Articles de revues sur le sujet « Active Brownian Particles »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Active Brownian Particles.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Active Brownian Particles ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Romanczuk, P., M. Bär, W. Ebeling, B. Lindner et L. Schimansky-Geier. « Active Brownian particles ». European Physical Journal Special Topics 202, no 1 (mars 2012) : 1–162. http://dx.doi.org/10.1140/epjst/e2012-01529-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Arkar, Kyaw, Mikhail M. Vasiliev, Oleg F. Petrov, Evgenii A. Kononov et Fedor M. Trukhachev. « Dynamics of Active Brownian Particles in Plasma ». Molecules 26, no 3 (21 janvier 2021) : 561. http://dx.doi.org/10.3390/molecules26030561.

Texte intégral
Résumé :
Experimental data on the active Brownian motion of single particles in the RF (radio-frequency) discharge plasma under the influence of thermophoretic force, induced by laser radiation, depending on the material and type of surface of the particle, are presented. Unlike passive Brownian particles, active Brownian particles, also known as micro-swimmers, move directionally. It was shown that different dust particles in gas discharge plasma can convert the energy of a surrounding medium (laser radiation) into the kinetic energy of motion. The movement of the active particle is a superposition of chaotic motion and self-propulsion.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Svetlov, Anton S., Mikhail M. Vasiliev, Evgeniy A. Kononov, Oleg F. Petrov et Fedor M. Trukhachev. « 3D Active Brownian Motion of Single Dust Particles Induced by a Laser in a DC Glow Discharge ». Molecules 28, no 4 (14 février 2023) : 1790. http://dx.doi.org/10.3390/molecules28041790.

Texte intégral
Résumé :
The active Brownian motion of single dust particles of various types in the 3D electrostatic DC discharge trap under the action of laser radiation is studied experimentally. Spherical dust particles with a homogeneous surface, as well as Janus particles, are used in the experiment. The properties of the active Brownian motion of all types of dust particles are studied. In particular, the 3D analysis of trajectories of microparticles is carried out, well as an analysis of their root mean square displacement. The mean kinetic energy of motion of the dust particle of various types in a 3D trap is determined for different laser powers. Differences in the character of active Brownian motion in electrostatic traps with different spatial dimensions are found.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cugliandolo, Leticia F., Giuseppe Gonnella et Isabella Petrelli. « Effective Temperature in Active Brownian Particles ». Fluctuation and Noise Letters 18, no 02 (29 mai 2019) : 1940008. http://dx.doi.org/10.1142/s021947751940008x.

Texte intégral
Résumé :
In this paper, we perform a numerical analysis of the effective temperature extracted from the deviations from the fluctuation dissipation theorem in a system of active Brownian spherical particles with excluded volume interactions. We show that, in the low density homogeneous phase at fixed Péclet number, the effective temperature decreases when the density of the system is increased. We compare this trend to the one found in the literature with simulations of other active models.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schimansky-Geier, Lutz, Michaela Mieth, Helge Rosé et Horst Malchow. « Structure formation by active Brownian particles ». Physics Letters A 207, no 3-4 (octobre 1995) : 140–46. http://dx.doi.org/10.1016/0375-9601(95)00700-d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Сергеев, К. С., et K. S. Sergeev. « Dynamics of Ensemble of Active Brownian Particles Controlled by Noise ». Mathematical Biology and Bioinformatics 10, no 1 (16 février 2015) : 72–87. http://dx.doi.org/10.17537/2015.10.72.

Texte intégral
Résumé :
Dynamics of an ensemble of small number of active Brownian particles is studied by means of numerical simulations. The particles are influenced by independent sources of noise, passive and active, and interact with each other through a global velocity field. We suppose that active noise affects to direction of the particle velocity only. Behaviour of the large ensemble and behaviour of the small one are compared. Mean velocity of particles of the large ensemble was analytically estimated earler. We show that a noise-induced "order- disorder" transition accompaniated by a bistability phenomena is observed in a small ensemble. A borderline of a coupling coefficient moves up while reducing the number of particles. Influence of passive noise leads to conversion of bistability to bimodality. There are two most probable values of a particle velocity in the last case. Borders of regions of bistability and bimodality are defined by the stochastic bifurcations of different kinds.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dulaney, Austin R., et John F. Brady. « Machine learning for phase behavior in active matter systems ». Soft Matter 17, no 28 (2021) : 6808–16. http://dx.doi.org/10.1039/d1sm00266j.

Texte intégral
Résumé :
We demonstrate that deep learning techniques can be used to predict motility-induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Großmann, R., L. Schimansky-Geier et P. Romanczuk. « Active Brownian particles with velocity-alignment and active fluctuations ». New Journal of Physics 14, no 7 (13 juillet 2012) : 073033. http://dx.doi.org/10.1088/1367-2630/14/7/073033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Caprini, Lorenzo, Claudio Maggi et Umberto Marini Bettolo Marconi. « Collective effects in confined active Brownian particles ». Journal of Chemical Physics 154, no 24 (28 juin 2021) : 244901. http://dx.doi.org/10.1063/5.0051315.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wang, Liya, Xinpeng Xu, Zhigang Li et Tiezheng Qian. « Active Brownian particles simulated in molecular dynamics ». Chinese Physics B 29, no 9 (septembre 2020) : 090501. http://dx.doi.org/10.1088/1674-1056/aba60d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Gomez-Solano, Juan Ruben, et Francisco J. Sevilla. « Active particles with fractional rotational Brownian motion ». Journal of Statistical Mechanics : Theory and Experiment 2020, no 6 (24 juin 2020) : 063213. http://dx.doi.org/10.1088/1742-5468/ab8553.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Pototsky, A., et H. Stark. « Active Brownian particles in two-dimensional traps ». EPL (Europhysics Letters) 98, no 5 (1 juin 2012) : 50004. http://dx.doi.org/10.1209/0295-5075/98/50004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Speck, Thomas. « Active Brownian particles driven by constant affinity ». EPL (Europhysics Letters) 123, no 2 (21 août 2018) : 20007. http://dx.doi.org/10.1209/0295-5075/123/20007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Wagner, Caleb G., Michael F. Hagan et Aparna Baskaran. « Steady states of active Brownian particles interacting with boundaries ». Journal of Statistical Mechanics : Theory and Experiment 2022, no 1 (1 janvier 2022) : 013208. http://dx.doi.org/10.1088/1742-5468/ac42cf.

Texte intégral
Résumé :
Abstract An active Brownian particle is a minimal model for a self-propelled colloid in a dissipative environment. Experiments and simulations show that, in the presence of boundaries and obstacles, active Brownian particle systems approach nontrivial nonequilibrium steady states with intriguing phenomenology, such as accumulation at boundaries, ratchet effects, and long-range depletion interactions. Nevertheless, theoretical analysis of these phenomena has proven difficult. Here, we address this theoretical challenge in the context of non-interacting particles in two dimensions, basing our analysis on the steady-state Smoluchowski equation for the one-particle distribution function. Our primary result is an approximation strategy that connects asymptotic solutions of the Smoluchowski equation to boundary conditions. We test this approximation against the exact analytic solution in a 2D planar geometry, as well as numerical solutions in circular and elliptic geometries. We find good agreement so long as the boundary conditions do not vary too rapidly with respect to the persistence length of particle trajectories. Our results are relevant for characterizing long-range flows and depletion interactions in such systems. In particular, our framework shows how such behaviors are connected to the breaking of detailed balance at the boundaries.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wang, Yu-Qing, Cheng Huang, Chao-Fan Zhou, Chang Xu, Sheng-Jie Qiang et Ju-Chen Li. « Directional transport of active particles in the two-dimensional asymmetric ratchet potential field ». International Journal of Modern Physics B 34, no 12 (10 mai 2020) : 2050125. http://dx.doi.org/10.1142/s0217979220501258.

