Littérature scientifique sur le sujet « Active magnetic levitation »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Active magnetic levitation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Active magnetic levitation"

1

Prada, Erik. « DETERMINATION OF TRANSFER FUNCTION OF MAGNETIC LEVITATION MODEL AND EXPERIMENTAL VERIFICATION OF OPTICAL SENSOR ». TECHNICAL SCIENCES AND TECHNOLOGIES, no 4(18) (2019) : 148–54. http://dx.doi.org/10.25140/2411-5363-2019-4(18)-148-154.

Texte intégral
Résumé :
Urgency of the research. The potential of controlling the position of levitating objects has great application in deposition and in various positioning systems. Magnetic levitation eliminates direct mechanical friction between moving parts. Target setting. The measurement shielding method used is one of the methods of determining the position of a levitating object. By combining positioning and regulating elements, we achieve a feedback control. The use of a given type of measurement has advantages in places where the use of other methods is not appropriate. Actual scientific researches and issues analysis. The problem of magnetic levitation is addressed by several research laboratories with a direct connection to practice. The problem that is currently solved within magnetic levitation is the regulation of the levitating object using various types of regulators. The research objective. Derivation of mathematical model of magnetic levitation and examination of nonlinear system followed by linearization by Taylor series. Experimental determination of characteristics and dependence between object position, voltage and current. The statement of basic materials. The position of the levitating object is determined by the shading of the optical sensor. The light source is a laser light. Conclusions. In this work we defined the mathematical model of the magnetic levitation system and subsequently derived the transfer function of the levitation system and the position sensor. From the experimental verification of the shadow method for the determination of the position of the levitating object and the consequent need for regulation, we found that the dependence of the position of the levitating object on current and voltage on the photodiode is linear in the active region.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Vischer, D., et H. Bleuler. « Self-sensing active magnetic levitation ». IEEE Transactions on Magnetics 29, no 2 (mars 1993) : 1276–81. http://dx.doi.org/10.1109/20.250632.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Green, Scott A., et Kevin C. Craig. « Robust, Digital, Nonlinear Control of Magnetic-Levitation Systems ». Journal of Dynamic Systems, Measurement, and Control 120, no 4 (1 décembre 1998) : 488–95. http://dx.doi.org/10.1115/1.2801490.

Texte intégral
Résumé :
This paper presents a robust, adaptive, nonlinear controller for a class of magnetic-levitation systems, which includes active-magnetic bearings. The controller is analytically and experimentally shown to be superior to a classical linear control system in stability, control effort, step-response performance, robustness to parameter variations, and force-disturbance rejection performance. Using an adaptive backstepping approach, a Lyapunov function is generated along with an adaptive control law such that the nonlinear, closed-loop, continuous system is shown to guarantee stability of the equilibrium and convergence of the parameter estimates to constant values. The control system error coordinates are proven to be bounded in the presence of a bounded force disturbance input. The novelty of this controller is that it is digitally implemented using Euler integrators with anti-windup limits, it is single-input-single-output requiring only a measurement of the position of the levitating object, and it is designed to adaptively estimate not only the uncertain model parameters, but also the constant forces applied to the levitating object in order to ensure robustness to force disturbances. The experimental study was conducted on a single-axis magnetic-levitation device. The controller is shown to be applicable to active-magnetic bearings, under specific conditions, as well as any magnetic-levitation system that can be represented in output-feedback form.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zheng, Zhongqiao, et Minzheng Xu. « Active magnetic levitation guide based on magnetic damping control ». Modern Physics Letters B 31, no 19-21 (27 juillet 2017) : 1740015. http://dx.doi.org/10.1142/s0217984917400152.

Texte intégral
Résumé :
With the application of active magnetic levitation technology, flutter is a problem in the planar multi-point support system, which reduces the bearing capacity and the control precision, and it is difficult to apply advanced control strategies. Therefore, a new method called magnetic damping control is proposed to solve the flutter problem, which can make active magnetic levitation guide to run smoothly.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zheng, Zhongqiao, Xiaojing Wang, Yanhong Zhang et Jiangsheng Zhang. « Research on Neural Network PID Quadratic Optimal Controller in Active Magnetic Levitation ». Open Mechanical Engineering Journal 8, no 1 (21 mars 2014) : 42–47. http://dx.doi.org/10.2174/1874155x01408010042.

Texte intégral
Résumé :
In response to the uncertainty, nonlinearity and open-loop instability of active magnetic levitation control system, a neural network PID quadratic optimal controller has been designed using optimum control theory. By introducing supervised Hebb learning rule, constraint control for positioning errors and control increment weighting are realized by adjusting weighting coefficients, using weighed sum-squares of the control increment and the deviation between actual position and equilibrium position of the rotor in active magnetic levitation system as objective function. The simulation results show that neural network PID quadratic optimal controller can maintain the stable levitation of rotor by effectively improving static and dynamic performances of the system, so as to maintain the stable levitation of rotor in active magnetic levitation system which has stronger anti-jamming capacity and robustness.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Feichtinger, F., S. Clara, A. O. Niedermayer, T. Voglhuber-Brunnmaier et B. Jakoby. « Ball Viscometer Using Active Magnetic Levitation ». Procedia Engineering 168 (2016) : 1525–28. http://dx.doi.org/10.1016/j.proeng.2016.11.452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pujol-Vázquez, Gisela, Alessandro N. Vargas, Saleh Mobayen et Leonardo Acho. « Semi-Active Magnetic Levitation System for Education ». Applied Sciences 11, no 12 (8 juin 2021) : 5330. http://dx.doi.org/10.3390/app11125330.

Texte intégral
Résumé :
This paper describes how to construct a low-cost magnetic levitation system (MagLev). The MagLev has been intensively used in engineering education, allowing instructors and students to learn through hands-on experiences of essential concepts, such as electronics, electromagnetism, and control systems. Built from scratch, the MagLev depends only on simple, low-cost components readily available on the market. In addition to showing how to construct the MagLev, this paper presents a semi-active control strategy that seems novel when applied to the MagLev. Experiments performed in the laboratory provide comparisons of the proposed control scheme with the classical PID control. The corresponding real-time experiments illustrate both the effectiveness of the approach and the potential of the MagLev for education.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Feichtinger, Friedrich, Stefan Clara, Alexander O. Niedermayer, Thomas Voglhuber-Brunnmaier et Bernhard Jakoby. « Active magnetic levitation and 3-D position measurement for a ball viscometer ». Journal of Sensors and Sensor Systems 5, no 2 (22 décembre 2016) : 447–55. http://dx.doi.org/10.5194/jsss-5-447-2016.

Texte intégral
Résumé :
Abstract. We present a new technique for 3-D position sensing and active magnetic levitation of a steel ball for use in a levitating ball viscometer. In order to achieve a stable levitation, a very sensitive positioning measurement system is mandatory. For this task the differential transformer principle was chosen to realize a 3-D position measurement. This leads to a purely magnetic sensor and actuator system without the need for other transducer types such as optical readout. The actuation utilizes power efficient switch-mode electronic circuitry which opens the possibility of upscaling the device, if demanded, for future applications. It is shown that this switch-mode actuation can be combined directly with the position measurement when special switching patterns are applied. A position resolution of ∼ 100 µm in all three axial directions at a sample rate of 476.19 Hz is achieved. For viscosity sensing, the steel ball is magnetically driven to orbital movements of variable revolution frequency of up to 2.5 Hz within a fluid chamber. The frequency response is analyzed and related to the shear viscosity of the fluid under test. As a proof of concept, measurements in various viscous liquids were performed with the prototype, showing promising results in the range of 1–10 mPa s. The principle may also be of interest for applications beyond viscosity sensing, such as fluid mixers, or as actuators in microfluidic devices.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Liu, Guancheng, Yonghua Lu, Jiajun Xu, Zhanxiang Cui et Haibo Yang. « Magnetic Levitation Actuation and Motion Control System with Active Levitation Mode Based on Force Imbalance ». Applied Sciences 13, no 2 (4 janvier 2023) : 740. http://dx.doi.org/10.3390/app13020740.

Texte intégral
Résumé :
Accurate large-displacement magnetic levitation actuation and its stability remain difficult in non-liquid environments. A magnetic levitation actuation and motion control system with active levitation mode is proposed in this paper. The actuating force of the system is generated by the external magnetic field. A neural network proportion-integration-differentiation (PID) controller is designed for active actuation, and a force imbalance principle is built for the step motion mode. Dual electromagnetic actuators are configured to generate a superimposed magnetic field, ensuring that the electromagnetic force on the ball is more uniform and stable than single actuators. Dual-hall-structure sensors are used to measure displacement, thereby reducing overshoot and ensuring stability whilst motivating the ball. Due to the high adaptability of the neural network to complex systems with nonlinear and ambiguous models, the PID controller composed of neurons has stronger adaptability through tuning the PID controller parameters automatically. Furthermore, the proposed controller can solve the shortcoming that the deviation between the controlled object and the steady-state operating point increases and the tracking performance deteriorates rapidly. The strong robustness and stability in active levitation and motion control is achieved during both ascending and descending processes.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Castellanos Molina, Luis, Renato Galluzzi, Angelo Bonfitto, Andrea Tonoli et Nicola Amati. « Magnetic Levitation Control Based on Flux Density and Current Measurement ». Applied Sciences 8, no 12 (8 décembre 2018) : 2545. http://dx.doi.org/10.3390/app8122545.

Texte intégral
Résumé :
This paper presents an active magnetic levitation application that exploits the measurement of coil current and flux density to determine the displacement of the mover. To this end, the nonlinear behavior of the plant and the physical sensing principle are modeled with a finite element approach at different air gap lengths and coil currents. A linear dynamic model is then obtained at the operating point as well as a linear relation for the displacement estimates. The effectiveness of the modeling approach and the performance of the sensing and control techniques are validated experimentally on an active magnetic levitation system. The results demonstrate that the solution is able to estimate the displacement of the mover with a relative error below 3% with respect to the nominal air gap. Additionally, this approach can be exploited for academic purposes and may serve as a reference to implement simple but accurate active magnetic levitation control using low-cost, off-the-shelf sensors.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Active magnetic levitation"

1

Wang, Jinn-Yin, et 王金印. « ACTIVE STRUCTURE CONTROL IN MAGNETIC LEVITATION SYSTEM ». Thesis, 1998. http://ndltd.ncl.edu.tw/handle/05942411731070056013.

Texte intégral
Résumé :
博士
國立成功大學
航空太空工程學系
86
The use of electromagnetic levitated system usually requires a large phase-compensation controller to obtain the damping effect. Due tothe limitation of noise interference from the actuator, the system may not receive good closed-loop damping and stiffness characteristics. To improve system operation problem, a new eddy current sensor is developed in this dissertation to sense the object position and velocity,and offers a required position and velocity feedback to eliminate thevibration energy quickly. A general magnetic levitated platform (MLP)for five-degrees-of-freedom is very useful in many precision industrialapplications. In this experimental system using the non-mechanical-contact technology, the MLP is capable of isolating external vibration and eliminating interference. A flexible beam system is used in the studyof a collocated control and a non-collocated control of sensors and actuators. Both cases of the flexible beam system test the capabilityof the eddy current sensor and the electromagnetic actuator.This dissertation presents the design, implementation and verificationof appropriate system configuration of active structure control used inmagnetic levitation system.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhu, Tao. « Six degree of freedom active vibration isolation using quasi-zero stiffness magnetic levitation ». Thesis, 2014. http://hdl.handle.net/2440/85036.

Texte intégral
Résumé :
Vibration is recognised as one of the most significant disturbances to the operation of mechanical systems. Many traditional vibration isolator designs suffer from the trade-off between load capacity and isolation performance. Furthermore, in providing sufficient stiffness in the vertical direction to meet payload weight requirements, isolators are generally overly stiff in the remaining five degrees of freedom (DOF). In order to address the limitations of traditional isolator designs, this thesis details the development of a 6-DOF active vibration isolation approach. The proposed solution is based on a magnetic levitation system, which provides quasi-zero stiffness payload support in the vertical direction, and inherent zero stiffness in the other five DOFs. The introduced maglev isolator also allows the static force and moment inputs from the payload to be adaptive-passively balanced using permanent magnets. In this thesis, the theoretical background of the proposed maglev vibration isolation method is presented, which demonstrates the ability of the maglev system to achieve the intended vertical payload support and stiffness in the six degrees of freedom. Numerical models for calculating the forces and torques in the proposed maglev system are derived, and the analysis of the cross-coupling effects between the orthogonal DOFs of the isolator is also presented based on the developed system models. A mechanism is introduced by which the cross-coupling effects can be exploited to achieve load balancing for static inputs using permanent magnet forces alone. Following the development of the theoretical model, the mechanical design of the maglev isolator is presented. The designs of the various control systems that are necessary to enable the operation of the maglev isolator are explained. The presented control algorithms achieve three functions: stabilisation of the inherently unstable maglev system, adaptive-passive support of the payload using the cross-coupling effects introduced previously, and autonomous magnet position tuning for online system performance optimisation. Following the discussion of the controller design, a 6-DOF skyhook damping system is presented. The active damping system creates an artificial damping effect in the isolation system to reduce the vibration transmissibility around the resonance frequency of the system. The vibration transmissibilities of the developed maglev isolator were measured in 6-DOF, and results are presented for various combinations of controller settings and damping gains. Through comparisons between the measured performance of the physical system and the predicted performance from theory, the developed maglev vibration isolator demonstrated its practical ability to achieve high performance vibration isolation in six degrees of freedom.
Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2014
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Active magnetic levitation"

1

Eliseo, DiRusso, Provenza A. J et United States. National Aeronautics and Space Administration., dir. An active magnetic bearing with high T[subscript c] superconducting coils and ferromagnetic cores. [Washington, DC] : National Aeronautics and Space Administration, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Active magnetic levitation"

1

Iwasa, Yukikazu, Haigun Lee, Koichiro Sawa et Masato Murakami. « Active Magnetic Levitation with YBCO Samples ». Dans Advances in Superconductivity IX, 1379–84. Tokyo : Springer Japan, 1997. http://dx.doi.org/10.1007/978-4-431-68473-2_170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Czerwiński, Kamil, et Maciej Ławryńczuk. « Identification of Discrete-Time Model of Active Magnetic Levitation System ». Dans Advances in Intelligent Systems and Computing, 599–608. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60699-6_58.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nishi, K., Y. Tachi, K. Sawa, Y. Iwasa, K. Nagashima, H. Fujimoto, T. Miyamoto, M. Tomita et M. Murakami. « Active Magnetic Levitation of Multiple Y-Ba-Cu-O Bulks ». Dans Advances in Superconductivity XI, 1353–56. Tokyo : Springer Japan, 1999. http://dx.doi.org/10.1007/978-4-431-66874-9_317.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Choi, K. B., S. H. Kim, Y. K. Kwak et K. H. Park. « Control strategy of fine manipulator with compliance for wafer probing system based on magnetic levitation ». Dans Active Control in Mechanical Engineering, 109–17. London : CRC Press, 2021. http://dx.doi.org/10.1201/9781003211204-12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Piłat, Adam. « A Comparative Study of PI λ D μ Controller Approximations Exemplified by Active Magnetic Levitation System ». Dans Lecture Notes in Electrical Engineering, 231–41. Heidelberg : Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00933-9_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Park, Yonmook. « Electromagnetic Levitation System for Active Magnetic Bearing Wheels ». Dans Bearing Technology. InTech, 2017. http://dx.doi.org/10.5772/67227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Active magnetic levitation"

1

Eirich, Max, Yuji Ishino, Masaya Takasaki et Takeshi Mizuno. « Active Stabilization of Repulsive Magnetic Bearing by Using Independent Motion Control of Permanent Magnets ». Dans ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35134.

Texte intégral
Résumé :
This paper investigates the control system design of magnetic forces using independent motion control of permanent magnets. In the permanent magnet bearing system, the radial motions of the rotor are passively supported by repulsive forces between ring-shape permanent magnets. The experimental results demonstrate that non contact levitation is achieved by independently PD controlled axial motion of permanent magnets driven by voice coil motors (VCM).
Styles APA, Harvard, Vancouver, ISO, etc.
2

Qi, Yanying, Zhixian Zhong et Yixin Liu. « PID controller for active magnetic levitation ball system ». Dans ISBDAI '18 : International Symposium on Big Data and Artificial Intelligence. New York, NY, USA : ACM, 2018. http://dx.doi.org/10.1145/3305275.3305337.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lin, Shengchang, et Qing Li. « Control method based on active magnetic levitation guideway platform ». Dans 2020 7th International Forum on Electrical Engineering and Automation (IFEEA). IEEE, 2020. http://dx.doi.org/10.1109/ifeea51475.2020.00120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jiang, Changan, et Satoshi Ueno. « Development of magnetic levitation device for active vibration control ». Dans 2016 International Conference on Advanced Mechatronic Systems (ICAMechS). IEEE, 2016. http://dx.doi.org/10.1109/icamechs.2016.7813426.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Mizuno, Takeshi, Yusuke Hara et Kenji Araki. « Control System Design of a Repulsive Magnetic Bearing Stabilized by the Motion Control of Permanent Magnets ». Dans ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/movic-8413.

Texte intégral
Résumé :
Abstract The control system of a magnetic bearing system using forces of repulsion between permanent magnets was designed on a state-feedback basis. In the treated magnetic bearing, the radial motions of the rotor were passively supported by repulsive forces and the axial motion was stabilized by active control. Stabilization was achieved by using the motion control of the permanent magnets for passive radial suspension; these magnets were driven by voice coil motors in the axial direction. Experimental results showed that the designed controllers achieved contactless levitation and adjusted the levitation characteristics effectively by the assignment of closed-loop poles.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Larsonneur, R., et P. Richard. « Smart Turbomachines Using Active Magnetic Bearings ». Dans ASME Turbo Expo 2008 : Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51299.

Texte intégral
Résumé :
Due to the convergence of several key technologies, direct driven (i.e. gearless) turbomachines have become established solutions for specific applications. Magnetic bearings are a key element enabling such machine topologies, which has led to increased interest and also understanding of manufacturers and end customers of this technology. Whereas the key benefit of magnetic bearings — contactless levitation — is well known, the fact that using magnetic bearings turns a classic turbomachine into a state-of-the-art mechatronic system with a host of additional possibilities is still not widely accepted. This paper presents the applications, advantages and benefits of enhancing a basic magnetic bearing system by a measurement function that makes full use of magnetic bearings’ built-in instrumentation.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Peichao, M. Necip Sahinkaya et Patrick S. Keogh. « Active Recovery of Contact-Free Levitation in Magnetic Bearing Systems ». Dans ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70641.

Texte intégral
Résumé :
The use of magnetic bearings allows rotor dynamic systems to be developed for high speed applications, including low pressure/vacuum environments. They provide an alternative to conventional journal, rolling element and gas bearings. The benefits of using magnetic bearings are well documented in terms of low friction operation, together with controllable dynamic characteristics such as stiffness and damping. Magnetic bearings are usually equipped with touchdown bearings to protect the system in cases of power failure, transient loadings, system faults or unexpected influences that may induce system control malfunction. A rotor assembly invariably exhibits residual unbalance due to manufacturing imperfections. The underlying unbalance forces have an influence of the rotor dynamics that arise from contact between a rotor and a touchdown bearing. When considered with the system dynamics, larger unbalance tends to increase the possibility that a rotor will be able to remain in persistent contact with a touchdown bearing. A system has therefore been developed in which the touchdown bearings may be actuated so as to induce the rotor to return to contact-free levitation. This paper provides an assessment of the touchdown bearing motions that will realistically achieve this goal.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sabirin, Chip Rinaldi, et Andreas Binder. « Rotor levitation by active magnetic bearing using digital state controller ». Dans 2008 13th International Power Electronics and Motion Control Conference (EPE/PEMC 2008). IEEE, 2008. http://dx.doi.org/10.1109/epepemc.2008.4635500.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sobhan, P. V. S., G. V. N. Kumar et J. Amarnath. « Rotor levitation by Active Magnetic Bearings using Fuzzy Logic Controller ». Dans 2010 International Conference on Industrial Electronics, Control and Robotics (IECR). IEEE, 2010. http://dx.doi.org/10.1109/iecr.2010.5720140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zeng, Li, Fan Zhang, Zhi-Da Zhu et Jin Sun. « Suspension Model and Control of Magnetic Levitation Spherical Active Joint ». Dans 3rd Annual International Conference on Mechanics and Mechanical Engineering (MME 2016). Paris, France : Atlantis Press, 2017. http://dx.doi.org/10.2991/mme-16.2017.50.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie