Littérature scientifique sur le sujet « Active-RC Filter »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Active-RC Filter ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Active-RC Filter"
Koziel, Slawomir. « GENERAL STRUCTURE OF INTEGRATOR-BASED CONTINUOUS-TIME ACTIVE-RC FILTER AND APPLICATIONS ». SYNCHROINFO JOURNAL 7, no 6 (2021) : 8–13. http://dx.doi.org/10.36724/2664-066x-2021-7-6-8-13.
Texte intégralAronhime, P. « RC active filter design handbook ». Proceedings of the IEEE 74, no 12 (1986) : 1804. http://dx.doi.org/10.1109/proc.1986.13696.
Texte intégralNatarajan, S. « RC active filter design handbook ». Proceedings of the IEEE 75, no 9 (1987) : 1341–42. http://dx.doi.org/10.1109/proc.1987.13888.
Texte intégralSALAMA, K. N., et A. M. SOLIMAN. « ACTIVE RC FILTERS USING OPERATIONAL TRANSRESISTANCE AMPLIFIERS ». Journal of Circuits, Systems and Computers 08, no 04 (août 1998) : 507–16. http://dx.doi.org/10.1142/s0218126698000304.
Texte intégralInshakov, Yu M., et A. V. Belov. « Tunable Active Band-Pass RC-Filter ». Journal of the Russian Universities. Radioelectronics, no 2 (5 juin 2018) : 20–25. http://dx.doi.org/10.32603/1993-8985-2018-21-2-20-25.
Texte intégralSussman-Fort, Stephen E., Laurent Billonnet et Bernard Jarry. « Microwave, biquadratic, active-RC filter development ». International Journal of RF and Microwave Computer-Aided Engineering 8, no 2 (mars 1998) : 102–15. http://dx.doi.org/10.1002/(sici)1099-047x(199803)8:2<102 ::aid-mmce4>3.0.co;2-p.
Texte intégralMatovic, Ana, et Marija Matovic. « Sensitivity optimization of direct form realization of active-RC all-pole filters ». Facta universitatis - series : Electronics and Energetics 16, no 2 (2003) : 259–71. http://dx.doi.org/10.2298/fuee0302259m.
Texte intégralUPATHAMKUEKOOL, CHAIRAT, AMORN JIRASEREE-AMORNKUN et JIRAYUTH MAHATTANAKUL. « DESIGN OF LOW-VOLTAGE LOW-POWER COMPLEX ACTIVE-RC FILTERS ». Journal of Circuits, Systems and Computers 22, no 09 (octobre 2013) : 1340003. http://dx.doi.org/10.1142/s0218126613400033.
Texte intégralStojanovic, Vidosav, Negovan Stamenkovic et Nikola Stojanovic. « Active RC filter based implementation analysis part of two channel hybrid filter bank ». Serbian Journal of Electrical Engineering 11, no 4 (2014) : 565–84. http://dx.doi.org/10.2298/sjee1404565s.
Texte intégralIshibashi, Y. « Active RC filter based on simulation of dissipative LC filters ». IEE Proceedings - Circuits, Devices and Systems 141, no 2 (1994) : 101. http://dx.doi.org/10.1049/ip-cds:19949718.
Texte intégralThèses sur le sujet "Active-RC Filter"
Goldman, Matthew 1965. « A low sensitivity dual feedback active RC bandpass filter ». Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277139.
Texte intégralDeville, Yannick. « Filtres actifs RC hyperfréquences intégrés sur arséniure de gallium ». Grenoble 1, 1989. http://www.theses.fr/1989GRE10015.
Texte intégralFARY, FEDERICO. « Integrated Circuits Design in Down-scaled Technologies for Wireless Applications ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/301984.
Texte intégralIn the last 30 years, Mobile Telecommunication (TLC) electronics proved to be one of the major driving motors in the development of new Complementary Metal-OxideSemiconductor (CMOS) technologies. This limited branch of the electronics world managed to move billions of dollars worldwide, some of which unavoidably ended up in financing advanced research projects to answer market demands. People all around the world ask for extremely performing portable devices, faster, more reliable, low power consuming and with impressive memory capability. To answer all these requests, physics and engineers developed new and incredibly down-scaled technology nodes, which met the high speed and low power consumption requirement, granting an impressive circuital density. Nowadays foundries such as TSMC or Samsung are able to manufacture incredibly small transistor devices, with channel length in the order of only 7 nm and transition frequency in the order of several hundreds of GHz. This situation has become extremely favorable for the development of high-performance digital devices, which are able to reach speed and memory capability previously unbelievable. Nonetheless, also analog building blocks must be integrated in deeply down-scaled node, in order to adapt with digital ICs. First task of this thesis work is to develop analog ICs in deep sub-micron technology nodes, such as 28 nm bulk-CMOS and 16 nm FinFET (Fin Field Effect Transistor). This has been accomplished facing several difficulties given by the very poor analog behavior of such advanced technologies, especially in terms of low transistor intrinsic gain and limited signal headroom, caused by the low supply voltage. The second task of this work is to develop these same analog ICs in order that they meet requirements of the most advanced TLC standards, such as LTE and 5G. The increased number of portable devices worldwide made in fact unavoidable the introduction of new communication standards, in order to face the huge number of connected devices. This work presents 4 building blocks that can be exploited in every next generation transceiver device. In detail, this work analyzes though extended simulations and measurements 3 Base-Band analog filters and 1 variable gain amplifier, suitable for 5G applications. These designs have been developed in 28nm CMOS and 16 nm FinFET. Each design shows the most important difficult that was faced for its realization and highlight the most important performances of every prototype device, with an extensive confrontation with the State-of-the Art. The first device is a 6th Order Rauch based analog filter, which exploit a large bandwidth amplifier to achieve low quality factor sensitivity and high linearity performances. The second is a 3rd order variable gain amplifier, with low noise and high linearity performances, suitable to be integrated in a Full-Duplex 5G transceiver Base-Band section. The third and fourth devices are Source-Follower-based 4th order filters with very low noise and low power performances. One exploit the Flipped-Source-Follower architecture, while the second integrates an innovative Fully-Differential Super-Source-Follower topology. This last design also exploits the advanced FinFET technology, which shows better intrinsic gain, in order to maintain high linearity performances, despite the Fully-Differential configuration.
O'Carroll, A. P. « A study of the higher-frequency performance of operational-amplifier analogue filters : active-RC and active-R filter sections using integrated operational amplifiers are investigated up to the medium frequency communications band by consideration of ». Thesis, University of Bradford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235719.
Texte intégralKubát, Pavel. « Analogové elektronické emulátory obvodů neceločíselného řádu ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442475.
Texte intégralPaschal, Matthew James 1964. « Compensation techniques for gain-bandwidth effects of active RC filters ». Thesis, The University of Arizona, 1992. http://hdl.handle.net/10150/278081.
Texte intégralKumar, Anil. « Estimation and Mapping of Ship Air Wakes using RC Helicopters as a Sensing Platform ». Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82910.
Texte intégralPh. D.
« Audio band integrated active RC filter with digital frequency tuning ». 2005. http://library.cuhk.edu.hk/record=b5892395.
Texte intégralThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 72-74).
Abstracts in English and Chinese.
ACKNOWLEDGMENTS --- p.I
ABSTRACT --- p.II
摘要 --- p.III
TABLE OF CONTENTS --- p.IV
LIST OF FIGURES --- p.VII
LIST OF TABLES --- p.X
Chapter CHAPTER 1 --- INTRODUCTION --- p.1
Chapter 1.1 --- Overview of filter --- p.1
Chapter 1.1.1 --- History --- p.1
Chapter 1.1.2 --- Application of analog filter --- p.2
Chapter 1.1.3 --- Category of continuous time filters --- p.3
Chapter 1.1.4 --- Problem issued from Active RC filter --- p.7
Chapter 1.2 --- Motivation --- p.7
Chapter 1.3 --- Outline --- p.8
Chapter CHAPTER 2 --- FILTER FUNDAMENTAL --- p.9
Chapter 2.1 --- Overview --- p.9
Chapter 2.2 --- Terminology --- p.9
Chapter 2.3 --- General Goals of Filter Design --- p.11
Chapter 2.4 --- Standard Lowpass Filter Characteristic --- p.11
Chapter 2.4.1 --- Butterworth --- p.11
Chapter 2.4.2 --- Chebyshev --- p.12
Chapter 2.4.3 --- Elliptic-Function --- p.13
Chapter 2.5 --- Study on Different Tuning Approaches --- p.13
Chapter CHAPTER 3 --- CURRENT DIVISION NETWORK (CDN) --- p.18
Chapter 3.1 --- Overview of Current Division Technique --- p.18
Chapter 3.2 --- Second Order Effects --- p.23
Chapter 3.3 --- Working Principle of CDN --- p.23
Chapter 3.4 --- Performances of CDN --- p.25
Chapter 3.4.1 --- General Properties of CDN --- p.25
Chapter 3.4.2 --- Input Resistances of CDN --- p.26
Chapter 3.4.3 --- Noise Performance of CDN --- p.27
Chapter CHAPTER 4 --- REALIZATION OF THE FILTER --- p.31
Chapter 4.1 --- Overview --- p.31
Chapter 4.2 --- Traditional Kerwin Huelsman Newcomb (KHN) Biquad --- p.31
Chapter 4.2.1 --- State Variable Method --- p.31
Chapter 4.2.2 --- KHN Biquad --- p.32
Chapter 4.3 --- Proposed Filter --- p.33
Chapter 4.3.1 --- Biquad with CDN --- p.33
Chapter 4.3.2 --- A dvantages of Proposed Filter --- p.36
Chapter 4.3.3 --- Schematic of Proposed Filter --- p.38
Chapter CHAPTER 5 --- LAYOUT CONSIDERATION --- p.41
Chapter 5.1 --- Overview --- p.41
Chapter 5.2 --- Process Information --- p.41
Chapter 5.3 --- Transistor Layout Techniques --- p.42
Chapter 5.3.1 --- Multi-finger Layout Technique --- p.42
Chapter 5.3.2 --- Common-Centroid Structure --- p.43
Chapter 5.3.3 --- Guard Ring --- p.45
Chapter 5.4 --- Passive Element Layout Techniques --- p.45
Chapter 5.5 --- Layout of Whole Design --- p.47
Chapter CHAPTER 6 --- SIMULATION RESULT --- p.49
Chapter 6.1 --- Operational Amplifier --- p.49
Chapter 6.2 --- Overall Performance of filter --- p.55
Chapter CHAPTER 7 --- MEASUREMENT RESULT --- p.60
Chapter 7.1 --- Measurement Setup --- p.60
Chapter 7.2 --- Time Domain Measurement --- p.62
Chapter 7.3 --- Frequency Domain Measurement --- p.63
Chapter 7.4 --- Measurement of Non-Linearity --- p.66
Chapter 7.5 --- Summary of the Performance --- p.69
Chapter 7.6 --- Comparison on Tuning Ability --- p.70
Chapter CHAPTER 8 --- CONCLUSION --- p.71
BIBLIOGRAPHY --- p.72
Kulkarni, Raghavendra Laxman. « Analog Baseband Filters and Mixed Signal Circuits for Broadband Receiver Systems ». Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-12-10550.
Texte intégralAmir, Aslanzadeh Mamaghani Hesam. « Design of a Direct-Modulation Transmitter with Self-Optimizing Feedback and a Highly Linear, Highly Reconfigurable, Continuously-Tunable Active-RC Baseband Filter for Multiple Standards ». Thesis, 2009. http://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7479.
Texte intégralLivres sur le sujet "Active-RC Filter"
Jean-Claude, Berka, dir. Active RC filter design. Amsterdam : Elsevier, 1986.
Trouver le texte intégralW, Stephenson F., dir. RC active filter design handbook. New York : Wiley, 1985.
Trouver le texte intégralGhausi, Mohammed Shuaib. Modern filter design : Active RC and switched capacitor. Atlanta, GA : Noble, 2003.
Trouver le texte intégralservice), SpringerLink (Online, dir. VLSI Analog Filters : Active RC, OTA-C, and SC. Boston : Birkhäuser Boston, 2013.
Trouver le texte intégralSchaumann, Rolf. Design of analog filters : Passive, active RC, and switched capacitor. Englewood Cliffs, N.J : Prentice-Hall, 1990.
Trouver le texte intégralSchaumann, Rolf. Design of analog filters : Passive, active, RC and switched capacitor. Englewood Cliffs : Prentice-Hall, 1990.
Trouver le texte intégralSevero, Lucas Compassi, et Wilhelmus Adrianus Maria Van Noije. Ultra-low Voltage Low Power Active-RC Filters and Amplifiers for Low Energy RF Receivers. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90103-5.
Texte intégralGhausi et Laker. Modern Filter Design : Active RC and switched capacitor. Institution of Engineering and Technology, 2003. http://dx.doi.org/10.1049/sbcs005e.
Texte intégralGhausi, Mohammed S., et Kenneth R. Laker. Modern Filter Design : Active RC and Switched Capacitor. Institution of Engineering & Technology, 2013.
Trouver le texte intégralMohan, P. V. Ananda. VLSI Analog Filters : Active RC, OTA-C, and SC. Birkhäuser, 2012.
Trouver le texte intégralChapitres de livres sur le sujet "Active-RC Filter"
Moschytz, George S. « Passive LCR and Active-RC Filters ». Dans Analog Circuit Theory and Filter Design in the Digital World, 149–66. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00096-7_7.
Texte intégralLitovski, Vančo. « Active RC Cascade Circuit Synthesis ». Dans Electronic Filters, 293–329. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9852-1_15.
Texte intégralLitovski, Vančo. « Parallel Active-RC Circuit Synthesis ». Dans Electronic Filters, 331–47. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9852-1_16.
Texte intégralFaruque, Saleh. « Baseband Filters : Active RC Filters ». Dans SpringerBriefs in Electrical and Computer Engineering, 21–46. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15609-5_2.
Texte intégralMohan, P. V. Ananda. « Active RC Filters Using Opamps ». Dans VLSI Analog Filters, 13–146. Boston, MA : Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8358-0_2.
Texte intégralDutta Roy, Suhash Chandra. « Tolerance Minded Design of Active RC Bandpass Filters ». Dans Topics in Signal Processing, 73–78. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9532-1_9.
Texte intégralSevero, Lucas Compassi, et Wilhelmus Maria Adrianus Van Noije. « ULV and ULP Operational Amplifiers for Active-RC Filters ». Dans Ultra-low Voltage Low Power Active-RC Filters and Amplifiers for Low Energy RF Receivers, 11–31. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90103-5_2.
Texte intégralTan, Lingling, Fei Yang et Junkai Yi. « Systematic Synthesis of Active RC Filters Using NAM Expansion ». Dans Lecture Notes in Electrical Engineering, 545–54. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8411-4_74.
Texte intégralDutta Roy, Suhash Chandra. « Active RC Filters Using a Single Differential Input Operational Amplifier ». Dans Topics in Signal Processing, 79–86. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9532-1_10.
Texte intégralDutta Roy, Suhash Chandra. « Second-Order Active RC Filters Using a Single Operational Amplifier ». Dans Topics in Signal Processing, 57–72. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9532-1_8.
Texte intégralActes de conférences sur le sujet "Active-RC Filter"
Brezovic, Zdenko, et Vladimir Kudjak. « Active RC notch filter for phase-locked loop ». Dans 2010 20th International Conference Radioelektronika (RADIOELEKTRONIKA 2010). IEEE, 2010. http://dx.doi.org/10.1109/radioelek.2010.5478553.
Texte intégralMuhammed, Mansoor C. B., et S. Rekha. « Low Power Active-RC Filter for ECG Detection ». Dans 2019 Global Conference for Advancement in Technology (GCAT). IEEE, 2019. http://dx.doi.org/10.1109/gcat47503.2019.8978276.
Texte intégralKhumsat, Phanumas, et Apisak Worapishet. « Single-stage CMOS OTA for active-RC filter design ». Dans 2007 European Conference on Circuit Theory and Design (ECCTD 2007). IEEE, 2007. http://dx.doi.org/10.1109/ecctd.2007.4529626.
Texte intégralPanyanouvong, N., S. Luangphakorn, V. Pirajnanchai, P. Tangisanon et K. Janchitrapongvej. « Designing active lowpass filter using uniformly distributed RC line ». Dans Proceedings of 2003 International Conference on Neural Networks and Signal Processing. IEEE, 2003. http://dx.doi.org/10.1109/icnnsp.2003.1279348.
Texte intégralDe Matteis, M., T. Vergine, G. Cocciolo, A. Baschirotto et M. Conta. « A programmable active-RC complex filter for wireless communications ». Dans 2009 16th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2009). IEEE, 2009. http://dx.doi.org/10.1109/icecs.2009.5410971.
Texte intégralSun, Cao, Fu-Le Li, Wei-Tao Li et Han-Jun Jiang. « A configurable active-RC filter for half-duplex transceiver ». Dans 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2012. http://dx.doi.org/10.1109/icsict.2012.6467708.
Texte intégralSheng, Zhang, Su Jishi, Yu Shuibao et Chen Xi. « Research on Integrated Technology of RC Active Filter Optimization ». Dans 2010 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2010. http://dx.doi.org/10.1109/icicta.2010.597.
Texte intégralKhumsat, Phanumas, Apisak Worapishet et Phaophak Sirisuk. « Single-stage CMOS OTA for active-RC filter design ». Dans 2007 Asia Pacific Conference on Communications. IEEE, 2007. http://dx.doi.org/10.1109/apcc.2007.4433500.
Texte intégralJunya Matsuno, Hiroki Sato, Akira Hyogo et Keitaro Sikine. « 3-phase active-RC Tow-Thomas biquad complex filter ». Dans 2007 Joint 50th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) and the IEEE Northeast Workshop on Circuits and Systems (NEWCAS 2007). IEEE, 2007. http://dx.doi.org/10.1109/mwscas.2007.4488639.
Texte intégralJinup Lim, Sanghyun Cha, Huikwan Yang, Seungyun Lee, Sangheon Lee et Joongho Choi. « A low-voltage active-RC filter for wideband communication transceivers ». Dans 2007 International Symposium on Communications and Information Technologies. IEEE, 2007. http://dx.doi.org/10.1109/iscit.2007.4392026.
Texte intégral