Texte intégral
Résumé :
Relationship between matter and energy transport has always been one of the key issues that researchers have been searching for in statistical physics and complexity science. In many transport phenomena, the active transport with zero or even no external force in life activities has attracted extensive attention of scholars. As a special kind of active particles, active Brownian particles have received the attention of physicists and biophysicists. These active particles are natural or artificially designed particles, whose scale is in the order of micrometer or nanometer. Different from the traditional passive Brownian particles driven by the equilibrium heat wave generated by the random collision of the surrounding fluid molecules, active Brownian particles can extract energy from their own environment to drive their own motion. Here, directional transport process of active particles in the two-dimensional asymmetric ratchet potential field is analyzed. Both the overdamped medium and the critically damped one are emphasized. Langevin equations with inertia term are introduced to describe the impacts of the self-driven force, friction coefficient, etc. on the directional motion. Then, the average particle speed is found. Thereafter, the relationships between the speed and critical parameters like self-driven force, friction coefficient, etc. are obtained. Two different dynamical domination mechanisms are found, which are expressed as the random collision domination and the self-driven force domination, respectively. Furthermore, the random collision domination is found to correspond to the much higher peak of the two-dimensional asymmetric Brownian rachet potential field, while the self-driven force domination is found to correspond to the much lower peak of the introduced potential. The study will be helpful for discovering the stochastic thermodynamics mechanisms in nonlinear dynamics and nonlinear properties of such multibody interaction system in statistical physics and complex system science.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Walsh, Lee, Caleb G. Wagner, Sarah Schlossberg, Christopher Olson, Aparna Baskaran et Narayanan Menon. « Noise and diffusion of a vibrated self-propelled granular particle ». Soft Matter 13, no 47 (2017) : 8964–68. http://dx.doi.org/10.1039/c7sm01206c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Apaza, Leonardo, et Mario Sandoval. « Active matter on Riemannian manifolds ». Soft Matter 14, no 48 (2018) : 9928–36. http://dx.doi.org/10.1039/c8sm01034j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Derivaux, Jean-François, Robert L. Jack et Michael E. Cates. « Rectification in a mixture of active and passive particles subject to a ratchet potential ». Journal of Statistical Mechanics : Theory and Experiment 2022, no 4 (1 avril 2022) : 043203. http://dx.doi.org/10.1088/1742-5468/ac601f.

Texte intégral
Résumé :
Abstract We study by simulation a mixture of active (run-and-tumble) and passive (Brownian) particles with repulsive exclusion interactions in one dimension, subject to a ratchet (smoothed sawtooth) potential. Such a potential is known to rectify active particles at one-body level, creating a net current in the ‘easy direction’. This is the direction in which one encounters the lower maximum force en route to the top of a potential barrier. The exclusion constraint results in single-file motion, so the mean velocities of active and passive particles are identical; we study the effects of activity level, Brownian diffusivity, particle size, initial sequence of active and passive particles, and active/passive concentration ratio on this mean velocity (i.e. the current per particle). We show that in some parameter regimes the sign of the current is reversed. This happens when the passive particles are at high temperature and so would cross barriers relatively easily, and without rectification, except that they collide with ‘cold’ active ones, which would otherwise be localized near the potential minima. In this case, the reversed current arises because hot passive particles push cold active ones preferentially in the direction with the lower spatial separation between the bottom and top of the barrier. A qualitatively similar mechanism operates in a mixture containing passive particles of two very different temperatures, although there is no quantitative mapping between that case and the systems studied here.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Derivaux, Jean-François, Robert L. Jack et Michael E. Cates. « Rectification in a mixture of active and passive particles subject to a ratchet potential ». Journal of Statistical Mechanics : Theory and Experiment 2022, no 4 (1 avril 2022) : 043203. http://dx.doi.org/10.1088/1742-5468/ac601f.

Texte intégral
Résumé :
Abstract We study by simulation a mixture of active (run-and-tumble) and passive (Brownian) particles with repulsive exclusion interactions in one dimension, subject to a ratchet (smoothed sawtooth) potential. Such a potential is known to rectify active particles at one-body level, creating a net current in the ‘easy direction’. This is the direction in which one encounters the lower maximum force en route to the top of a potential barrier. The exclusion constraint results in single-file motion, so the mean velocities of active and passive particles are identical; we study the effects of activity level, Brownian diffusivity, particle size, initial sequence of active and passive particles, and active/passive concentration ratio on this mean velocity (i.e. the current per particle). We show that in some parameter regimes the sign of the current is reversed. This happens when the passive particles are at high temperature and so would cross barriers relatively easily, and without rectification, except that they collide with ‘cold’ active ones, which would otherwise be localized near the potential minima. In this case, the reversed current arises because hot passive particles push cold active ones preferentially in the direction with the lower spatial separation between the bottom and top of the barrier. A qualitatively similar mechanism operates in a mixture containing passive particles of two very different temperatures, although there is no quantitative mapping between that case and the systems studied here.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Prymidis, Vasileios, Harmen Sielcken et Laura Filion. « Self-assembly of active attractive spheres ». Soft Matter 11, no 21 (2015) : 4158–66. http://dx.doi.org/10.1039/c5sm00127g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ai, Bao-Quan, Ya-Feng He et Wei-Rong Zhong. « Entropic Ratchet transport of interacting active Brownian particles ». Journal of Chemical Physics 141, no 19 (21 novembre 2014) : 194111. http://dx.doi.org/10.1063/1.4901896.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Asheichyk, Kiryl, Alexandre P. Solon, Christian M. Rohwer et Matthias Krüger. « Response of active Brownian particles to shear flow ». Journal of Chemical Physics 150, no 14 (14 avril 2019) : 144111. http://dx.doi.org/10.1063/1.5086495.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Solon, A. P., M. E. Cates et J. Tailleur. « Active brownian particles and run-and-tumble particles : A comparative study ». European Physical Journal Special Topics 224, no 7 (juillet 2015) : 1231–62. http://dx.doi.org/10.1140/epjst/e2015-02457-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Hernández, Raúl Josué, Francisco J. Sevilla, Alfredo Mazzulla, Pasquale Pagliusi, Nicola Pellizzi et Gabriella Cipparrone. « Collective motion of chiral Brownian particles controlled by a circularly-polarized laser beam ». Soft Matter 16, no 33 (2020) : 7704–14. http://dx.doi.org/10.1039/c9sm02404b.

Texte intégral
Résumé :
Remote switching from passive to collective chiral-active motion by circularly-polarized light is shown for spherical polymeric Brownian particles. Light-propulsion is triggered by the coupling between the particle's chirality and the light helicity.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Du, Yunfei, Huijun Jiang et Zhonghuai Hou. « Rod-assisted heterogeneous nucleation in active suspensions ». Soft Matter 16, no 27 (2020) : 6434–41. http://dx.doi.org/10.1039/d0sm00672f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Das, Suchismita, et Raghunath Chelakkot. « Morphological transitions of active Brownian particle aggregates on porous walls ». Soft Matter 16, no 31 (2020) : 7250–55. http://dx.doi.org/10.1039/d0sm00797h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Bruna, Maria, Martin Burger, Antonio Esposito et Simon M. Schulz. « Phase Separation in Systems of Interacting Active Brownian Particles ». SIAM Journal on Applied Mathematics 82, no 4 (août 2022) : 1635–60. http://dx.doi.org/10.1137/21m1452524.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Borra, Francesco, Massimo Cencini et Antonio Celani. « Optimal collision avoidance in swarms of active Brownian particles ». Journal of Statistical Mechanics : Theory and Experiment 2021, no 8 (1 août 2021) : 083401. http://dx.doi.org/10.1088/1742-5468/ac12c6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Fang, L., L. L. Li, J. S. Guo, Y. W. Liu et X. R. Huang. « Time scale of directional change of active Brownian particles ». Physics Letters A 427 (mars 2022) : 127934. http://dx.doi.org/10.1016/j.physleta.2022.127934.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Martín-Gómez, Aitor, Demian Levis, Albert Díaz-Guilera et Ignacio Pagonabarraga. « Collective motion of active Brownian particles with polar alignment ». Soft Matter 14, no 14 (2018) : 2610–18. http://dx.doi.org/10.1039/c8sm00020d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Romanczuk, P., et U. Erdmann. « Collective motion of active Brownian particles in one dimension ». European Physical Journal Special Topics 187, no 1 (septembre 2010) : 127–34. http://dx.doi.org/10.1140/epjst/e2010-01277-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Schweitzer, Frank. « Modelling Migration and Economic Agglomeration with Active Brownian Particles ». Advances in Complex Systems 01, no 01 (mars 1998) : 11–37. http://dx.doi.org/10.1142/s021952599800003x.

Texte intégral
Résumé :
We propose a stochastic dynamic model of migration and economic aggregation in a system of employed (immobile) and unemployed (mobile) agents which respond to local wage gradients. Dependent on the local economic situation, described by a production function which includes cooperative effects, employed agents can become unemployed and vice versa. The spatio-temporal distribution of employed and unemployed agents is investigated both analytically and by means of stochastic computer simulations. We find the establishment of distinct economic centers out of a random initial distribution. The evolution of these centers occurs in two different stages: (i) small economic centers are formed based on the positive feedback of mutual stimulation/cooperation among the agents, (ii) some of the small centers grow at the expense of others, which finally leads to the concentration of the labor force in different extended economic regions. This crossover to large-scale production is accompanied by an increase in the unemployment rate. We observe a stable coexistence between these regions, although they exist in an internal quasistationary non-equilibrium state and still follow a stochastic eigendynamics.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ebeling, Werner, Frank Schweitzer et Benno Tilch. « Active Brownian particles with energy depots modeling animal mobility ». Biosystems 49, no 1 (janvier 1999) : 17–29. http://dx.doi.org/10.1016/s0303-2647(98)00027-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Winkler, Roland G., Adam Wysocki et Gerhard Gompper. « Virial pressure in systems of spherical active Brownian particles ». Soft Matter 11, no 33 (2015) : 6680–91. http://dx.doi.org/10.1039/c5sm01412c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Merlitz, Holger, Hidde D. Vuijk, René Wittmann, Abhinav Sharma et Jens-Uwe Sommer. « Pseudo-chemotaxis of active Brownian particles competing for food ». PLOS ONE 15, no 4 (8 avril 2020) : e0230873. http://dx.doi.org/10.1371/journal.pone.0230873.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Yang, Qiu-song, Qing-wei Fan, Zhuang-lin Shen, Yi-qi Xia, Wen-de Tian et Kang Chen. « Beating of grafted chains induced by active Brownian particles ». Journal of Chemical Physics 148, no 21 (7 juin 2018) : 214904. http://dx.doi.org/10.1063/1.5029967.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Wittmann, René, et Joseph M. Brader. « Active Brownian particles at interfaces : An effective equilibrium approach ». EPL (Europhysics Letters) 114, no 6 (1 juin 2016) : 68004. http://dx.doi.org/10.1209/0295-5075/114/68004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Wang, Jiwei. « Anomalous Diffusion of Active Brownian Particles in Crystalline Phases ». IOP Conference Series : Earth and Environmental Science 237 (19 mars 2019) : 052005. http://dx.doi.org/10.1088/1755-1315/237/5/052005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Joo, Sungmin, Xavier Durang, O.-chul Lee et Jae-Hyung Jeon. « Anomalous diffusion of active Brownian particles cross-linked to a networked polymer : Langevin dynamics simulation and theory ». Soft Matter 16, no 40 (2020) : 9188–201. http://dx.doi.org/10.1039/d0sm01200a.

Texte intégral
Résumé :
We investigate the anomalous diffusion of active Brownian particles interacting with a viscoelastic polymer network. The active particles have a non-Markovian Gaussian motion, with the negative correlation stronger with larger self-propulsions.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Caprini, Lorenzo, et Umberto Marini Bettolo Marconi. « Spatial velocity correlations in inertial systems of active Brownian particles ». Soft Matter 17, no 15 (2021) : 4109–21. http://dx.doi.org/10.1039/d0sm02273j.

Texte intégral
Résumé :
The velocity field of systems of active Brownian particles at high density shows large spatial coherent structures, a genuine non-equilibrium behavior. The effects of Peclet number, inertia and thermal diffusion on the ordering phenomenon are studied.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Pan, Jun-xing, Hua Wei, Mei-jiao Qi, Hui-fang Wang, Jin-jun Zhang, Wen-de Tian et Kang Chen. « Vortex formation of spherical self-propelled particles around a circular obstacle ». Soft Matter 16, no 23 (2020) : 5545–51. http://dx.doi.org/10.1039/d0sm00277a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Takatori, Sho C., et John F. Brady. « A theory for the phase behavior of mixtures of active particles ». Soft Matter 11, no 40 (2015) : 7920–31. http://dx.doi.org/10.1039/c5sm01792k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Chacón, Enrique, Francisco Alarcón, Jorge Ramírez, Pedro Tarazona et Chantal Valeriani. « Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles ». Soft Matter 18, no 13 (2022) : 2646–53. http://dx.doi.org/10.1039/d1sm01493e.

Texte intégral
Résumé :
We analyse the MIPS interfaces of a 2D suspension of active Brownian particles, in terms of intrinsic density and force profiles. We suggest that MIPS originates from the local rectification of the random active force on particles near the interface.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Levis, Demian, Joan Codina et Ignacio Pagonabarraga. « Active Brownian equation of state : metastability and phase coexistence ». Soft Matter 13, no 44 (2017) : 8113–19. http://dx.doi.org/10.1039/c7sm01504f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Malgaretti, Paolo, Piotr Nowakowski et Holger Stark. « Mechanical pressure and work cycle of confined active Brownian particles ». EPL (Europhysics Letters) 134, no 2 (1 avril 2021) : 20002. http://dx.doi.org/10.1209/0295-5075/134/20002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Wysocki, Adam, Roland G. Winkler et Gerhard Gompper. « Propagating interfaces in mixtures of active and passive Brownian particles ». New Journal of Physics 18, no 12 (23 décembre 2016) : 123030. http://dx.doi.org/10.1088/1367-2630/aa529d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Das, Shibananda, Gerhard Gompper et Roland G. Winkler. « Confined active Brownian particles : theoretical description of propulsion-induced accumulation ». New Journal of Physics 20, no 1 (5 janvier 2018) : 015001. http://dx.doi.org/10.1088/1367-2630/aa9d4b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Stenhammar, Joakim, Davide Marenduzzo, Rosalind J. Allen et Michael E. Cates. « Phase behaviour of active Brownian particles : the role of dimensionality ». Soft Matter 10, no 10 (2014) : 1489–99. http://dx.doi.org/10.1039/c3sm52813h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Nie, Pin, Joyjit Chattoraj, Antonio Piscitelli, Patrick Doyle, Ran Ni et Massimo Pica Ciamarra. « Frictional active Brownian particles ». Physical Review E 102, no 3 (23 septembre 2020). http://dx.doi.org/10.1103/physreve.102.032612.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Schakenraad, Koen, Linda Ravazzano, Niladri Sarkar, Joeri A. J. Wondergem, Roeland M. H. Merks et Luca Giomi. « Topotaxis of active Brownian particles ». Physical Review E 101, no 3 (3 mars 2020). http://dx.doi.org/10.1103/physreve.101.032602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie