Littérature scientifique sur le sujet « Abiotic stresse »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Abiotic stresse ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Abiotic stresse"
Han, Hongyan, Xiaopeng Mu, Pengfei Wang, Zewen Wang, Hongbo Fu, Yu Gary Gao et Junjie Du. « Identification of LecRLK gene family in Cerasus humilis through genomic-transcriptomic data mining and expression analyses ». PLOS ONE 16, no 7 (12 juillet 2021) : e0254535. http://dx.doi.org/10.1371/journal.pone.0254535.
Texte intégralPuzanskiy, R. K., V. V. Yemelyanov et M. F. Shishova. « METABOLOMICS AS A MODERN APPROACH FOR THE INVESTIGATION OF POTATO PLANT ADAPTATION TO BIOTIC AND ABIOTIC STRESSE FACTORS (review) ». Sel'skokhozyaistvennaya Biologiya 53, no 1 (février 2018) : 15–28. http://dx.doi.org/10.15389/agrobiology.2018.1.15eng.
Texte intégralBrini, Faiçal, et Walid Saibi. « Oxidative stress and antioxidant defense in Brassicaceae plants under abiotic stresses ». SDRP Journal of Plant Science 5, no 1 (2021) : 232–44. http://dx.doi.org/10.25177/jps.5.1.ra.10694.
Texte intégralOdukoya, Johnson, Ronnie Lambert et Ruben Sakrabani. « Understanding the Impacts of Crude Oil and its Induced Abiotic Stresses on Agrifood Production : A Review ». Horticulturae 5, no 2 (23 juin 2019) : 47. http://dx.doi.org/10.3390/horticulturae5020047.
Texte intégralHandayani, Tri, et Kazuo Watanabe. « The combination of drought and heat stress has a greater effect on potato plants than single stresses ». Plant, Soil and Environment 66, No. 4 (30 avril 2020) : 175–82. http://dx.doi.org/10.17221/126/2020-pse.
Texte intégralHinojosa, Leonardo, Juan González, Felipe Barrios-Masias, Francisco Fuentes et Kevin Murphy. « Quinoa Abiotic Stress Responses : A Review ». Plants 7, no 4 (29 novembre 2018) : 106. http://dx.doi.org/10.3390/plants7040106.
Texte intégralMohammed, S. H., et Maarouf I. Mohammed. « Impact of Abiotic Stress on Quality Traits of Maize Forage at Two Growth Stages ». Journal of Horticulture and Plant Research 7 (août 2019) : 60–68. http://dx.doi.org/10.18052/www.scipress.com/jhpr.7.60.
Texte intégralAl-Deeb, Taghleb, Mohammad Abo Gamar, Najib El-Assi, Hmoud Al-Debei, Rabea Al-Sayaydeh et Ayed M. Al-Abdallat. « Stress-Inducible Overexpression of SlDDF2 Gene Improves Tolerance against Multiple Abiotic Stresses in Tomato Plant ». Horticulturae 8, no 3 (7 mars 2022) : 230. http://dx.doi.org/10.3390/horticulturae8030230.
Texte intégralKajla, Mamta, Vinaya Kumar Yadav, Jaswant Khokhar, Samar Singh, R. S. Chhokar, Raj Pal Meena et R. K. Sharma. « Increase in wheat production through management of abiotic stresses : A review ». Journal of Applied and Natural Science 7, no 2 (1 décembre 2015) : 1070–80. http://dx.doi.org/10.31018/jans.v7i2.733.
Texte intégralLiu, Junli, Gaoyang Qiu, Chen Liu, Hua Li, Xiaodong Chen, Qinglin Fu, Yicheng Lin et Bin Guo. « Salicylic Acid, a Multifaceted Hormone, Combats Abiotic Stresses in Plants ». Life 12, no 6 (14 juin 2022) : 886. http://dx.doi.org/10.3390/life12060886.
Texte intégralThèses sur le sujet "Abiotic stresse"
Feilke, Kathleen. « Biochemical characterization of the plastid terminal oxidase and its implication in photosynthesis ». Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS051/document.
Texte intégralThe plastid terminal oxidase PTOX is encoded by higher plants, algae and some cyanobacteria. PTOX is a plastid-localized plastoquinol (PQH2) oxygen oxidoreductase. PTOX was shown to be implicated in plant carotenoid biosynthesis, photosynthetic electron transport and chlororespiration and may act as a safety valve protecting plants against photo-oxidative stress. PTOX protein levels increase during abiotic stress indicating a function in stress acclimation. But overexpression of PTOX in Arabidopsis did not attenuate the severity of photoinhibition or, when overexpressed in tobacco, even increased the production of reactive oxygen species (ROS) and exacerbated photoinhibition.Biochemical analysis of recombinant purified PTOX (PTOX from rice fused to the maltose-binding protein) showed that the enzyme exists mainly as a tetramer, which dissociated to a certain extent during electrophoresis, mainly into a dimeric form. The PTOX activity was 320 electrons s−1 PTOX−1. It was also shown that PTOX generates ROS in a side reaction in a substrate (decylPQH2) and pH-dependent manner when liposomes were used: at the basic stromal pH of photosynthetically active chloroplasts, PTOX was antioxidant at low decylPQH2 gaining prooxidant properties with increasing quinol concentrations. It is concluded that PTOX can act as a safety valve when the steady state [PQH2] is low while a certain amount of ROS is formed at high light intensities.It was shown by chlorophyll a fluorescence that recombinant purified PTOX is active when added to photosystem II (PSII)-enriched membrane fragments. PTOX attached tightly to the PSII-enriched membrane fragments. The amount of PTOX attaching to the membrane depended on pH and salts: an alkaline pH and monovalent compared to divalent cations increased PTOX attachment.PTOX activity in planta and its effect on photosynthetic electron transport were investigated using Arabidopsis expressing bacterial phytoene desaturase and tobacco expressing PTOX1 from Chlamydomonas. Arabidopsis expressing bacterial phytoene desaturase (CRTI lines) showed a higher PTOX content and increased PTOX related ROS generation. Furthermore, cyclic electron flow was suppressed in these lines. This implicates that PTOX competes efficiently with cyclic electron flow for PQH2 in the CRTI-expressing lines and that it plays a crucial role in the control of the reduction state of the plastoquinone pool. Using tobacco expressing PTOX1 from Chlamydomonas, it was shown that PTOX competes efficiently with photosynthetic electron flow, but gets inactive when the stromal pH is neutral. Based on the in vitro and in vivo results, a model is proposed, where the association of PTOX to the membrane is controlled by the stromal pH: When the stromal pH is neutral, PTOX exists as a soluble form and is enzymatically inactive avoiding the interference of PTOX with linear electron flow. When the stromal pH is alkaline and the photosynthetic electron chain is highly reduced under stress conditions as high light, PTOX binds to the membrane, gets enzymatically active and can serve as safety valve
CAVALLARO, VIVIANA. « SULFUR NUTRITION AND PARTITIONING IN RICE UNDER DIFFERENT STRESS CONDITIONS ». Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/881847.
Texte intégralBerenguer, Helder Duarte Paixão. « Eucalyptus predisposition to Neofusicoccum kwambonambiense under water stress ». Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/22330.
Texte intégralIn Portugal, Eucalyptus, particularly Eucalyptus globulus, occupies more than 800 000 ha and, due to being a major source of biomass for fiberboard, industrial charcoal, fuel wood and paper pulp, has become a key genus, with a considerable economic importance. However, E. globulus productivity faces new pressures, with climate change-driven drought as one of the most hostile ones. Drought can lead to growth impairment and yield reduction: directly; or indirectly, through the increase of plant susceptibility to pathogens by a predisposition mechanism. Neofusicoccum kwambonambiense is an endophytic opportunist phytopathogen known to severely affect E. globulus, whose incidence has already been reported in Portugal. Taking all in consideration, it is of major importance to assess the predisposition effect that drought may have on the N. kwambonambiense - E. globulus interaction. For such purpose, four treatment groups were established: E. globulus were firstly subjected to a 66-days acclimation period in which plants were periodically watered (80% of field capacity). After that, two groups were exposed to a progressive water supply restriction. The other two remained well-watered. Once water-stressed plants achieved 18% of field capacity (23 days), a well-watered and a water-stress group were inoculated with N. kwambonambiense. All treatments were kept in these conditions throughout a 65 days’ period, at which moment a set of morphological, physiological and biochemical parameters was obtained. Well-watered plants, despite being infected with N. kwambonambiense, presented an overall photosynthetic increase, which enabled plant defense through the production of sugars, proline and salicylic acid. Oxidative damages (partially observed through malondialdehyde content), were avoided in part due to proline and soluble sugars. Water stress lead to a direct growth impairment confirmed through an indole-acetic-acid content decrease. A water-potential reduction occurred, which, together with abscisic acid, lead to stomatal closure and overall photosynthetic efficiency decline. Oxidative damages weren’t properly managed and further affected E. globulus. Furthermore, N. kwambonambiense was found to promote a jasmonic acid content increase, typical of necrotrophic pathogens, which may suggest a lifestyle change from hemibiotrophic to necrotrophic as plant cells progressively degenerate. Ultimately, water-stressed E. globulus presented larger external lesion extensions and steam cankers and a superior internal fungi progression. Our results conclusively demonstrate that water stress created a better substrate for fungi development and decreased the plant’s ability to respond. Such resulted in higher susceptibility and disease severity confirming predisposition.
Em Portugal, o eucalipto, particularmente o Eucalyptus globulus, ocupa mais de 800 000 ha. Devido a ser uma importante fonte de biomassa para painéis de fibras, carvão industrial, lenha e pasta de papel, tornou-se um género chave de considerável importância económica. Contudo, a produtividade de E. globulus tem encontrado novas pressões, sendo a seca resultante das alterações climáticas, uma das mais hostis. A seca pode levar a uma diminuição do crescimento e produtividade: diretamente; ou indiretamente através do aumento da suscetibilidade a agentes patogénicos através da predisposição. O fungo ascomiceto Neofusicoccum kwambonambiense é um agente fitopatogénico endofítico oportunista que se sabe afetar severamente E. globulus, e cuja presença já fora confirmada em Portugal. Tomando tal em consideração, torna-se importante avaliar o efeito de predisposição que a seca poderá ter na interação N. kwambonambiense - E. globulus. Para tal foram criados quatro grupos de tratamento: E. globulus foram primeiramente sujeitos a um período de aclimatização de 66 dias no qual foram periodicamente irrigados (80% de capacidade de campo). Seguidamente, dois grupos foram sujeitos a uma diminuição progressiva da irrigação. Os outros dois grupos permaneceram bem regados. Uma vez que os tratamentos stressados atingiram 18% de capacidade de campo (23 dias), um grupo bem regado e um grupo stressado foram inoculados com N. kwambonambiense. Todas os tratamentos foram mantidos nestas condições durante um período de 66 dias, findo o qual foi obtido um conjunto de parâmetros morfológicos, fisiológicos e bioquímicos. As plantas bem regadas, apesar de terem sido inoculadas com N. kwambonambiense apresentaram um aumento dos parâmetros fotossintéticos o que terá permitido a defesa da planta através de uma produção amplificada de açúcares, prolina e ácido salicílico. Danos oxidativos (parcialmente observados através do conteúdo em malondialdeído) foram evitados, em parte, devido à ação da prolina e açúcares solúveis. O stress hídrico levou a uma diminuição do crescimento confirmado pela redução do conteúdo em ácido-indole-acético. Ocorreu uma diminuição do potencial hídrico, a qual, em conjunto com o aumento do ácido abscísico, levou ao fecho dos estomas e diminuição da fotossíntese. Os danos oxidativos não foram controlados, afetando o estado do E. globulus. Ademais, o N. kwambonambiense provocou um aumento do conteúdo em ácido jasmónico, típico de agentes patogénicos necrotróficos, o que poderá sugerir que o fungo passou de um estilo de vida hemibiotrófico para necrotrófico, à medida que as células degeneravam. Os E. globulus stressados apresentavam maiores lesões externas e cancros, conjuntamente com uma maior progressão interna do fungo. Os nossos resultados comprovam que a seca criou um melhor substrato para o desenvolvimento do fungo e diminuiu a capacidade de resposta da planta. Tal resultou num aumento da suscetibilidade e severidade da doença confirmando a predisposição.
RICCI, SARA. « Study of biotic and abiotic stresses in Solanaceae by metabolic and proteomic approaches ». Doctoral thesis, Università di Foggia, 2017. http://hdl.handle.net/11369/363315.
Texte intégralMalinoshevska, M. « Biofilm formation in abiotic stress environment ». Thesis, Київський національний університет технологій та дизайну, 2019. https://er.knutd.edu.ua/handle/123456789/13386.
Texte intégralSilva, Ana Luísa Patrício. « Impact of natural and/or chemical stressors on the freeze-tolerant and euryhaline enchytraeid, Enchytraeus albidus ». Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/16009.
Texte intégralRapid climatic changes are taking place in Arctic, subarctic and cold temperate regions, where predictions point to an increase in freeze-thaw events, changes in precipitation, evaporation and salinity patterns. Climate change may therefore result in large impacts in ecosystem functioning and dynamics, especially in the presence of contaminants due to intense anthropogenic activities. Even though multiple stress approaches have received increasing interest in the last decades, the number of such studies is limited. In particular, knowledge on the effect of freezethaw events and salinity fluctuations on ecotoxicology of soil invertebrates is lacking, especially important when considering supralittoral species. Therefore, the aim of this thesis was to investigate the effects of low temperature and salinity fluctuations, singly and in combination with contaminants, in the freeze-tolerant and euryhaline enchytraeid Enchytraeus albidus. The assessment of population level endpoints (survival and reproduction), along with physiological and biochemical parameters such as levels of cryoprotectants, ice/water content, oxidative stress biomarkers, cellular energy allocation, and tissue concentration of chemicals (when applied), provided new and valuable knowledge on the effects of selected physical and chemical stressors in E. albidus, and allowed the understanding of adjustments in the primary response mechanisms that enable worms to maintain homeostasis and survival in harsh environments such as polar and temperate-cold regions. The presence of moderate levels of salinity significantly increased freeze-tolerance (mainly evaluated as survival, cryoprotection and ice fraction) and reproduction of E. albidus. Moreover, it contributed to the readjustments of cryoprotectant levels, restoration of antioxidant levels and changed singnificantly the effect and uptake of chemicals (copper cadmium, carbendazim and 4-nonylphenol). Temperature fluctuations (simulated as daily freeze-thaw cycles, between -2ºC and -4ºC) caused substancial negative effect on survival of worms previsouly exposed to non-lethal concentrations of 4-nonylphenol, as compared with constant freezing (-4ºC) and control temperature (2ºC). The decrease in cryoprotectants, increase in energy consumption and the highest concentration of 4-nonylphenol in the tissues have highlighted the high energy requirements and level of toxicity experienced by worms exposed to the combined effect of contaminants and freezing-thawing events. The findings reported on this thesis demonstrate that natural (physical) and chemical stressors, singly or in combination, may alter the dynamics of E. albidus, affecting not only their survival and reproduction (and consequent presence/distribution) but also their physiological and biochemical adaptations. These alterations may lead to severe consequences for the functioning of the ecosystems along the Arctic, subarctic and cold temperate regions, where they play an important role for decomposition of dead organic matter. This thesis provides a scientific basis for improving the setting of safety factors for natural soil ecosystems, and to underline the integration of similar investigations in ecotoxicology, and eventually in risk assessment of contaminants.
As alterações climáticas estão a atingir rapidamente as regiões do Ártico, SubÁrtico e as regiões temperadas, apontando as previsões para um aumento de eventos de congelamento-descongelamento, bem como mudanças nos padrões de precipitação, evaporação e de salinidade. Estas alterações climáticas poderão resultar em impactos francamente negativos no funcionamento e dinâmica de ecossistemas, especialmente quando associados à presença de contaminantes resultantes da intensa atividade antropogénica. Embora a incorporação de stressores múltiplos em estudos de ecotoxicidade tenha recebido um crescente interesse pela comunidade científica, o seu número é ainda reduzido. Particularizando, o conhecimento dos efeitos de eventos de congelamento-descongelamento e de flutuações de salinidade permanecem desconhecidos, especialmente quando se consideram espécies supra-litorais. Neste contexto, o objetivo geral da presente tese consistiu em investigar os efeitos das flutuações de temperaturas e salinidade, individualmente ou em combinação com contaminantes, no enquitraídeo tolerante ao frio e eurialino - o Enchytraeus albidus. A avaliação de parâmetros populacionais (sobrevivência, reprodução e bioacumulação), fisiológicos (níveis de crioprotetores, conteúdo em gelo / água, temperatura de fusão e sobrecongelamento) e bioquímicos (biomarcadores de stress oxidativo, alocação de energia celular) permitiu compilar novas e valiosas informações sobre os efeitos dos stressores físicos e químicos selecionados no enquitraídeo e compreender quais os reajustes nos mecanismos de resposta primários que lhes permitem manter a homeostasia e sobrevivência em ambientes inóspitos como as regiões Polares e temperadas-frias. A presença de níveis moderados de salinidade aumentou significativamente a tolerância a temperaturas congelantes (essencialmente avaliada como sobrevivência, crioprotecção e fracção de gelo extracelular) e a reprodução do E. albidus. Além disso, contribuiu para a regulação de crioprotectores, restauração dos níveis de antioxidantes nestes organismos e alterou significativamente o efeito e a incorporação/absorção de substâncias químicas (cádmio, cobre carbendazim e 4-nonilfenol). As flutuações de temperatura (simuladas como ciclos diários de congelamento-descongelamento, com temperaturas entre 2ºC e -4ºC) causaram um efeito substancialmente negativo na sobrevivência de organismos previamente expostos a concentrações não letais de 4-nonilfenol, quando comparados com organismos expostos a uma temperatura congelante constante (-4ºC) ou à temperatura controlo (2ºC). A diminuição na crioproteção, o aumento no consumo de energia e a maior concentração de 4-nonilfenol nos tecidos vieram sublinhar o elevado gasto energético e o nível de toxicidade sofrido pelos organismos expostos à combinação de contaminantes e eventos de congelamento e descongelamento. Os resultados apresentados nesta tese demonstram, assim, que a presença de stressores naturais (físicos) e químicos, isoladamente ou em combinação, podem alterar a dinâmica do E. albidus, afetando não só a sua sobrevivência e reprodução (e consequente presença / distribuição), mas também as suas adaptações fisiológicas e bioquímicas. Essas alterações podem levar a consequências graves para o funcionamento dos ecossistemas do Ártico, subÁrtico e regiões temperadas-frias, uma vez que estes organismos desempenham um papel importante para a decomposição de matéria orgânica morta. Esta tese fornece ainda uma base científica para melhorar a atribuição de coeficientes de segurança para os ecossistemas naturais do solo, alertando para a integração de investigações semelhantes em ecotoxicologia, e, eventualmente, para a avaliação de risco ecológico de contaminantes.
Escalante, Pérez María. « Poplar responses to biotic and abiotic stress ». kostenfrei, 2009. http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:20-opus-46893.
Texte intégralArmeanu, Katrin. « Acclimation of cotton (gossypium) to abiotic stress ». Thesis, Bangor University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273551.
Texte intégralCoelho, Susana. « Abiotic stress signalling in the fucus embryo ». Thesis, University of Plymouth, 2002. http://hdl.handle.net/10026.1/2762.
Texte intégralKarim, Sazzad. « Exploring plant tolerance to biotic and abiotic stresses / ». Uppsala : Dept. of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 2007. http://epsilon.slu.se/200758.pdf.
Texte intégralLivres sur le sujet "Abiotic stresse"
Jenks, Matthew A., et Paul M. Hasegawa, dir. Plant Abiotic Stress. Hoboken, NJ : John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118764374.
Texte intégralJenks, Matthew A., et Paul M. Hasegawa, dir. Plant Abiotic Stress. Oxford, UK : Blackwell Publishing Ltd, 2005. http://dx.doi.org/10.1002/9780470988503.
Texte intégraldi Toppi, Luigi Sanità, et Barbara Pawlik-Skowrońska, dir. Abiotic Stresses in Plants. Dordrecht : Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0255-3.
Texte intégralSanità, Di Toppi Luigi, et Pawlik-Skowrońska Barbara, dir. Abiotic stresses in plants. Dordrecht : Kluwer Academic Publishers, 2003.
Trouver le texte intégralAftab, Tariq, et Khalid Rehman Hakeem. Plant Abiotic Stress Physiology. Boca Raton : Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180562.
Texte intégralAftab, Tariq, et Rehman Hakeem. Plant Abiotic Stress Physiology. Boca Raton : Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180579.
Texte intégralHasanuzzaman, Mirza, Khalid Rehman Hakeem, Kamrun Nahar et Hesham F. Alharby, dir. Plant Abiotic Stress Tolerance. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06118-0.
Texte intégralHaryana, Nikhil. Abiotic stress : New research. Hauppauge, N.Y : Nova Science Publisher's, Inc., 2011.
Trouver le texte intégralChakraborty, U., et B. Chakraborty, dir. Abiotic stresses in crop plants. Wallingford : CABI, 2015. http://dx.doi.org/10.1079/9781780643731.0000.
Texte intégralRam, P. C. Abiotic stresses and plant productivity. Jaipur : Aavishkar Publishers, Distributors, 2010.
Trouver le texte intégralChapitres de livres sur le sujet "Abiotic stresse"
Lakshmanan, Prakash, et Nicole Robinson. « Stress Physiology : Abiotic Stresses ». Dans Sugarcane : Physiology, Biochemistry, and Functional Biology, 411–34. Chichester, UK : John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118771280.ch16.
Texte intégralWehner, Todd C., Rachel P. Naegele, James R. Myers, Narinder P. S. Dhillon et Kevin Crosby. « Abiotic stresses. » Dans Cucurbits, 220–26. Wallingford : CABI, 2020. http://dx.doi.org/10.1079/9781786392916.0220.
Texte intégralTrethowan, Richard M. « Abiotic Stresses ». Dans Wheat Improvement, 159–75. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90673-3_10.
Texte intégralBasuchaudhuri, P. « Abiotic Stresses ». Dans Physiology of the Peanut Plant, 351–82. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9781003262220-12.
Texte intégralBhatla, Satish C. « Abiotic Stress ». Dans Plant Physiology, Development and Metabolism, 969–1028. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2023-1_31.
Texte intégralOhnishi, Takayuki, Mikio Nakazono et Nobuhiro Tsutsumi. « Abiotic Stress ». Dans Rice Biology in the Genomics Era, 337–55. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74250-0_25.
Texte intégralBastiaanse, Héloïse, Guillaume Théroux-Rancourt et Aude Tixier. « Abiotic Stress ». Dans Comparative and Evolutionary Genomics of Angiosperm Trees, 275–302. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/7397_2016_13.
Texte intégralBasuchaudhuri, P. « Abiotic Stress ». Dans Physiology of Soybean Plant, 333–64. Boca Raton : CRC Press, [2020] : CRC Press, 2020. http://dx.doi.org/10.1201/9781003089124-12.
Texte intégralKenong, Xu, Ismail Abdelbagi M. et Ronald Pamela. « Flood tolerance mediated by the rice SUB1A transcription factor ». Dans Plant Abiotic Stress, 1–13. Hoboken, NJ : John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118764374.ch1.
Texte intégralFleury, Delphine, et Peter Langridge. « QTL and association mapping for plant abiotic stress tolerance ». Dans Plant Abiotic Stress, 257–87. Hoboken, NJ : John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118764374.ch10.
Texte intégralActes de conférences sur le sujet "Abiotic stresse"
Shpakovski, D. G., E. K. Shematorova, O. G. Babak, I. Yu Slovokhotov, S. G. Spivak, M. R. Khaliluev, Yu V. Doludin et al. « Specific cytochromes P450 and adrenodoxin-like mitochondrial ferredoxins as components of the progesterone hormone system of higher plants involved in comprehensive protection from biotic and abiotic stresse ». Dans 2nd International Scientific Conference "Plants and Microbes : the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.225.
Texte intégralGurina, V. V., N. V. Ozolina, I. S. Nesterkina et E. V. Spiridonova. « GLYCOGLICHEROLIPIDS OF TONOPLAST UNDER INFLUENCE OF ABIOTIC STRESSES ». Dans The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-249-251.
Texte intégralMackill, D. J., B. C. Y. Collard, C. N. Neeraja, R. M. Rodriguez, S. Heuer et A. M. Ismail. « QTLs in rice breeding : examples for abiotic stresses ». Dans Proceedings of the Fifth International Rice Genetics Symposium. World Scientific Publishing Company, 2007. http://dx.doi.org/10.1142/9789812708816_0011.
Texte intégralIzquierdo Zandalinas, Sara. « Systemic signaling during abiotic stress combination in plants ». Dans ASPB PLANT BIOLOGY 2020. USA : ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1048268.
Texte intégralKoroleva, E. S., P. V. Kuzmitskaya et O. Yu Urbanovich. « IMPACT OF DROUGHT STRESS ON STRESS-ASSOCIATED PROTEINS APPLE GENES EXPRESSION LEVEL ». Dans SAKHAROV READINGS 2021 : ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-268-271.
Texte intégralKoroleva, E. S., P. V. Kuzmitskaya et O. Yu Urbanovich. « IMPACT OF DROUGHT STRESS ON STRESS-ASSOCIATED PROTEINS APPLE GENES EXPRESSION LEVEL ». Dans SAKHAROV READINGS 2021 : ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-268-271.
Texte intégralOsmolovskaya, N. G., T. E. Bilova, V. Z. Wu, L. N. Kuchaeva et A. A. Frolov. « Metabolic response of plants to abiotic stress and prematureleaf aging ». Dans IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-328.
Texte intégralMishra, Dwijesh Chandra, Shikha Mittal, Indra Singh, Sanjeev Kumar et Anil Rai. « Identification of co-regulated genes of chick pea under abiotic stress ». Dans 2016 International Conference on Bioinformatics and Systems Biology (BSB). IEEE, 2016. http://dx.doi.org/10.1109/bsb.2016.7552156.
Texte intégralKACHEL_JAKUBOWSKA, Magdalena, Piotr BULAK et Andrzej BIEGANOWSKI. « INFLUENCE OF METAL NANOCOLLOIDS ON SELECTED ABIOTIC STRESS FACTORS IN PUMPKIN ». Dans IX International ScientificSymposium "Farm Machinery and Processes Management in Sustainable Agriculture". Departament of Machinery Exploittation and Management of Production Processes, University of Life Sciences in Lublin, 2017. http://dx.doi.org/10.24326/fmpmsa.2017.26.
Texte intégralShinozaki, K., et K. Yamaguchi-Shinozaki. « Functional genomics for gene discovery in abiotic stress response and tolerance ». Dans Proceedings of the Fifth International Rice Genetics Symposium. World Scientific Publishing Company, 2007. http://dx.doi.org/10.1142/9789812708816_0020.
Texte intégralRapports d'organisations sur le sujet "Abiotic stresse"
Mosquna, Assaf, et Sean Cutler. Systematic analyses of the roles of Solanum Lycopersicum ABA receptors in environmental stress and development. United States Department of Agriculture, janvier 2016. http://dx.doi.org/10.32747/2016.7604266.bard.
Texte intégralFreeman, Stanley, Russell Rodriguez, Adel Al-Abed, Roni Cohen, David Ezra et Regina Redman. Use of fungal endophytes to increase cucurbit plant performance by conferring abiotic and biotic stress tolerance. United States Department of Agriculture, janvier 2014. http://dx.doi.org/10.32747/2014.7613893.bard.
Texte intégralSadot, Einat, Christopher Staiger et Mohamad Abu-Abied. Studies of Novel Cytoskeletal Regulatory Proteins that are Involved in Abiotic Stress Signaling. United States Department of Agriculture, septembre 2011. http://dx.doi.org/10.32747/2011.7592652.bard.
Texte intégralBrunner, Amy, et Jason Holliday. Abiotic stress networks converging on FT2 to control growth in Populus. Office of Scientific and Technical Information (OSTI), décembre 2018. http://dx.doi.org/10.2172/1484373.
Texte intégralChilds, Kevin, Robin Buell, Bingyu Zhao et Xunzhong Zhang. Identifying Differences in Abiotic Stress Gene Networks between Lowland and Upland Ecotypes of Switchgrass (DE-SC0008338). Office of Scientific and Technical Information (OSTI), novembre 2016. http://dx.doi.org/10.2172/1331599.
Texte intégralBechar, Avital, Shimon Nof et Yang Tao. Development of a robotic inspection system for early identification and locating of biotic and abiotic stresses in greenhouse crops. United States Department of Agriculture, janvier 2016. http://dx.doi.org/10.32747/2016.7600042.bard.
Texte intégralGinzberg, Idit, et Walter De Jong. Molecular genetic and anatomical characterization of potato tuber skin appearance. United States Department of Agriculture, septembre 2008. http://dx.doi.org/10.32747/2008.7587733.bard.
Texte intégralHanda, Avtar K., Yuval Eshdat, Avichai Perl, Bruce A. Watkins, Doron Holland et David Levy. Enhancing Quality Attributes of Potato and Tomato by Modifying and Controlling their Oxidative Stress Outcome. United States Department of Agriculture, mai 2004. http://dx.doi.org/10.32747/2004.7586532.bard.
Texte intégralWhitecloud, Simone, Holly VerMeulen, Franz Lichtner, Nadia Podpora, Timothy Cooke, Christopher Williams, Michael Musty, Irene MacAllister et Jason Dorvee. Understanding plant volatiles for environmental awareness : chemical composition in response to natural light cycles and wounding. Engineer Research and Development Center (U.S.), novembre 2022. http://dx.doi.org/10.21079/11681/45961.
Texte intégralCohen, Roni, Kevin Crosby, Menahem Edelstein, John Jifon, Beny Aloni, Nurit Katzir, Haim Nerson et Daniel Leskovar. Grafting as a strategy for disease and stress management in muskmelon production. United States Department of Agriculture, janvier 2004. http://dx.doi.org/10.32747/2004.7613874.bard.
Texte intégral