Littérature scientifique sur le sujet « 3d Transition Metal Oxides »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « 3d Transition Metal Oxides ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "3d Transition Metal Oxides"

1

Seike, Tetsuya, et Junichi Nagai. « Electrochromism of 3d transition metal oxides ». Solar Energy Materials 22, no 2-3 (juillet 1991) : 107–17. http://dx.doi.org/10.1016/0165-1633(91)90010-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Krivanek, Ondrej L., et James H. Paterson. « Elnes of 3d transition-metal oxides ». Ultramicroscopy 32, no 4 (mai 1990) : 313–18. http://dx.doi.org/10.1016/0304-3991(90)90077-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Paterson, James H., et Ondrej L. Krivanek. « Elnes of 3d transition-metal oxides ». Ultramicroscopy 32, no 4 (mai 1990) : 319–25. http://dx.doi.org/10.1016/0304-3991(90)90078-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tokura, Y. « Metal-insulator phenomena in 3d transition metal oxides ». Physica C : Superconductivity 235-240 (décembre 1994) : 138–41. http://dx.doi.org/10.1016/0921-4534(94)91332-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Merer, A. J. « Spectroscopy of the Diatomic 3d Transition Metal Oxides ». Annual Review of Physical Chemistry 40, no 1 (octobre 1989) : 407–38. http://dx.doi.org/10.1146/annurev.pc.40.100189.002203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zimmermann, R., P. Steiner, R. Claessen, F. Reinert et S. Hüfner. « Electronic structure systematics of 3d transition metal oxides ». Journal of Electron Spectroscopy and Related Phenomena 96, no 1-3 (novembre 1998) : 179–86. http://dx.doi.org/10.1016/s0368-2048(98)00234-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Terauchi, Masami. « Information of valence charge of 3d transition metal elements observed in L-emission spectra ». Microscopy 68, no 4 (14 mai 2019) : 330–37. http://dx.doi.org/10.1093/jmicro/dfz020.

Texte intégral
Résumé :
Abstract L-emission spectra of 3d transition metal elements from Sc to Zn and some oxides were measured to examine the relation between L-emission intensities of Lα, Lβ, Lℓ, and Lη and valences of those elements by using a soft X-ray emission spectrometer attached to a scanning electron microscope. Lα,β emission intensity due to transitions from valence bands to core 2p levels compared with Lℓ,η emission intensity due to transitions from core 3 s to deeper 2p levels, Lα,β/Lℓ,η was found to be a key parameter. A linear relation was found between the number of 3d electrons and the intensity ratio of Lα,β/(Lα,β+ Lℓ,η) from Sc to Ni, except for Cr. It takes into account not only a change in N3d but also a change of transition probability due to a change in N3d In the case of 3d metal oxides, the evaluation based on the equation showed an overestimation of the calculated number of 3d electrons, which could be due to a charge transfer from ligand oxygen atoms to the transition metal element, resulting from a core-hole effect in the intermediate state.
Styles APA, Harvard, Vancouver, ISO, etc.
8

SEIKE, Tetsuya, et Junichi NAGAI. « Electrochromism in thin films of 3d transition metal oxides. » Hyomen Kagaku 10, no 5 (1989) : 314–19. http://dx.doi.org/10.1380/jsssj.10.314.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Eisaki, H., T. Ido, K. Magoshi, M. Mochizuki, H. Yamatsu, T. Ito et S. Uchida. « Metal-insulator transition in 3d transition-metal oxides with ABO3 and A2BO4 type structures ». Physica C : Superconductivity 185-189 (décembre 1991) : 1295–96. http://dx.doi.org/10.1016/0921-4534(91)91871-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Azuma, Masaki, Yuki Sakai, Takumi Nishikubo, Masaichiro Mizumaki, Tetsu Watanuki, Takashi Mizokawa, Kengo Oka, Hajime Hojo et Makoto Naka. « Systematic charge distribution changes in Bi- and Pb-3d transition metal perovskites ». Dalton Transactions 47, no 5 (2018) : 1371–77. http://dx.doi.org/10.1039/c7dt03244g.

Texte intégral
Résumé :
Charge distribution changes in Bi- and Pb-3d transition metal perovskite type oxides were examined. The change in the depth of the d level of the transition metal causes the intermetallic charge transfer.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "3d Transition Metal Oxides"

1

Kumagai, Yu. « Relationship between atomic arrangements and electronic structures of selected 3d transition-metal oxides by first principles calculations ». 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120814.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fürsich, Katrin [Verfasser], et Bernhard [Akademischer Betreuer] Keimer. « X-ray and Raman scattering studies of novel phases in 3d and 4d transition metal oxides / Katrin Fürsich ; Betreuer : Bernhard Keimer ». Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2020. http://d-nb.info/1223928926/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rahman, Mohammad Mahbubur. « Solar selective characteristics and local electronic bonding states of 3d transition metal oxide and metal nitride based thin film coatings ». Thesis, Rahman, Mohammad Mahbubur ORCID : 0000-0002-6778-7931 (2016) Solar selective characteristics and local electronic bonding states of 3d transition metal oxide and metal nitride based thin film coatings. PhD thesis, Murdoch University, 2016. https://researchrepository.murdoch.edu.au/id/eprint/30910/.

Texte intégral
Résumé :
The present study focused on the development of transition metal oxide and metal nitride based thin film coatings to be utilized as a cost-effective solar selective surface that constitute a new approach in maximizing the power conversion efficiency. Despite many developments on transition metal oxide and metal nitride based selective solar absorbers, these materials are yet to be commercialized for solar thermal conversion applications. Numerous studies on CuCoO and graphene oxide based thin films are dedicated for their optical applications and light harvesting purposes. However to the best of our knowledge, utilization of mixed metal oxide/graphene oxide thin films as solar selective surface is yet to be explored. Both CuCoO and graphene oxide (GO) have generated significant research interest and have widespread applications in clean energy devices due to the good combinations of many important properties. Therefore, in this work we focus on the introduction of GO to the 3d transition metal-based CuCoO coatings and develop the new types optical thin films via dip-coating sol-gel technology to be used as solar selective surfaces. It is believed that use of graphene oxide in wet chemistry based sol-gel derived thin films will explore the new platform of producing highly efficient selective solar surfaces. Generally, 3d transition metal nitride based thin film coatings are studied for structural, mechanical, and electrical applications. However, a very limited number of investigations are directed in search of their optical and solar selective behaviors. With the increasing demand for clean energy alternatives, and economically viable energy devices our endeavor might bring some fruitful breakthroughs in development of 3d transition metal oxide and metal nitride based thin film coatings. Due to its flexibility and numerous technical advantages, the soft chemical sol-gel approach has been adopted to synthesize the metal oxides based thin film coatings. Unbalanced magnetron sputtered technique has been used for the development of transition metal nitride based thin film coatings for their spectral selective and local electronic structure studies. Sol-gel derived cobalt-copper oxide based coatings, transition metal nitride based sputtered TiMNx (M = Al or AlSi) and Cr1-xMxN (M = Al, Si and/or Ni, with doping concentration, x varying from 14.3 to 28.5 at.%) coatings were extensively studied in search of their spectrally selective behavior, mechanical properties, thermal stability, surface morphology and surface electronic properties. We discuss the spectral selective features of these coatings with their crystal structure, electronic and chemical bonding states. In order to realize the correlation between crystal structure and surface morphology, bonding states, local bonding structures and structure-property relationships of these nanostructured coatings for their solar selective and local electronic behaviors, characterizations were carried out using XRD, synchrotron radiation X-ray powder diffraction, SEM, EDX, XPS, NEXAFS, UV-Vis and FTIR tests, and nanoindentation measurements. In the case of CuCoO coatings, a high solar absorptance of 83.40% and a low thermal emittance of 5.70% were recorded which gives a solar selectivity of 14.63 (the ratio of the maximum absorption in visible and the minimum emission in infra-red to far infra-red region; a/e. With the incorporation of 1.5 wt.% of graphene oxide to the copper-cobalt oxide coatings, a high solar selectivity of 29.01 was achieved. Optical studies showed that the solar absorptance, in the visible range, of the TiN coatings improved significantly from 51% to 81% with AlSi-doping. However, an increase of solar absorptance of up to 66% was recorded from coatings doped with Al-content. Meanwhile, the Al doping can reduce the thermal emittance in the infrared range from 6.06% to 5.11%, whereas doping with AlSi reduces the emittance to ca 3.58%. The highest solar selectivity of 22.63 was achieved with TiAlSiN coatings. The high temperature investigations of the sputtered TiAlSiN coatings show the highest solar selectivity of 24.63 at 600 °C. Sputtered Cr1-xMxN coatings were investigated to realize the surface and inner structural properties of the materials through the structural evolution of CrNx matrix with addition of doping (Al, Si or Ni) elements. Investigations on the local bonding states and grain boundaries of these coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings. These findings help improve our understanding of local bonding structures, which could potentially lead to improved coating designs for mechanical applications.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Qi, Tongfei. « MAGNETIC AND ORBITAL ORDERS COUPLED TO NEGATIVE THERMAL EXPANSION IN MOTT INSULATORS, CA2RU1-XMXO4 (M = 3D TRANSITION METAL ION) ». UKnowledge, 2012. http://uknowledge.uky.edu/physastron_etds/6.

Texte intégral
Résumé :
Ca2RuO4 is a structurally-driven Mott insulator with a metal-insulator (MI) transition at TMI = 357K, followed by a well-separated antiferromagnetic order at TN = 110 K. Slightly substituting Ru with a 3d transition metal ion M effectively shifts TMI and induces exotic magnetic behavior below TN. Moreover, M doping for Ru produces negative thermal expansion in Ca2Ru1-xMxO4 (M = Cr, Mn, Fe or Cu); the lattice volume expands on cooling with a total volume expansion ratio reaching as high as 1%. The onset of the negative thermal expansion closely tracks TMI and TN, sharply contrasting classic negative thermal expansion that shows no relevance to electronic properties. In addition, the observed negative thermal expansion occurs near room temperature and extends over a wide temperature interval. These findings underscores new physics driven by a complex interplay between orbital, spin and lattice degrees of freedom. These materials constitute a new class of Negative Thermal Expansion (NTE) materials with novel electronic and magnetic functions.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schrön, Andreas [Verfasser], Friedhelm [Akademischer Betreuer] Bechstedt, Peter [Akademischer Betreuer] Kratzer et Diema [Akademischer Betreuer] Ködderitzsch. « Ab-initio studies of the magnetic properties of the 3d transition-metal oxides and their surfaces = Ab-initio-Untersuchungen der magnetischen Eigenschaften der 3d-Übergansmetalloxide und deren Oberflächen / Andreas Schrön. Gutachter : Friedhelm Bechstedt ; Peter Kratzer ; Diema Ködderitzsch ». Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2015. http://d-nb.info/1075492815/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bergmann, Arno [Verfasser], Peter [Akademischer Betreuer] Strasser et Christina [Gutachter] Roth. « On the catalytically active state and structure-activity correlations of 3d transition metal oxide catalysts for electrochemical water splitting / Arno Bergmann ; Gutachter : Christina Roth ; Betreuer : Peter Strasser ». Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1156012627/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hossain, A. « Synthesis, crystal structure and properties of complex oxides with the perovskite structure based on neodymium, alkaline earth and 3d-transition metals : dissertation for the degree of candidate of chemical sciences : 02.00.04 ». Thesis, б. и, 2019. http://hdl.handle.net/10995/82032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mete, Ersen. « Electronic Properties Of Transition Metal Oxides ». Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1069699/index.pdf.

Texte intégral
Résumé :
Transition metal oxides constitute a large class of materials with variety of very interesting properties and important technological utility. A subset with perovskite structure has been the subject matter of the current theoretical investigation with an emphasis on their electronic and structural behavior. An analytical and a computational method are used to calculate physical entities like lattice parameters, bulk moduli, band structures, density of electronic states and charge density distributions for various topologies. Results are discussed and compared with the available experimental findings.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bogdanov, Nikolay. « Anisotropic interactions in transition metal oxides ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234886.

Texte intégral
Résumé :
This thesis covers different problems that arise due to crystal and pseudospin anisotropy present in 3d and 5d transition metal oxides. We demonstrate that the methods of computational quantum chemistry can be fruitfully used for quantitative studies of such problems. In Chapter 2, Chapter 3, and Chapter 7 we show that it is possible to reliably calculate local multiplet splittings fully ab initio, and therefore help to assign peaks in experimental spectra to corresponding electronic states. In a situation of large number of peaks due to low local symmetry such assignment using semi-empirical methods can be very tedious and non-unique. Moreover, in Chapter 4 we present a computational scheme for calculating intensities as observed in the resonant inelastic X-ray scattering and X-ray absorption experiments. In our scheme highly-excited core-hole states are calculated explicitly taking into account corresponding orbital relaxation and electron polarization. Computed Cu L-edge spectra for the Li2CuO2 compound reproduce all features present in experiment. Unbiased ab initio calculations allow us to unravel a delicate interplay between the distortion of the local ligand cage around the transition metal ions and the anisotropic electrostatic interactions due to second and farther coordination shells. As shown in Chapter 5 and Chapter 6 this interplay can lead to the counter intuitive multiplet structure, single-ion anisotropy, and magnetic g factors. The effect is quite general and may occur in compounds with large difference between charges of metal ions that form anisotropic environment around the transition metal, like Ir 4+ in plane versus Sr 2+ out of plane in the case of Sr2IrO4. An important aspect of the presented study is the mapping of the quantum chemistry results onto simpler physical models, namely extended Heisenberg model, providing an ab initio parametrization. In Chapter 5 we employ the effective Hamiltonian technique for extracting parameters of the anisotropic Heisenberg model with single-ion anisotropy in the case of quenched orbital moment and second-order spin-orbit coupling. Calculated strong easy-axis anisotropy of the same order of magnitude as the symmetric exchange is consistent with experimentally-observer all-in/all-out magnetic order. In Chapter 6 we introduce new flavour of the mapping procedure applicable to systems with first-order spin-orbit coupling, such as 5d 5 iridates based on analysis of the wavefunction and interaction with magnetic field. In Chapter 6 and Chapter 7 we use this new procedure to obtain parameters of the pseudospin anisotropic Heisenberg model. We find large antisymmetric exchange leading to the canted antiferromagnetic state in Sr2IrO4 and nearly ideal one-dimensional Heisenberg behaviour of the CaIrO3, both agree very well with experimental findings.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sadoc, Aymeric Gaël Jocelyn. « Charge disproportionation in transition metal oxides ». [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 2008. http://irs.ub.rug.nl/ppn/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "3d Transition Metal Oxides"

1

1940-, Raveau B., dir. Transition metal oxides. New York : VCH, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rao, C. N. R. Transition metal oxides. New York : VCH, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Maekawa, Sadamichi, Takami Tohyama, Stewart E. Barnes, Sumio Ishihara, Wataru Koshibae et Giniyat Khaliullin. Physics of Transition Metal Oxides. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09298-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Maekawa, Sadamichi. Physics of Transition Metal Oxides. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

1946-, Maekawa S., dir. Physics of transition metal oxides. Berlin : Springer, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rao, C. N. R. Transition metal oxides : Structure, properties, and synthesis of ceramic oxides. 2e éd. New York : Wiley-VCH, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fukuyama, Hidetoshi, et Naoto Nagaosa, dir. Physics and Chemistry of Transition Metal Oxides. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60041-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Transition metal oxides : Surface chemistry and catalysis. Amsterdam, The Netherlands : Elsevier, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

1927-, Müller K. A., et Kool Tom W, dir. Properties of perovskites and other oxides. New Jersey : World Scientific, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Müller, K. A. Properties of perovskites and other oxides. New Jersey : World Scientific, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "3d Transition Metal Oxides"

1

Arima, T., et Y. Tokura. « Systematics of Optical Gaps in Perovskite-Type 3d Transition Metal Oxides ». Dans Spectroscopy of Mott Insulators and Correlated Metals, 150–59. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fujimori, A. « Electronic Structure of Electron- and Hole-Doped 3d Transition-Metal Oxides ». Dans Springer Series in Solid-State Sciences, 307–12. Berlin, Heidelberg : Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84718-9_28.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Johnston, D. C., T. Ami, F. Borsa, M. K. Crawford, J. A. Fernandez-Baca, K. H. Kim, R. L. Harlow et al. « Superconductivity, Magnetism and Metal-Insulator Transitions in Some Ternary and Pseudoternary 3d-, 4d-, and 5d-Metal Oxides ». Dans Spectroscopy of Mott Insulators and Correlated Metals, 241–54. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Fitzpatrick, Brian J. « Transition Metal Oxides ». Dans Inorganic Reactions and Methods, 236–37. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wang, Chen, Zhongfang Li, Likai Wang, Xueliang Niu, Shenzhi Zhang et Yuepeng Liu. « CHAPTER 6. 3D GBM-supported Transition Metal Oxide Nanocatalysts and Heteroatom-doped 3D Graphene Electrocatalysts for Potential Application in Fuel Cells ». Dans Chemistry in the Environment, 139–78. Cambridge : Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162480-00139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Guzman, G. « Thermochromic Transition-Metal Oxides ». Dans Sol-Gel Technologies for Glass Producers and Users, 271–76. Boston, MA : Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_35.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Inoue, Isao H., et Akihito Sawa. « Resistive Switchings in Transition-Metal Oxides ». Dans Functional Metal Oxides, 443–63. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527654864.ch16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Patel, Anupam, et Rajendra K. Singh. « 3D-Printed Metal Oxides for Batteries ». Dans 3D Printing, 161–76. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003296676-11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mandal, Tapas Kumar, et Martha Greenblatt. « Transition Metal Oxides : Magnetoresistance and Half-Metallicity ». Dans Functional Oxides, 257–93. Chichester, UK : John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470686072.ch5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tyagi, Alekha, Soma Banerjee, Jayesh Cherusseri et Kamal K. Kar. « Characteristics of Transition Metal Oxides ». Dans Handbook of Nanocomposite Supercapacitor Materials I, 91–123. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43009-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "3d Transition Metal Oxides"

1

Kanai, Masaki, et Tomoji Kawai. « Scanning tunneling spectroscopy of 3d transition metal oxides and superconductivity of Bi-Sr-Ca-Cu-O artificial lattices ». Dans Photonics West '96, sous la direction de Ivan Bozovic et Davor Pavuna. SPIE, 1996. http://dx.doi.org/10.1117/12.250243.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

AMRI, AMUN, BOGDAN DLUGOGORSKI, M. MAHBUBUR, MOHAMMEDNOOR ALTARAWNEH, NICHOLAS MONDINOS et ZHONG TAO JIANG. « 3d Transition Metal Oxide based Sol gel Derived Coatings for Photothermal Applications ». Dans Third International Conference on Advances in Applied Science and Environmental Engineering - ASEE 2015. Institute of Research Engineers and Doctors, 2015. http://dx.doi.org/10.15224/978-1-63248-055-2-74.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Fei, Haosheng, Xicheng Ai, Li Han, Ruijuan Nie et Zhenhua Hu. « Surface Effect On The Nonlinear Optical Properties Of Transition Metal-Oxode Microcrystallites ». Dans Nonlinear Optics. Washington, D.C. : Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.we15.

Texte intégral
Résumé :
The size dependent modifications of the optical and electronic properties of microcrystallites have attracted considerable attention recently[1-4]. As the diameter of the microcrystallite approaches its corresponding exciton Bohr diameter, its electronic and optical properties start to change because of the quantum confinement effect, dielectric effect and the effect of the surface[5]. For microcrystallites in such a small size regime, a large percentage of the atomes is on or near the surfaces. The existence of this vast interface between the microcrystallite and the surrounding medium can have a profound effect on the nonlinear optical properties of the microcrystallites. For the first time, we studied the nonlinear optical properties of translation metal-oxide microcrystallites by coating the surface with a layer of organic polar molecule(DBS etc.), and found that the change of the surface environment could alter the optical properties greatly. For Fe2O3 as example, (1) the absorption incresed toward the high energy side, (2) the laser induced luminescence intensity decreased by 2 orders in magnitude, and on the contrary, the Raman signal of the surface was enhanced greatly, (3) the saturable absorption phenomenon disappeared, (4) larger third order susceptibility and faster excited state relaxation were obtained compared with uncoated Fe2O3 microcrystallite. These phenomena are the results of the change of the electronic structure caused by the quantum confinement effect and the effect of the surface, unlike semiconductor microcrystallites in which the delocalized Wannier excitons can be influenced greatly by the quantum confinement effect (such as PbS microcrystallite). Transition metal oxide microcrystallite has more complicated electronic structure in which localized d electrons influence its electronic and optical properties greatly[6], and the small diameter Frenkel exciton in such material was effected little by the quantum confinement effect, therefore, the exciton structure could not be abserved in the absorption spectrum. But the size of the transition metal oxide microcrystallites influence their electronic structure strongly. For Fe2O3 as example, the energy structure can be quantitatively shown as the Figure (at the end of the paper), in which a is d-d transition, b represents charge transfer, c is orbital promotion and d is interband transitions. As the size of the microcrystallite decreases, the 3d and 4sp state couples increasingly, and the 3d-4sp (orbital promotion) state contribution increases correspondingly. To some extend, the d electrons and the Frenkel exciton will be delocalized, and the excited electron-hole pair can be ionized and scattered to the surface rapidly. In particular, when the surface was coated with a layer of organic polar molecule, the 3d-4sp state interaction was enhanced greatly under the strong polar interaction of the surface, and some 3d-4sp hydride state will exist, thus the d electrons and the Frenkel exciton will became more delocalization, and the laser induced electron-hole pairs interect and scatter to the surface very fast, so the surface delocalization state generate, accumulate and relax very rapidly and the electron-electron coherence effect[7] is enhanced greatly. Such changes not only increased the nonlinear response, but also resulted in shorter lifetime and stronger nonraditive process.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Alvarez, Gonzalo, Adriana Moreo et Elbio Dagotto. « Complexity in transition metal oxides ». Dans Optics & Photonics 2005, sous la direction de Ivan Bozovic et Davor Pavuna. SPIE, 2005. http://dx.doi.org/10.1117/12.624870.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schuller, Ivan K., Ali C. Basaran, Jose de la Venta, Juan Gabriel Ramirez, Thomas Saerbeck, Ilya Valmianski et Siming Wang. « Simple transition metal oxides (Conference Presentation) ». Dans Spintronics IX, sous la direction de Henri-Jean Drouhin, Jean-Eric Wegrowe et Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2239919.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Moreo, Adriana. « Phase Competition in Transition Metal Oxides ». Dans EFFECTIVE MODELS FOR LOW-DIMENSIONAL STRONGLY CORRELATED SYSTEMS. AIP, 2006. http://dx.doi.org/10.1063/1.2178040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Stehr, Jan Eric, Mattias Jansson, Stephen J. Pearton, Weimin M. Chen et Irina Bouianova. « Electronic and optical properties of 3d-transition metals in β-Ga2O3 ». Dans Oxide-based Materials and Devices XIV, sous la direction de Ferechteh H. Teherani et David J. Rogers. SPIE, 2023. http://dx.doi.org/10.1117/12.2662368.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hoch, Michael J. R., H. B. Senin et N. H. Idris. « The Intriguing Properties of Transition Metal Oxides ». Dans SOLID STATE SCIENCE AND TECHNOLOGY : The 2nd International Conference on Solid State Science and Technology 2006. AIP, 2011. http://dx.doi.org/10.1063/1.2739818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Terasaki, I. « Thermoelectric materials in layered transition-metal oxides ». Dans ICT 2005. 24th International Conference on Thermoelectrics, 2005. IEEE, 2005. http://dx.doi.org/10.1109/ict.2005.1519946.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Merchan-Merchan, W., A. V. Saveliev et Aaron Taylor. « Flame Synthesis of Nanostructured Transition Metal Oxides ». Dans ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68987.

Texte intégral
Résumé :
Various transition metal oxide nanostructures are synthesized using a novel probe-flame interaction method. An opposed flow flame of methane and oxygen enriched air provides a high-temperature reacting environment forming various metal oxide structures directly on the surface of pure metal probes. The unique thermal profile and chemical composition of the generated flame tends to convert almost pure bulk (99.9%) metallic materials into 1-D and 3-D structures of different chemical compositions and unique morphologies. The synthesized molybdenum, tungsten, and iron oxide structures exhibit unique morphological characteristics. The application of Mo probes results in the formation of micron size hollow and non-hollow Mo-oxide channels and elongated structures with cylindrical shapes. The use of W probes results in the synthesis of 1-D carbon-oxide nanowires, 3-D structures with rectangular shapes, and thin oxide plates with large surface areas. The formation of elongated iron-oxide nanorods is observed on iron probes. The iron nanorods’ diameters range from ten nanometers to one hundred nanometers with lengths of a few micrometers. Flame position, probe diameter, and flame exposure time tend to play an important role for material shape and selectivity.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "3d Transition Metal Oxides"

1

Bishop, Alan. A Lattice Litany for Transition Metal Oxides. Office of Scientific and Technical Information (OSTI), mars 2021. http://dx.doi.org/10.2172/1772375.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dr. Henry Bass et Dr. J. R. Gladden. Resonant Ultrasound Studies of Complex Transition Metal Oxides. Office of Scientific and Technical Information (OSTI), août 2008. http://dx.doi.org/10.2172/936503.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Suib, Steven. CATALYTIC SELECTIVE OXIDATIONS WITH POROUS TRANSITION METAL OXIDES. Office of Scientific and Technical Information (OSTI), décembre 2022. http://dx.doi.org/10.2172/1907074.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Teng, Xiaowei. Transition Metal Oxides Nanomaterials for Aqueous Electrochemical Energy Storage. Office of Scientific and Technical Information (OSTI), août 2019. http://dx.doi.org/10.2172/1546597.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Author, Not Given. Metal alkoxides : Models for metal oxides : Alkoxide ligands in early transition metal organometallic chemistry. Office of Scientific and Technical Information (OSTI), janvier 1990. http://dx.doi.org/10.2172/7151593.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Armentrout, Peter. THERMOCHEMISTRY AND REACTIVITY OF TRANSITION METAL CLUSTERS AND THEIR OXIDES. Office of Scientific and Technical Information (OSTI), juin 2014. http://dx.doi.org/10.2172/1135682.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Neumeier, J. J., M. F. Hundley, A. L. Cornelius et K. Andres. Volume-based considerations for the metal-insulator transition of CMR oxides. Office of Scientific and Technical Information (OSTI), mars 1998. http://dx.doi.org/10.2172/658143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kellar, S. A. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation. Office of Scientific and Technical Information (OSTI), mai 1997. http://dx.doi.org/10.2172/335184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dai, Pengcheng. Study Magnetic Excitations in Doped Transition Metal Oxides Using Inelastic Neutron Scattering. Office of Scientific and Technical Information (OSTI), février 2014. http://dx.doi.org/10.2172/1120539.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Boffa, Alexander Bowman. Transition metal oxides deposited on rhodium and platinum : Surface chemistry and catalysis. Office of Scientific and Technical Information (OSTI), juillet 1994. http://dx.doi.org/10.2172/10186279.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie