Articles de revues sur le sujet « Active structures »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Active structures.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Active structures ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Soong, T. T., et G. D. Manolis. « Active Structures ». Journal of Structural Engineering 113, no 11 (novembre 1987) : 2290–302. http://dx.doi.org/10.1061/(asce)0733-9445(1987)113:11(2290).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pantelides, C. P., et S. R. Tzan. « Active structures with uncertainties ». International Journal of Computer Applications in Technology 13, no 1/2 (2000) : 59. http://dx.doi.org/10.1504/ijcat.2000.000224.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

D'Isep, F., et L. Sertorio. « Irreversibility for active structures ». Il Nuovo Cimento B 94, no 2 (août 1986) : 168–74. http://dx.doi.org/10.1007/bf02759755.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Soong, T. T., et B. F. Spencer. « Active, semi-active and hybrid control of structures ». Bulletin of the New Zealand Society for Earthquake Engineering 33, no 3 (30 septembre 2000) : 387–402. http://dx.doi.org/10.5459/bnzsee.33.3.387-402.

Texte intégral
Résumé :
In recent years, considerable attention has been paid to research and development of passive and active structural control devices, with particular emphasis on alleviation of wind and seismic response of buildings and bridges. In both areas, serious efforts have been undertaken to develop the structural control concept into a workable technology, and today we have many such devices installed in a wide variety of structures. The focus of this state-of-the-art paper is on active, semi-active and hybrid structural control with seismic applications. These systems employ controllable force devices integrated with sensors, controllers and real-time information processing. This paper includes a brief historical outline of their development and an assessment of the state-of-the-art and state-of-the-practice of this exciting, and still evolving, technology. Also included in the discussion are their advantages and limitations in the context of seismic design and retrofit of civil engineering structures.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Qureshi, Sohail M., Hajime Tsutsumi, Kiyoshi Uno et Shoichi Kitagawa. « ACTIVE CONTROL OF SLIDING STRUCTURES ». PROCEEDINGS OF THE JSCE EARTHQUAKE ENGINEERING SYMPOSIUM 21 (1991) : 493–96. http://dx.doi.org/10.2208/proee1957.21.493.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chang, C. M., B. M. Al-Hashimi et J. N. Ross. « Unified active filter biquad structures ». IEE Proceedings - Circuits, Devices and Systems 151, no 4 (2004) : 273. http://dx.doi.org/10.1049/ip-cds:20040132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pearl, Laurence. « Similarity of active-site structures ». Nature 362, no 6415 (mars 1993) : 24. http://dx.doi.org/10.1038/362024a0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nathal, Michael V., et George L. Stefko. « Smart Materials and Active Structures ». Journal of Aerospace Engineering 26, no 2 (avril 2013) : 491–99. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sirlin, S., C. Paliou, R. W. Longman, M. Shinozuka et E. Samaras. « Active Control of Floating Structures ». Journal of Engineering Mechanics 112, no 9 (septembre 1986) : 947–65. http://dx.doi.org/10.1061/(asce)0733-9399(1986)112:9(947).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Reinhorn, A. M., G. D. Manolis et C. Y. Wen. « Active Control of Inelastic Structures ». Journal of Engineering Mechanics 113, no 3 (mars 1987) : 315–33. http://dx.doi.org/10.1061/(asce)0733-9399(1987)113:3(315).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Firczuk, Małgorzata, Artur Mucha et Matthias Bochtler. « Crystal Structures of Active LytM ». Journal of Molecular Biology 354, no 3 (décembre 2005) : 578–90. http://dx.doi.org/10.1016/j.jmb.2005.09.082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Barsoum, Roshdy George S. « Active materials and adaptive structures ». Smart Materials and Structures 6, no 1 (1 février 1997) : 117–22. http://dx.doi.org/10.1088/0964-1726/6/1/014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Baz, A. « Active Control of Periodic Structures ». Journal of Vibration and Acoustics 123, no 4 (1 juin 2001) : 472–79. http://dx.doi.org/10.1115/1.1399052.

Texte intégral
Résumé :
Conventional passive periodic structures exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic structures only within specific frequency bands called the “Pass Bands” and wave propagation is completely blocked within other frequency bands called the “Stop Bands.” In this paper, the emphasis is placed on providing the passive structures with active control capabilities in order to tune the spectral width and location of the pass and stop bands in response to the structural vibration. Apart from their unique filtering characteristics, the ability of periodic structures to transmit waves, from one location to another, within the pass bands can be greatly reduced when the ideal periodicity is disrupted resulting in the well-known phenomenon of “Localization.” In the case of passive structures, the aperiodicity (or the disorder) can result from unintentional material, geometric and manufacturing variability. However, in the case of active periodic structures the aperiodicity is intentionally introduced by proper tuning of the controllers of the individual substructure or cell. The theory governing the operation of this class of Active Periodic structures is introduced and numerical examples are presented to illustrate their tunable filtering and localization characteristics. The examples considered include periodic/aperiodic spring-mass systems controlled by piezoelectric actuators. The presented results emphasize the unique potential of the active periodic structures in controlling the wave propagation both in the spectral and spatial domains in an attempt to stop/confine the propagation of undesirable disturbances.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Fisco, N. R., et H. Adeli. « Smart structures : Part I—Active and semi-active control ». Scientia Iranica 18, no 3 (juin 2011) : 275–84. http://dx.doi.org/10.1016/j.scient.2011.05.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Melville, Stephen, Cecilie Brandt-Olsen et John Harding. « Calibrated modelling of form-active structures ». IABSE Symposium Report 108, no 1 (19 avril 2017) : 155–56. http://dx.doi.org/10.2749/222137817821232432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Trudeau, Charles, Martin Bolduc, Patrick Beaupré, Patrice Topart, Christine Alain et Sylvain Cloutier. « Inkjet-Printed Flexible Active Multilayered Structures ». MRS Advances 2, no 18 (2017) : 1015–20. http://dx.doi.org/10.1557/adv.2017.237.

Texte intégral
Résumé :
ABSTRACTActive inkjet materials are invoked in the fabrication of optoelectronic devices. These types of multilayer assemblies contain a variety of commercially available ink formulations. It is envisioned that a dielectric SU-8 material can be used in a FET-like structure to form an interlayer between conductive silver and semi-conductive MWCNT-doped PEDOT:PSS ink layers. These printed structures may be fabricated onto a polyimide based flexible substrate, for instance. These structures are a starting point for offering valuable information on layer-on-layer printing interactions and interface problematics within a complete inkjet device fabrication.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Al Sabouni-Zawadzka, A. « Active Control Of Smart Tensegrity Structures ». Archives of Civil Engineering 60, no 4 (1 décembre 2014) : 517–34. http://dx.doi.org/10.2478/ace-2014-0034.

Texte intégral
Résumé :
AbstractThe topic of smart structures, their active control and implementation, is relatively new. Therefore, different approaches to the problem can be met. The present paper discusses variable aspects of the active control of structures. It explains the idea of smart systems, introduces different terms used in smart technique and defines the structural smartness. The author indicates differences between actively controlled structures and structural health monitoring systems and shows an example of an actively controlled smart footbridge.The analyses presented in the study concern tensegrity structures, which are prone to the structural control through self-stress state adjustment. The paper introduces examples of structural control performed on tensegrity modules and plates. An influence of several self-stress states on displacements is analyzed and a study concerning damage due to member loss is presented.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Dudovich, N., G. Levy-Yurista, A. Sharon, A. A. Friesem et H. G. Weber. « Active semiconductor-based grating waveguide structures ». IEEE Journal of Quantum Electronics 37, no 8 (2001) : 1030–39. http://dx.doi.org/10.1109/3.937392.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Cha, J. Z., J. M. Pitarresi et T. T. Soong. « Optimal Design Procedures for Active Structures ». Journal of Structural Engineering 114, no 12 (décembre 1988) : 2710–23. http://dx.doi.org/10.1061/(asce)0733-9445(1988)114:12(2710).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

HAN, SANG-JUN, PANOS TSOPELAS et A. BAZ. « ACTIVE/PASSIVE SEISMIC CONTROL OF STRUCTURES ». Journal of Earthquake Engineering 10, no 4 (juillet 2006) : 509–26. http://dx.doi.org/10.1080/13632460609350607.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Follador, M., A. T. Conn, B. Mazzolai et J. Rossiter. « Active-elastic bistable minimum energy structures ». Applied Physics Letters 105, no 14 (6 octobre 2014) : 141903. http://dx.doi.org/10.1063/1.4898142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Jiang, Nina, Xiaolu Zhuo et Jianfang Wang. « Active Plasmonics : Principles, Structures, and Applications ». Chemical Reviews 118, no 6 (29 septembre 2017) : 3054–99. http://dx.doi.org/10.1021/acs.chemrev.7b00252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Stemberk, J., B. Kostak et V. Vilimek. « 3D monitoring of active tectonic structures ». Journal of Geodynamics 36, no 1-2 (août 2003) : 103–12. http://dx.doi.org/10.1016/s0264-3707(03)00042-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Pantelides, Chris P. « Active control of wind-excited structures ». Journal of Wind Engineering and Industrial Aerodynamics 36 (janvier 1990) : 189–202. http://dx.doi.org/10.1016/0167-6105(90)90304-u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Porta, Josep M., et Sergi Hernández-Juan. « Path planning for active tensegrity structures ». International Journal of Solids and Structures 78-79 (janvier 2016) : 47–56. http://dx.doi.org/10.1016/j.ijsolstr.2015.09.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Keller, Christoph U. « Small-Scale Structures in Active Regions ». International Astronomical Union Colloquium 141 (1993) : 3–10. http://dx.doi.org/10.1017/s0252921100028670.

Texte intégral
Résumé :
AbstractWithin the last few years significant progress has been made in our understanding of the small-scale structures in active regions. Here I present some of the newest findings obtained by using speckle interferometric techniques. There exist continuum bright points with a contrast of about 30% that are cospatial with strong magnetic fields. The observations are consistent with the assumption that some facular and network bright points are the white-light signature of magnetic fluxtubes with a diameter of about 200 km. Magnetic elements larger than about 300 km are mainly darker than the average quiet sun. Their properties are similar to what has been called magnetic knots or invisible sunspots. In highly magnetic areas there is no clear relationship between continuum intensity and magnetogram signal at the smallest spatial scales. The magnetic field of pores extends beyond the dark umbra. There radially elongated structures may appear that are similar to penumbral filaments in sunspots.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Asano, Koichiro, et Hajime Nakagawa. « Active Saturation Control of Hysteretic Structures ». Computer-Aided Civil and Infrastructure Engineering 13, no 6 (novembre 1998) : 425–32. http://dx.doi.org/10.1111/0885-9507.00120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Inman, Danieal J. « Active modal control for smart structures ». Philosophical Transactions of the Royal Society of London. Series A : Mathematical, Physical and Engineering Sciences 359, no 1778 (15 janvier 2001) : 205–19. http://dx.doi.org/10.1098/rsta.2000.0721.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Araújo, A. L., H. M. R. Lopes, M. A. P. Vaz, C. M. Mota Soares, J. Herskovits et P. Pedersen. « Parameter estimation in active plate structures ». Computers & ; Structures 84, no 22-23 (septembre 2006) : 1471–79. http://dx.doi.org/10.1016/j.compstruc.2006.01.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Gluck, J., Y. Ribakov et A. N. Dancygier. « Predictive active control of MDOF structures ». Earthquake Engineering & ; Structural Dynamics 29, no 1 (janvier 2000) : 109–25. http://dx.doi.org/10.1002/(sici)1096-9845(200001)29:1<109 ::aid-eqe898>3.0.co;2-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

WATANABE, Shuya, et Jun SHINTAKE. « Active tensegrity structures using electrostatic actuators ». Proceedings of the Dynamics & ; Design Conference 2022 (2022) : 501. http://dx.doi.org/10.1299/jsmedmc.2022.501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

SINGH, M. P., E. E. MATHEU et L. E. SUAREZ. « ACTIVE AND SEMI-ACTIVE CONTROL OF STRUCTURES UNDER SEISMIC EXCITATION ». Earthquake Engineering & ; Structural Dynamics 26, no 2 (février 1997) : 193–213. http://dx.doi.org/10.1002/(sici)1096-9845(199702)26:2<193 ::aid-eqe634>3.0.co;2-#.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Takezawa, Akihiro, Kanjuro Makihara, Nozomu Kogiso et Mitsuru Kitamura. « CO-JP-1 Ground structure approach for PZT layout optimization in semi-active vibration control systems of space structures ». Proceedings of Mechanical Engineering Congress, Japan 2012 (2012) : _CO—JP—1–1—_CO—JP—1–1. http://dx.doi.org/10.1299/jsmemecj.2012._co-jp-1-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Itoh, T., T. Shimomura et H. Okubo. « 2B15 Semi-active Vibration Control of Smart Structures with Sliding Mode Control ». Proceedings of the Symposium on the Motion and Vibration Control 2010 (2010) : _2B15–1_—_2B15–11_. http://dx.doi.org/10.1299/jsmemovic.2010._2b15-1_.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Mohan, P. V. A. « Generation of OTA-C filter structures from active RC filter structures ». IEEE Transactions on Circuits and Systems 37, no 5 (mai 1990) : 656–60. http://dx.doi.org/10.1109/31.55014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kwak, Moon K., Dong-Ho Yang et Ji-Hwan Shin. « Active vibration control of structures using a semi-active dynamic absorber ». Noise Control Engineering Journal 63, no 3 (1 mai 2015) : 287–99. http://dx.doi.org/10.3397/1/376326.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Wang, Yafeng, Xian Xu et Yaozhi Luo. « Minimal mass design of active tensegrity structures ». Engineering Structures 234 (mai 2021) : 111965. http://dx.doi.org/10.1016/j.engstruct.2021.111965.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Lee, Hamilton, et Jacqueline Williams. « In Defense of All-Active Manager Structures ». Journal of Investing 25, no 4 (30 novembre 2016) : 7–19. http://dx.doi.org/10.3905/joi.2016.25.4.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

BABA, Shunsuke, Kohki NINOMIYA et Tateo KAJITA. « Digital active optimal control of steel structures. » Doboku Gakkai Ronbunshu, no 380 (1987) : 375–81. http://dx.doi.org/10.2208/jscej.1987.380_375.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Rai, Gopal L. « Advanced Active Prestressed CFRP in RCC Structures ». Advanced Materials Research 1129 (novembre 2015) : 290–97. http://dx.doi.org/10.4028/www.scientific.net/amr.1129.290.

Texte intégral
Résumé :
. The need for rehabilitation of reinforced concrete structures is rapidly increasing. Fibre reinforced polymer (FRP) composite materials for concrete structures have high strength-to-weight ratios that can provide high prestressing forces while adding minimal additional weight to a structure. They also have good fatigue properties and exhibit low relaxation losses, both of which can increase the service lives and the load carrying capacities of reinforced concrete structures. Carbon fiber reinforced polymer (CFRP) composite system is integrated system based on carbon fibres and epoxy resins. By prestressing the CFRP laminates, the material is used more efficiently as a part of its tensile capacity is utilised and it contributes to the load bearing capacity under both service and ultimate load condition. This is an ideal technique as it combines the advantage of using noncorrosive and lightweight advanced composite material in the form of FRP laminates with high efficiency offered by external prestressing. An innovative mechanical anchorage system was developed to prestress the FRP laminates directly by jacking and reacting against the RCC structure.This paper describes the use of Prestressed CFRP laminates for strengthening of RCC structures including practical applications on slabs and bridges. Also it elucidates the post strengthening testing carried out for the validation of this technique.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Barnes, S., L. Kirssin, E. Needham, E. Baharlou, D. E. Carr et J. Ma. « 3D printing of ecologically active soil structures ». Additive Manufacturing 52 (avril 2022) : 102670. http://dx.doi.org/10.1016/j.addma.2022.102670.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Sakamotu, Mitsuo. « Applications to Building Structures on Active Control ». IEEJ Transactions on Industry Applications 119, no 7 (1999) : 926–31. http://dx.doi.org/10.1541/ieejias.119.926.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Suzuki, Tetsuo, Mitsuru Kageyama et Arihide Nobata. « Active Vibration Control System for Tall Structures ». Journal of Robotics and Mechatronics 6, no 4 (20 août 1994) : 327–31. http://dx.doi.org/10.20965/jrm.1994.p0327.

Texte intégral
Résumé :
The authors, concerned with the enhancement of living comfort in tall structures during strong winds or medium to small-scale earthquakes, have developed an active vibration control system which is capable of controlling a multiple number of vibration modes at the same time, and have already demonstrated the usefulness of this system by conducting verification experiments using a small device1) and an actual-size device2). And this time, an active vibration control system based on the research results obtained up to now has been applied to an actual structure for the first time in the world. This report describes an outline of this system.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Preumont, A., et Y. Achkire. « Active Damping of Structures with Guy Cables ». Journal of Guidance, Control, and Dynamics 20, no 2 (mars 1997) : 320–26. http://dx.doi.org/10.2514/2.4040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Malhis, M., L. Gaudiller et J. Der Hagopian. « Fuzzy Modal Active Control of Flexible Structures ». Journal of Vibration and Control 11, no 1 (janvier 2005) : 67–88. http://dx.doi.org/10.1177/10775463045046028.

Texte intégral
Résumé :
In this paper we propose a new active control strategy to control the dynamic behavior of flexible structures: fuzzy modal control (FMC). This strategy, based on the modal state feedback of the structure, uses independent fuzzy controllers for each mode to be controlled. This method is applied to a flexible beam controlled by a transverse plane of action using piezoelectric actuators. First of all, a model of a piezoelectric actuator is proposed, followed by the formulation of a finite-element model of the mechanical structure/actuator. The model is then fitted using an identification of the characteristics. After modal reduction, the FMC is carried out in two steps: the control of the beam in only one transverse direction by a piezoelectric pusher, then in two transverse directions by two orthogonal piezoelectric pushers located on the same plane. A digital controller was built in the Matlab®-Simulink® environment, and implemented on specialized cards in order to perform the corresponding experiment. The method is validated by comparing the results between the simulation and the experiment.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhu, Yiwen, Audrey Sulkanen, Gang-Yu Liu et Gang Sun. « Daylight-Active Cellulose Nanocrystals Containing Anthraquinone Structures ». Materials 13, no 16 (11 août 2020) : 3547. http://dx.doi.org/10.3390/ma13163547.

Texte intégral
Résumé :
Antimicrobial and antiviral materials have attracted significant interest in recent years due to increasing occurrences of nosocomial infections and pathogenic microbial contamination. One method to address this is the combination of photoactive compounds that can produce reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals to disinfect microbes, with carrier materials that meet the application requirements. Using anthraquinone (AQ) and cellulose nanocrystals (CNCs) as the photoactive and carrier components, respectively, this work demonstrated the first covalent incorporation of AQ onto CNCs. The morphology and the photoactive properties were investigated, revealing the structural integrity of the CNCs and the high degree of photoactivity of the AQ-CNC materials upon UVA exposure. The AQ-CNCs also exhibited an unexpected persistent generation of ROS under darkness, which adds advantages for antimicrobial applications.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Sommerfeldt, Scott D. « Active control of radiation from vibrating structures. » Journal of the Acoustical Society of America 91, no 4 (avril 1992) : 2348. http://dx.doi.org/10.1121/1.403444.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Alexandropoulos, Dimitris, Hercules Simos, Michael J. Adams et Dimitris Syvridis. « Optical Bistability in Active Semiconductor Microring Structures ». IEEE Journal of Selected Topics in Quantum Electronics 14, no 3 (2008) : 918–26. http://dx.doi.org/10.1109/jstqe.2008.921424.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Hladky‐Hennion, A. ‐C, J. ‐N Decarpigny et B. Hamonic. « Finite element modeling of active periodic structures. » Journal of the Acoustical Society of America 90, no 4 (octobre 1991) : 2316. http://dx.doi.org/10.1121/1.401034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Gaunaurd, G. C., H. C. Strifors, P. W. B. Moore et H. Huang. « Techniques for active classification of underwater structures ». Journal of the Acoustical Society of America 101, no 5 (mai 1997) : 3151–52. http://dx.doi.org/10.1121/1.419073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie