Littérature scientifique sur le sujet « Absorbing materials »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Absorbing materials ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Absorbing materials"

1

Sun, Hui Min, Le Chen et Zhao Zhan Gu. « Characterization and Design of Honeycomb Absorbing Materials ». Solid State Phenomena 294 (juillet 2019) : 51–56. http://dx.doi.org/10.4028/www.scientific.net/ssp.294.51.

Texte intégral
Résumé :
Honeycomb absorbing materials are anisotropic structural materials. Depending on the size of honeycomb lattices, the absorbent content of the impregnated layer is different, the thickness of the impregnated layer is different, and the absorbing function of the impregnated honeycomb absorbing materials is also different. For the characterization of electromagnetic parameters of honeycomb absorbing materials, this paper adopts free space method for testing, uses CST software for modeling, and inverts the electromagnetic parameters of honeycomb absorbing structures. The absorbing performance of single-layer and double-layer honeycomb sandwich structures was simulated by RAM Optimizer software. The research shows that the height of the single-layer honeycomb absorbing material is 22mm. When the absorber content is 65%, 75% and 85% respectively, the harmonic peak moves slightly to the low frequency electromagnetic wave with the increase of the absorber content, but the absorbing strength decreases with the increase of the absorber content. For the double-layer honeycomb sandwich structure, the difference of absorber content in the upper and lower honeycomb absorbing materials is smaller, and the absorbing performance is stronger. When the thickness of the wave-transparent panel is thinner, the harmonic peak of the absorbing curve moves slightly to the high frequency.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yu, Zhang. « Research on Absorbing Properties of New Porous Metals Materials with Light Weight ». Key Engineering Materials 815 (août 2019) : 42–47. http://dx.doi.org/10.4028/www.scientific.net/kem.815.42.

Texte intégral
Résumé :
The development of electronic science technology makes electromag-netic radiation problems increasingly severe. High-performance absorbing and shielding electromagnetic wave materials with light weight are researched and developed as one of effectiveness methods to restrain electromagnetic radiation and prevent information leakage. The absorbing properties of aluminium foams coating absorbing paint were studied and tested by making use of RCS in “the reflectivity testing measurement of radar absorbing material” of GJB 2038-94 in this work. The effect of absorbent species and metal base structure on absorbing properties of materials was discussed. The results indicate that the absorbing properties of materials coating magnetic dielectric absorbing paint are better than others, and that of the sample CFe are best in 12.0—18.0GHz, while that of the sample CNi’ are optimal in 26.5—40.0GHz; comparing with aluminium alloy plate materials, aluminium alloy foams have some absorbing properties, and after coating absorbing paint, absorbing properties’ improvement of aluminium foams are larger than of aluminium alloy plate that were resulted from complex porous structure mainly of aluminium foams’.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zheng, Wei, Wenxian Ye, Pingan Yang, Dashuang Wang, Yuting Xiong, Zhiyong Liu, Jindong Qi et Yuxin Zhang. « Recent Progress in Iron-Based Microwave Absorbing Composites : A Review and Prospective ». Molecules 27, no 13 (27 juin 2022) : 4117. http://dx.doi.org/10.3390/molecules27134117.

Texte intégral
Résumé :
With the rapid development of communication technology in civil and military fields, the problem of electromagnetic radiation pollution caused by the electromagnetic wave becomes particularly prominent and brings great harm. It is urgent to explore efficient electromagnetic wave absorption materials to solve the problem of electromagnetic radiation pollution. Therefore, various absorbing materials have developed rapidly. Among them, iron (Fe) magnetic absorbent particle material with superior magnetic properties, high Snoek’s cut-off frequency, saturation magnetization and Curie temperature, which shows excellent electromagnetic wave loss ability, are kinds of promising absorbing material. However, ferromagnetic particles have the disadvantages of poor impedance matching, easy oxidation, high density, and strong skin effect. In general, the two strategies of morphological structure design and multi-component material composite are utilized to improve the microwave absorption performance of Fe-based magnetic absorbent. Therefore, Fe-based microwave absorbing materials have been widely studied in microwave absorption. In this review, through the summary of the reports on Fe-based electromagnetic absorbing materials in recent years, the research progress of Fe-based absorbing materials is reviewed, and the preparation methods, absorbing properties and absorbing mechanisms of iron-based absorbing materials are discussed in detail from the aspects of different morphologies of Fe and Fe-based composite absorbers. Meanwhile, the future development direction of Fe-based absorbing materials is also prospected, providing a reference for the research and development of efficient electromagnetic wave absorbing materials with strong absorption performance, frequency bandwidth, light weight and thin thickness.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Singh, Dharmendra. « Microwave Absorbing Materials ». Defence Science Journal 71, no 03 (17 mai 2021) : 351. http://dx.doi.org/10.14429/dsj.71.17005.

Texte intégral
Résumé :
The 4th Prof. Vijaya Agarwala Memorial National Symposium on Microwave Absorbing Materials (VAMMAM-2020)” was held during 23 - 24th, August 2020 at Indian Institute of Technology Roorkee in association with Centre of Nanotechnology and Common Research Technology Development Hub (CRTDH) for New Materials/Stealth Applications and Department of Applied Mechanics Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Saeed, Fatma S., Ahmed S. Elkorany, Adel A. Saleeb et Elsayed E. Rabaie. « Electromagnetic Absorbing Materials ». Menoufia Journal of Electronic Engineering Research 30, no 1 (1 janvier 2021) : 125–29. http://dx.doi.org/10.21608/mjeer.2021.146298.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Morimoto, Toru. « Sound absorbing materials ». Journal of the Acoustical Society of America 94, no 5 (novembre 1993) : 3037. http://dx.doi.org/10.1121/1.407304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sun, Hui Min, Zhao Zhan Gu et Ran Ran Yang. « Study on Absorbing Properties of Honeycomb Absorbing Materials ». Advanced Materials Research 815 (octobre 2013) : 645–49. http://dx.doi.org/10.4028/www.scientific.net/amr.815.645.

Texte intégral
Résumé :
Honeycomb absorbing materials were measured using the method of free space in this paper. The reflectance of honeycomb absorbing materials was calculated and simulated, and it was verified based on the measured results. It was demonstrated that this test method was feasible. Through studying on absorbing properties of honeycomb, the results have showed that the radar absorbing properties of honeycomb are related to electromagnetic parameters, as well as thickness of the dip-coatings. With the increase of thickness of the dipping layer, the radar absorbing capability of high frequency and low frequency wave are significantly increased. It is worth noting that the resonance peak moved to the low frequency with the increase of dipping layer thickness. These results are useful for design of honeycomb absorbing materials.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kazama, Shigenori. « Novel sound absorbing materials ». Journal of the Acoustical Society of America 96, no 3 (septembre 1994) : 1947. http://dx.doi.org/10.1121/1.410175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Poplavko, Yuriy, Dmytro Tatarchuk, Yurii Didenko et Dmytro Chypegin. « Microwave Absorbing Composite Materials ». Radioelectronics and Communications Systems 66, no 1 (janvier 2023) : 23–32. http://dx.doi.org/10.3103/s0735272723010065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zhang, Yu, Jian Ming Wang et Tian Guo Zhou. « Effect of Doping Cerium Oxide on Microwave Absorbing Properties of Polyaniline/Al-Alloy Foams Composite Materials ». Advanced Materials Research 893 (février 2014) : 295–98. http://dx.doi.org/10.4028/www.scientific.net/amr.893.295.

Texte intégral
Résumé :
To study the effect of doping cerium oxide on the microwave absorbing properties of Polyaniline /Al-alloy foams, the surface of Al-alloy foams was coated with Polyaniline (denoted by CfP),and doping 1%, 2%,5% (mass percent) cerium oxide (denoted by CfP1,CfP2,CfP5) of Polyaniline respectively. The coated Al-alloy foams were tested according to the Standard GJB 2038-94 Method to test the reflectivity of radar absorbing materials, i.e., the RCS (radar cross-section) method. The morphology and distribution of microwave absorbent were analyzed by scanning electron microscopy (SEM) and X-Ray Diffractomer (XRD).The absorbing properties of each example under different wave band were discussed. The results indicated that in the 12~18GHz and 26.5~40GHz bands the absorbing properties increase with the increase of frequency, and after doping the rare earth oxide, the absorbability of the composite material was enhanced.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Absorbing materials"

1

Lisachuk, G. V., R. V. Kryvobok, Y. M. Pitak, O. Lapuzina, N. A. Kryvobok et N. S. Maystat. « Radio-absorbing materials with adjustable dielectric properties ». Thesis, Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/38982.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lanoye, Reinhilde Vermeir Gerrit Lauriks Walter Sgard Franck. « Assessment of the absorption performance of sound absorbing materials ». Villeurbanne : Doc'INSA, 2007. http://docinsa.insa-lyon.fr/these/pont.php?id=lanoye.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sudhendra, Chandrika. « A Novel Chip Resistor Spacecloth For Radar Absorbing Materials ». Thesis, Indian Institute of Science, 2006. https://etd.iisc.ac.in/handle/2005/280.

Texte intégral
Résumé :
Spacecloth design and development is vital and crucial in Radar Absorbing Materials (RAM) for achieving Low Observability in an Aircraft or an Unmanned Air Vehicle(UAV). The RAM design translates into the spacecloth design. The spacecloths form the constituent layers in a broadband Jaumann absorber in which case they have to be designed for various values of surface resistivity. The design specifications of spacecloth(s) in RAMS is well understood and documented in literature. But the design of spacecloth hitherto, has been the domain of materials' scientists wherein the specified properties of the spacecloth are achieved by an iterative, trial and error process, by mixing various constituents in different proportions to get the design specified surface resistivity in the final end-product. In an effort to bridge this gap, a novel spacecloth for RAM applications is proposed in the thesis. It is proposed that a repetitive geometrical grid network of chip resistors simulates spacecloth. The sheet resistivity of the spacecloth is derived by analyzing various geometries like square, rectangle, triangle and hexagonal grids. The transmission and reflection loss for the chip resistor spacecloth is derived. The design of chip resistor spacecloths for operation at S and C bands is given followed by experimental verification using waveguide simulator experiments. Numerical study of multilayer RAM has been carried out with exponential taper variation of surface resistivities for constituent spacecloth layers and design curves are given for multilayer RAM both for normal and oblique incidence for TE and TM polarizations.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sudhendra, Chandrika. « A Novel Chip Resistor Spacecloth For Radar Absorbing Materials ». Thesis, Indian Institute of Science, 2006. http://hdl.handle.net/2005/280.

Texte intégral
Résumé :
Spacecloth design and development is vital and crucial in Radar Absorbing Materials (RAM) for achieving Low Observability in an Aircraft or an Unmanned Air Vehicle(UAV). The RAM design translates into the spacecloth design. The spacecloths form the constituent layers in a broadband Jaumann absorber in which case they have to be designed for various values of surface resistivity. The design specifications of spacecloth(s) in RAMS is well understood and documented in literature. But the design of spacecloth hitherto, has been the domain of materials' scientists wherein the specified properties of the spacecloth are achieved by an iterative, trial and error process, by mixing various constituents in different proportions to get the design specified surface resistivity in the final end-product. In an effort to bridge this gap, a novel spacecloth for RAM applications is proposed in the thesis. It is proposed that a repetitive geometrical grid network of chip resistors simulates spacecloth. The sheet resistivity of the spacecloth is derived by analyzing various geometries like square, rectangle, triangle and hexagonal grids. The transmission and reflection loss for the chip resistor spacecloth is derived. The design of chip resistor spacecloths for operation at S and C bands is given followed by experimental verification using waveguide simulator experiments. Numerical study of multilayer RAM has been carried out with exponential taper variation of surface resistivities for constituent spacecloth layers and design curves are given for multilayer RAM both for normal and oblique incidence for TE and TM polarizations.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lebedev, Andrej. « Theoretical description of the optical response of heterogeneous absorbing materials ». [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=96177049X.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lebedev, Andrei. « Theoretical description of the optical response of heterogeneous absorbing materials ». Doctoral thesis, Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000113.

Texte intégral
Résumé :
Die Arbeit befaßt sich mit der Beschreibung der linearen optischen Eigenschaften von heterogenen absorbierenden Materialien, insbesondere von Clustermaterialien. Das Ziel der Arbeit besteht in der Ausarbeitung einer analytischen Methode zur Berechnung des optischen Verlustes (Extinktion) des heterogenen Materials. Die präsentierte Methode basiert auf der klassischen Beschreibung der Licht-Materie-Wechselwirkung mit Hilfe dielektrischer Funktionen. Das Modell berücksichtigt eine mögliche Absorption in der Einbettmatrix, Mehrfachstreungseffekte in Systemen mit dichtgepackten Clustern und die Clusterstatistik. Um die Absorption in der Einbettmatrix beschreiben zu können, wird die Mie-Theorie der Lichtstreuung an einem sphärischen Teilchen in einer nichtabsorbierenden Umgebung erweitert. Die Clusterstatistik wird dadurch berücksichtigt, daß die optischen Eigenschaften eines makroskopischen Clustersystems als eine Mittelung der Eigenschaften kleinerer Clusteraggregate berechnet werden. Die zur Berechnung verwendeten Clusteraggregate, deren statistische Eigenschaften der Probenherstellungsmethode entsprechen, werden mit Hilfe von Monte-Carlo-Simulation des Clusterwachstums auf Oberflächen generiert. Nach einer Beschreibung des theoretischen Apparats werden numerische Beispiele dargestellt, die die Anwendung der Methode demonstrieren. Die Extinktion von Eisenclustern in Fulleritmatrix wird in der Einzelteilchennäherung berechnet und mit experimentellen Daten verglichen. Die Extinktionskoeffizienten von Silberclustern in zwei molekularen Matrizen werden mit der Berücksichtigung der Clusterstatistik und Mehrfachstreungseffekten berechnet. Der Vergleich mit den experimentellen Werten läßt auf den Einfluß der betrachteten Effekte auf charakteristische Merkmale in den Spektren von makroskopischen Clustersystemen schlißen.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Norindr, Florian. « Study of inorganic transparent materials with near-infrared absorbing properties ». Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/171095/.

Texte intégral
Résumé :
The pigments investigated in this thesis were synthesised and characterised in order to find promising candidates for near-infrared absorbers. The chemical systems were chosen due to their absorbing properties and also their chemical and thermal stability and non-toxicity as well as for economical reasons. Investigations were undertaken on several phosphates and silicates.Within the group of phosphates, first several known copper compounds, i.e.Cu2P2O7, Cu4P2O9, Cu5P2O10, Cu3(PO4)2, Cu(PO3)2 and Cu2P4O12, were tested and the most suitable were chosen for more detailed experiments. The structure types with the general formula M2P2O7 were found to be promising and the metals calcium, strontium and copper were investigated as a starting point. It was confirmed that M2P2O7 (with M = Ca or Sr) and Cu2P2O7 could only form a pigment material for the middle member e.g. MCuP2O7. Better candidates were found in the systems Mg/Cu and Zn/Cu. Here solid solutions occur and the absorption behaviour could be adjusted according to the ratio of the metal cations. A series of different cation ratio compounds were synthesised for both systems. As Zn/Cu shows more favourable absorption properties compared to Mg/Cu, a full investigation of structural parameters including neutron powder diffraction and EXAFS studies was undertaken and the influence of the shape of M–O coordination spheres on the near-infrared absorption properties is discussed in detail. After deriving the successful concept it was investigated in two further chemical systems. First, the cation Fe2+ was used into the Zn3(PO4)2 structure to form a solid solution (Zn,Fe)3(PO4)2 and then Cu2+ was introduced into the Mg2Si2O6 pyroxene structure. Resulting from the studies, three promising systems for transparent near-infrared absorbing pigment applications were isolated: (Zn,Cu)2P2O7, (Zn,Fe)3(PO4)2 and (Mg,Cu)2Si2O6 solid solutions
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zheng, Lixin. « Design, synthesis, and characterization of organic and polymeric two-photon absorbing materials / ». Thesis, Connect to this title online ; UW restricted, 2003. http://hdl.handle.net/1773/10599.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ohira, Shino. « Theoretical evaluation of the nonlinear optical properties of extended and p-conjugated chromophores ». Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29717.

Texte intégral
Résumé :
Thesis (Ph.D)--Chemistry and Biochemistry, Georgia Institute of Technology, 2009.
Committee Chair: Brédas, Jean-Luc; Committee Member: Janata, Jiri; Committee Member: Kippelen, Bernard; Committee Member: Marder, Seth; Committee Member: Sherrill, David. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ford, Lee. « Adaptive radar signature control with the use of radar absorbing materials ». Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398391.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Absorbing materials"

1

Vinoy, K. J., et R. M. Jha. Radar Absorbing Materials. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

1942-, Matsuoka Masaru, dir. Infrared absorbing dyes. New York : Plenum Press, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wray, S. Sandwich materials in energy absorbing structures. Manchester : UMIST, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Vinoy, K. J. Radar absorbing materials : From theory to design and characterization. Boston : Kluwer Academic Publishers, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Allard, J. F. Propagation of sound in porous media : Modelling sound absorbing materials. 2e éd. Hoboken, N.J : Wiley, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Allard, J. F. Propagation of sound in porous media : Modelling sound absorbing materials. 2e éd. Hoboken, N.J : Wiley, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Allard, J. F. Propagation of sound in porous media : Modelling sound absorbing materials. 2e éd. Hoboken, N.J : Wiley, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Propagation of sound in porous media : Modelling sound absorbing materials. London : Elsevier Applied Science, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Maupin, G. W. Evaluation of asphalt rubber stress-absorbing membrane. Charlottesville : Virginia Transportation Research Council, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

MRS International Meeting on Advanced Materials (1st 1988 Tokyo, Japan). Hydrogen absorbing materials ; Catalytic materials : May 31-June 3, 1988, Sunshine City, Ikebukuro, Tokyo, Japan. Sous la direction de Morooka Yoshihiko 1938- et Materials Research Society. Pittsburgh, Pa : Materials Research Society, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Absorbing materials"

1

Harris, David A. « Sound Absorbing Materials ». Dans Noise Control Manual, 9–21. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-6009-5_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Vinoy, K. J., et R. M. Jha. « Introduction ». Dans Radar Absorbing Materials, 1–18. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Vinoy, K. J., et R. M. Jha. « Fundamental Electromagnetic Concepts for RAM ». Dans Radar Absorbing Materials, 19–50. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Vinoy, K. J., et R. M. Jha. « Mathematical Analysis for RAM on Surfaces ». Dans Radar Absorbing Materials, 51–95. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Vinoy, K. J., et R. M. Jha. « Electromagnetic Design of RAM ». Dans Radar Absorbing Materials, 97–141. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Vinoy, K. J., et R. M. Jha. « Absorber Characterization Techniques ». Dans Radar Absorbing Materials, 143–58. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vinoy, K. J., et R. M. Jha. « Identification and Applications of RAM ». Dans Radar Absorbing Materials, 159–67. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vinoy, K. J., et R. M. Jha. « Trends in RAM ». Dans Radar Absorbing Materials, 169–73. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0473-9_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Cho, Hae Yong, Chang Ha Choi, Jin Young Kim, Dae Ho Choi et Soo Wohn Lee. « Sound Absorbing Properties of Foamed Glasses ». Dans Materials Science Forum, 578–81. Stafa : Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-966-0.578.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mishra, Raghvendra Kumar, Aastha Dutta, Priyanka Mishra et Sabu Thomas. « Recent Progress in Electromagnetic Absorbing Materials ». Dans Advanced Materials for Electromagnetic Shielding, 147–66. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119128625.ch7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Absorbing materials"

1

Sun, Huimin, et Zhaozhan Gu. « Absorbing Properties of Honeycomb Structure Absorbing Materials ». Dans 2015 International Conference on Advanced Material Engineering. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814696029_0047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Huang, Shaowu, Xiaoning Ye et Kai Xiao. « Probe with absorbing materials ». Dans 2016 IEEE International Symposium on Electromagnetic Compatibility - EMC 2016. IEEE, 2016. http://dx.doi.org/10.1109/isemc.2016.7571630.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lujun Wu, Qun Wang et Zhanghong Tang. « Absorbing properties of three dimensional honeycomb-structured absorbing materials ». Dans 2012 6th Asia-Pacific Conference on Environmental Electromagnetics (CEEM 2012). IEEE, 2012. http://dx.doi.org/10.1109/ceem.2012.6410630.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Grebenshikov, Sergey V. « Absorbing materials in multilayer mirrors ». Dans ECO4 (The Hague '91), sous la direction de Rolf-Juergen Ahlers et Theo T. Tschudi. SPIE, 1991. http://dx.doi.org/10.1117/12.46828.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bunting, Charles F. « Absorbing Materials-Reverberation Chamber Assessments ». Dans 2018 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2018. http://dx.doi.org/10.1109/emcsi.2018.8495313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Larruquert, Juan I., Mónica Fernández-Perea, Manuela Vidal, José A. Méndez et José A. Aznárez. « Constructing Multilayers with Absorbing Materials ». Dans Optical Interference Coatings. Washington, D.C. : OSA, 2007. http://dx.doi.org/10.1364/oic.2007.wd1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Afsar, Mohammed N. « Millimeter wave radar absorbing materials ». Dans 18th International Conference on Infrared and Millimeter Waves. SPIE, 1993. http://dx.doi.org/10.1117/12.2298519.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sung, Shung H., et Donald J. Nefske. « Coupling Sound Absorbing Materials With an Air Cavity Using Frequency Dependent Bulk Material Properties ». Dans ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67678.

Texte intégral
Résumé :
This paper presents the acoustic finite element method and the modal solution method for coupling sound absorbing materials with an air cavity to predict the sound pressure frequency response. The sound absorbing materials are represented with complex, frequency-dependent, effective mass-density and bulk-modulus properties obtained from the acoustic impedance of material samples. To couple the sound absorber cavity and air cavity, the boundary conditions at the interface between the cavities requires equality of pressure and equality of acoustic volume flow. Two modal solution methods are developed to compute the frequency response of the coupled system with frequency dependent material properties: the component mode method and the coupled mode method. The finite element and modal solution methodology is developed in a form readily adaptable for implementation in commercially available codes. The accuracy of the modal solution methodology is assessed for modeling a one-dimensional air tube terminated with absorbent material and the seats in an automobile passenger compartment.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Liu, Qian, Xiangyang Jiao, Jing Li, Victor Khilkevich, James Drewniak, Paul Dixon et Yoeri Arien. « Modeling absorbing materials for EMI mitigation ». Dans 2015 IEEE International Symposium on Electromagnetic Compatibility - EMC 2015. IEEE, 2015. http://dx.doi.org/10.1109/isemc.2015.7256405.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wang Xinwei et Lu Yinghua. « Absorbing materials optimization on characteristic parameters ». Dans Proceedings of International Symposium on Electromagnetic Compatibility. IEEE, 1997. http://dx.doi.org/10.1109/elmagc.1997.617201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Absorbing materials"

1

Shneyderman, YA A. Radio-Absorbing Materials. Fort Belvoir, VA : Defense Technical Information Center, juillet 1985. http://dx.doi.org/10.21236/ada157496.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Haberman, Michael R., Carolyn C. Seepersad, Preston S. Wilson, Kim Alderson, Andrew Alderson et Fabrizio Scarpa. New Solutions for Energy Absorbing Materials. Fort Belvoir, VA : Defense Technical Information Center, novembre 2012. http://dx.doi.org/10.21236/ada582743.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Leathe, Nicholas. Additively Manufactured Shock Absorbing Engineered Materials. Office of Scientific and Technical Information (OSTI), novembre 2018. http://dx.doi.org/10.2172/1761082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Read, David L., et Larry C. Muszynski. Energy Absorbing Materials for Protective Structures. Phase 2. Fort Belvoir, VA : Defense Technical Information Center, août 1994. http://dx.doi.org/10.21236/ada311039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Marder, Seith R., et Joseph W. Perry. DURIP97 Instrumentation for Characterization of Two-Photon Absorbing Organic Materials. Fort Belvoir, VA : Defense Technical Information Center, juin 1998. http://dx.doi.org/10.21236/ada347827.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Deryabin, I. V. Noise-absorbing panel with bypass channels. FORGING AND STAMPING PRODUCTION. MATERIAL WORKING BY PRESSURE, août 2023. http://dx.doi.org/10.12731/kshpomd62023-deryabin.

Texte intégral
Résumé :
Noise, having a harmful effect on humans and the environment, forces us to search and conduct research on the development of new methods and means of noise protection. Currently, with an increasing increase in the flow of vehicles in residential areas, with the development of industrial production, the issue of noise control is becoming particularly relevant. A well-known and effective technical solution for blocking the transmission of acoustic energy is the use of noise-absorbing panels, both as part of various soundproof structures, and in the form of separate acoustic elements installed in noisy rooms. The article discusses the design of a noise-absorbing panel containing through bypass channels. Such a panel has a broadband sound absorption effect in frequency composition due to the use of porous sound-absorbing structures of structural materials with the integration of bypass channels into their composition.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jianguo, He, Lu Zhongliang et Su Yi. Experimental Investigation of Impulse Radar for Mitigation of Effects of Radar Absorbing Materials,. Fort Belvoir, VA : Defense Technical Information Center, avril 1995. http://dx.doi.org/10.21236/ada294166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang, Lumin, et Jonathan Brett Wierschke. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel. Office of Scientific and Technical Information (OSTI), avril 2015. http://dx.doi.org/10.2172/1178572.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Farmer, J., et J. Choi. Neutron-Absorbing Coatings for Enhanced Criticiality Safety : Long-Term Storage of Fissile Materials & ; Equipment for Reprocessing Spent Fuel. Office of Scientific and Technical Information (OSTI), mars 2007. http://dx.doi.org/10.2172/1129154.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Maragoudakis, Christos E., et Vernon Kopsa. Effects of Radar Absorbing Material (RAM) on the Radiated Power of Monopoles with Finite Ground Plane. Fort Belvoir, VA : Defense Technical Information Center, janvier 2009. http://dx.doi.org/10.21236/ada494124.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie