous Galerkin method ». Solid Earth 4, no 1 (30 janvier 2013) : 43–57. http://dx.doi.org/10.5194/se-4-43-2013.

Texte intégral
Résumé :
Abstract. We present an application of the discontinuous Galerkin (DG) method to regional wave propagation. The method makes use of unstructured tetrahedral meshes, combined with a time integration scheme solving the arbitrary high-order derivative (ADER) Riemann problem. This ADER-DG method is high-order accurate in space and time, beneficial for reliable simulations of high-frequency wavefields over long propagation distances. Due to the ease with which tetrahedral grids can be adapted to complex geometries, undulating topography of the Earth's surface and interior interfaces can be readily implemented in the computational domain. The ADER-DG method is benchmarked for the accurate radiation of elastic waves excited by an explosive and a shear dislocation source. We compare real data measurements with synthetics of the 2009 L'Aquila event (central Italy). We take advantage of the geometrical flexibility of the approach to generate a European model composed of the 3-D EPcrust model, combined with the depth-dependent ak135 velocity model in the upper mantle. The results confirm the applicability of the ADER-DG method for regional scale earthquake simulations, which provides an alternative to existing methodologies.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pelties, C., A. A. Gabriel et J. P. Ampuero. « Verification of an ADER-DG method for complex dynamic rupture problems ». Geoscientific Model Development 7, no 3 (13 mai 2014) : 847–66. http://dx.doi.org/10.5194/gmd-7-847-2014.

Texte intégral
Résumé :
Abstract. We present results of thorough benchmarking of an arbitrary high-order derivative discontinuous Galerkin (ADER-DG) method on unstructured meshes for advanced earthquake dynamic rupture problems. We verify the method by comparison to well-established numerical methods in a series of verification exercises, including dipping and branching fault geometries, heterogeneous initial conditions, bimaterial interfaces and several rate-and-state friction laws. We show that the combination of meshing flexibility and high-order accuracy of the ADER-DG method makes it a competitive tool to study earthquake dynamics in geometrically complicated setups.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pelties, C., A. A. Gabriel et J. P. Ampuero. « Verification of an ADER-DG method for complex dynamic rupture problems ». Geoscientific Model Development Discussions 6, no 4 (28 novembre 2013) : 5981–6034. http://dx.doi.org/10.5194/gmdd-6-5981-2013.

Texte intégral
Résumé :
Abstract. We present thorough benchmarking of an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method on unstructured meshes for advanced earthquake dynamic rupture problems. We validate the method in comparison to well-established numerical methods in a series of verification exercises, including dipping and branching fault geometries, heterogeneous initial conditions, bi-material cases and several rate-and-state friction constitutive laws. We show that the combination of meshing flexibility and high-order accuracy of the ADER-DG method makes it a competitive tool to study earthquake dynamics in complicated setups.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gaburro, Elena, Philipp Öffner, Mario Ricchiuto et Davide Torlo. « High order entropy preserving ADER-DG schemes ». Applied Mathematics and Computation 440 (mars 2023) : 127644. http://dx.doi.org/10.1016/j.amc.2022.127644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Guerrero Fernández, Ernesto, Cipriano Escalante et Manuel J. Castro Díaz. « Well-Balanced High-Order Discontinuous Galerkin Methods for Systems of Balance Laws ». Mathematics 10, no 1 (21 décembre 2021) : 15. http://dx.doi.org/10.3390/math10010015.

Texte intégral
Résumé :
This work introduces a general strategy to develop well-balanced high-order Discontinuous Galerkin (DG) numerical schemes for systems of balance laws. The essence of our approach is a local projection step that guarantees the exactly well-balanced character of the resulting numerical method for smooth stationary solutions. The strategy can be adapted to some well-known different time marching DG discretisations. Particularly, in this article, Runge–Kutta DG and ADER DG methods are studied. Additionally, a limiting procedure based on a modified WENO approach is described to deal with the spurious oscillations generated in the presence of non-smooth solutions, keeping the well-balanced properties of the scheme intact. The resulting numerical method is then exactly well-balanced and high-order in space and time for smooth solutions. Finally, some numerical results are depicted using different systems of balance laws to show the performance of the introduced numerical strategy.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Castro, C. E., J. Behrens et C. Pelties. « CUDA-C implementation of the ADER-DG method for linear hyperbolic PDEs ». Geoscientific Model Development Discussions 6, no 3 (13 juillet 2013) : 3743–86. http://dx.doi.org/10.5194/gmdd-6-3743-2013.

Texte intégral
Résumé :
Abstract. We implement the ADER-DG numerical method using the CUDA-C language to run the code in a Graphic Processing Unit (GPU). We focus on solving linear hyperbolic partial differential equations where the method can be expressed as a combination of precomputed matrix multiplications becoming a good candidate to be used on the GPU hardware. Moreover, the method is arbitrarily high-order involving intensive work on local data, a property that is also beneficial for the target hardware. We compare our GPU implementation against CPU versions of the same method observing similar convergence properties up to a threshold where the error remains fixed. This behaviour is in agreement with the CPU version but the threshold is larger that in the CPU case. We also observe a big difference when considering single and double precision where in the first case the threshold error is significantly larger. Finally, we did observe a speed up factor in computational time but this is relative to the specific test or benchmark problem.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Charrier, Dominic E., Benjamin Hazelwood, Ekaterina Tutlyaeva, Michael Bader, Michael Dumbser, Andrey Kudryavtsev, Alexander Moskovsky et Tobias Weinzierl. « Studies on the energy and deep memory behaviour of a cache-oblivious, task-based hyperbolic PDE solver ». International Journal of High Performance Computing Applications 33, no 5 (15 avril 2019) : 973–86. http://dx.doi.org/10.1177/1094342019842645.

Texte intégral
Résumé :
We study the performance behaviour of a seismic simulation using the ExaHyPE engine with a specific focus on memory characteristics and energy needs. ExaHyPE combines dynamically adaptive mesh refinement (AMR) with ADER-DG. It is parallelized using tasks, and it is cache efficient. AMR plus ADER-DG yields a task graph which is highly dynamic in nature and comprises both arithmetically expensive tasks and tasks which challenge the memory’s latency. The expensive tasks and thus the whole code benefit from AVX vectorization, although we suffer from memory access bursts. A frequency reduction of the chip improves the code’s energy-to-solution. Yet, it does not mitigate burst effects. The bursts’ latency penalty becomes worse once we add Intel Optane technology, increase the core count significantly or make individual, computationally heavy tasks fall out of close caches. Thread overbooking to hide away these latency penalties becomes contra-productive with noninclusive caches as it destroys the cache and vectorization character. In cases where memory-intense and computationally expensive tasks overlap, ExaHyPE’s cache-oblivious implementation nevertheless can exploit deep, noninclusive, heterogeneous memory effectively, as main memory misses arise infrequently and slow down only few cores. We thus propose that upcoming supercomputing simulation codes with dynamic, inhomogeneous task graphs are actively supported by thread runtimes in intermixing tasks of different compute character, and we propose that future hardware actively allows codes to downclock the cores running particular task types.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Castro, Cristóbal E., Jörn Behrens et Christian Pelties. « Optimization of the ADER-DG method in GPU applied to linear hyperbolic PDEs ». International Journal for Numerical Methods in Fluids 81, no 4 (25 octobre 2015) : 195–219. http://dx.doi.org/10.1002/fld.4179.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "ADER-DG"

1

Hermann, Verena. « ADER-DG - Analysis, further Development and Applications ». Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-125403.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hermann, Verena [Verfasser]. « ADER-DG : analysis, further development and applications / vorgelegt von Verena Hermann ». 2010. http://d-nb.info/1010536419/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Molinari, Irene. « Modeling the European crust for seismic wave propagation ». Thesis, 2011. http://hdl.handle.net/2122/7188.

Texte intégral
Résumé :
Looking into the structure, composition and behaviour of the Earth is one of the main goals of the seismic studies. Many geophysical problems — such as surface wave, group velocity and full waveform tomography , determination of mantle flows, gravity studies, source inversion — need plausible models as starting point for such studies. Crustal structure varies greatly over small scale length and has a strong effects on seismic waves. A priori models of the crust are thus often used to model seismic wave propagation at large distance and to account for shallow structure when imaging upper mantle structure. Focusing on forward earthquakes simulations, plausible crustal and mantle models are the first step to obtain realistic seismograms and results. Recent development in computer facilities and numerical methods — Spectral Element Method, ADER-DG method, Finite Difference method — enable to solve the wave equation in 3D complex media with high accuracy. These methods require a discrete representation of the investigation domain (mesh) through which we propagate wave. To model seismic wave propagation at the scale of a continent — i.e. signals travelling to stations a few hundred or thousand kilometers from the earthquake source — we have a problem connected to the detail and reliability of current models, that are sufficiently accurate when we look at the global scale, but often miss significant features at the scale of sedimentary basins and mountain ranges, that become very important as we zoom closer. Reliable and detailed information on these structures exist, for instance deriving from active-source studies, but are often not integrated in wide-area compilations such as desirable. At the European scale, it becomes clear that current crustal models are not adequate for modeling regional datasets with enough detail. The global model CRUST2.0 is frequently used for crustal correction and wave propagation, but its resolution is too low for continental-scale studies. Many other detailed information are available, but at different scales, with different information contents, and following different formats: this information needs to be merged into a larger-scale, coherent representation. The other important issue is that connected to the faithful implementation of a known structure in computational meshes used in forward simulations of wave propagation. The shallow crustal discontinuities indeed are difficult to represent, because of the small size of the shallower elements of the mesh that lead to a very short time step. In this study, I am mostly interested in addressing these two fundamental issues, i.e. how to retrieve a ’good’ crustal model for Europe, on the basis of existing knowledge, and how to best represent it for efficient, but accurate, numerical simulation of seismic wave propagation. In the first part (Chapter 1), we analyse the surface wave sensitivity to the crustal structure presenting an exercise, based on surface wave dispersion matching, to reparameterize CRUST2.0 global model in a simpler grid that can be considered equivalent to CRUST2.0 in modeling surface waves. The models is tested from a wave propagating point of view with SPECFEM-3D code. We collect all the informations available on the this region and we create a new comprehensive reference crustal model for the European plate (Chapter 2) that describes the complex structure of the Europe with higher resolution and more plausibility than previous models. However, we can improve the resolution of such large scale compilation: we collect tens of seismic lines in the East Alps region (Chapter 3) building up, applying a geostatistics technique, a complete regional crustal model of that area that was included in EPcrust. This would be an example in which new local models could be developed and integrated in the continental one. The results are available on www.bo.ingv.it/eurorem/EPcrust. Since new models are available, before starting a 3D implementation of the models in numerical methods, in Chapter 4 we quantitatively analyse in 2D the influence of the representation and uncertainties in the knowledge of crustal parameters on simulated wave field. We evaluate different synthetic test cases respect to the reference, analysing the frequency and source-receiver-distance dependence of our approximations. For the simulations, we use an high order ADER-DG scheme implemented in the SeisSol2D code able to honour the discontinuities in the crust with high fidelity. From a seismological point of view the next step after developing a model would be a validation of the model itself. In chapter 5, we go through a validation process of EPcrust. The main goal is to understand if our new model is able to give a better fit of the real data. We use the Spectral Element Method as implemented in SPECFEM3D-Globe. This choice would be a compromise between accuracy of the representation of the crustal structure and computational cost. The ADER-DG methods, well suited for an accurate representation of the sharp interface within the crust, is at the moment computationally too expensive for 3D simulations at continental scale. At the and of this thesis, we give a brief overview on methods and theory applied to obtain our results.
University of Bologna
Published
3.3. Geodinamica e struttura dell'interno della Terra
open
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "ADER-DG"

1

Castro, Cristóbal E., et Eleuterio F. Toro. « ADER DG and FV Schemes for Shallow Water Flows ». Dans Progress in Industrial Mathematics at ECMI 2006, 341–45. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71992-2_49.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Breuer, Alexander, Alexander Heinecke, Leonhard Rannabauer et Michael Bader. « High-Order ADER-DG Minimizes Energy- and Time-to-Solution of SeisSol ». Dans Lecture Notes in Computer Science, 340–57. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20119-1_25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wolf, Sebastian, Alice-Agnes Gabriel et Michael Bader. « Optimization and Local Time Stepping of an ADER-DG Scheme for Fully Anisotropic Wave Propagation in Complex Geometries ». Dans Lecture Notes in Computer Science, 32–45. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50420-5_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "ADER-DG"

1

Breuer, Alexander, Alexander Heinecke et Michael Bader. « Petascale Local Time Stepping for the ADER-DG Finite Element Method ». Dans 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2016. http://dx.doi.org/10.1109/ipdps.2016.109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

В. Подгорнова, О., et И. Л. Софронов. « Моделирование динамической упругости алгоритмами высокого порядка точности на основе подхода ADER-DG ». Dans Geomodel 2008 - 10th EAGE science and applied research conference on oil and gas geological exploration and development. European Association of Geoscientists & Engineers, 2008. http://dx.doi.org/10.3997/2214-4609.201404440.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Breuer, Alexander, et Alexander Heinecke. « Next-Generation Local Time Stepping for the ADER-DG Finite Element Method ». Dans 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2022. http://dx.doi.org/10.1109/ipdps53621.2022.00046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Amler, Thomas G., Ibrahim Hoteit et Tariq A. Alkhalifah. « A combined ADER-DG and PML approach for simulating wave propagation in unbounded domains ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012 : International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756380.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

He, Yangyang, Jinghuai Gao, Wei Wang, Xiaokai Wang et Yicheng Ma. « Elastic wave modeling with high dominant frequency directional point source using ADER‐DG FE scheme ». Dans SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009. http://dx.doi.org/10.1190/1.3255404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie