Littérature scientifique sur le sujet « 3D textile composites »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « 3D textile composites ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "3D textile composites":

1

Yahya, Mohamad Faizul, Faris Mohd Zulkifli Nasrun, Suzaini A. Ghani et Mohd Rozi Ahmad. « Factors Affecting Tensile Performance of 2D & ; 3D Angle Interlock Woven Fabric Composite : A Review ». Advanced Materials Research 1134 (décembre 2015) : 147–53. http://dx.doi.org/10.4028/www.scientific.net/amr.1134.147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
In recent years, textile composite are widely utilized as structural components in the area of aerospace, civil engineering, protective armour and automotive applications. Textiles structures become increasingly significant for composites application due to strength to weight factor. [1-4]. Various textile materials are extensively used such as fibres, yarns and fabrics. Commonly, textile composite structures are characterized according to the textile preform architecture either it is a conventional 2D laminated structure or 3D textile structural laminated composite [2]. Comparative studies between both types have suggested that 3D textile structure exhibit superior mechanical performance in tensile strength, impact resistance, flexural, delamination resistance, high fracture tolerance [1, 5, 6].
2

Lin, Hua, Louise P. Brown et Andrew C. Long. « Modelling and Simulating Textile Structures Using TexGen ». Advanced Materials Research 331 (septembre 2011) : 44–47. http://dx.doi.org/10.4028/www.scientific.net/amr.331.44.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
This paper provides an overview of TexGen, the open source software package for 3D modelling of textiles and their composites developed at the University of Nottingham. The underlying modelling theory is briefly discussed followed by descriptions of applications utilising TexGen in the fields of textile mechanics, textile composite mechanics and permeability. The limitations and further development of the approach are also considered.
3

Deng, Tong, Vivek Garg et Michael S. A. Bradley. « Erosive Wear of Structured Carbon-Fibre-Reinforced Textile Polymer Composites under Sands Blasting ». Lubricants 12, no 3 (15 mars 2024) : 94. http://dx.doi.org/10.3390/lubricants12030094.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Textile polymer composite is made of structured fibre matrix using textile technologies in fabrication, and gains benefits from strong mechanical properties with extra light weight. However, erosion behaviours and associated wear mechanisms of the composites may be influenced by the fibre structures due to heterogeneous composition and complex architectural topologies. Understanding the erosive mechanisms of the structured composites can be important, not only for preventing surface damage and loss of mechanical strength but also for improving design and fabrication of the composites. This paper presents an experimental study of erosive wear under sand blasting on 3D woven carbon-fibre-reinforced textile composites with epoxy. The architectural topology methods of the composites include non-crimped bidirectional, tufted bidirectional, 3D layer-to-layer and 3D orthogonal textile methods. The erosion tests were conducted on four impact angles (20°, 30°, 45° and 90°) under one impact velocity at 40 m/s. The study results show that the erosive mechanism of the textile composites is different from that of the neat substrate material. The observations from this study also reveal the different erosive behaviours between the composites with different fibre structures. It concludes that architectural structures can influence the erosion of a textile composite but will not result in significant differences in the wear resistance of the composites (<20%).
4

Özev, Mahmut-Sami, et Andrea Ehrmann. « Sandwiching textiles with FDM Printing ». Communications in Development and Assembling of Textile Products 4, no 1 (25 mars 2023) : 88–94. http://dx.doi.org/10.25367/cdatp.2023.4.p88-94.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
3D printing on textile fabrics has been investigated intensively during the last years. A critical factor is the adhesion between the printed polymer and the textile fabric, limiting the potential areas of application. Especially safety-related applications, e.g. stab-resistant textile/polymer composites, need to show reliable adhesion between both components to serve their purpose. Here we investigate the possibility of sandwiching textiles between 3D-printed layers, produced by fused deposition modeling (FDM). We show that adding nubs to the lower 3D-printed layers stabilizes the inner textile fabric and suggest future constructive improvements to further enhance the textile-polymer connection.
5

El Kadi, Michael, Panagiotis Kapsalis, Danny Van Hemelrijck, Jan Wastiels et Tine Tysmans. « Influence of Loading Orientation and Knitted Versus Woven Transversal Connections in 3D Textile Reinforced Cement (TRC) Composites ». Applied Sciences 10, no 13 (29 juin 2020) : 4517. http://dx.doi.org/10.3390/app10134517.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
As previous research has shown, the use of 3D textiles does not only facilitate the manufacturing process of Textile Reinforced Cement (TRC) composites but also influences the mechanical properties of the TRC. A fundamental understanding of the contribution of the transversal connections in the 3D textile to the loadbearing behavior of 3D TRCs is, however, still lacking in the literature. Therefore, this research experimentally investigates two different parameters of 3D TRCs; firstly, the 3D textile typology, namely knitted versus woven transversal connections, is investigated. Secondly, the influence of the stress direction with respect to the orientation of these connections (parallel or perpendicular) is studied. A clear influence of the orientation is witnessed for the woven 3D TRC system while no influence is observed for the knitted 3D TRC. Both woven and knitted 3D TRC systems show an increased post-cracking bending stiffness compared to an equivalent 2D system (with the same textiles but without transversal connections), yet the woven 3D TRC clearly outperforms the knitted 3D TRC.
6

Wucher, B., S. Hallström, D. Dumas, T. Pardoen, C. Bailly, Ph Martiny et F. Lani. « Nonconformal mesh-based finite element strategy for 3D textile composites ». Journal of Composite Materials 51, no 16 (20 septembre 2016) : 2315–30. http://dx.doi.org/10.1177/0021998316669875.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
A finite element procedure is developed for the computation of the thermoelastic properties of textile composites with complex and compact two- and three-dimensional woven reinforcement architectures. The purpose of the method is to provide estimates of the properties of the composite with minimum geometrical modeling effort. The software TexGen is used to model simplified representations of complex textiles. This results in severe yarn penetrations, which prevent conventional meshing. A non-conformal meshing strategy is adopted, where the mesh is refined at material interfaces. Penetrations are mitigated by using an original local correction of the material properties of the yarns to account for the true fiber content. The method is compared to more sophisticated textile modeling approaches and successfully assessed towards experimental data selected from the literature.
7

Lüling, Claudia, Petra Rucker-Gramm, Agnes Weilandt, Johanna Beuscher, Dominik Nagel, Jens Schneider, Andreas Maier, Hans-Jürgen Bauder et Timo Weimer. « Advanced 3D Textile Applications for the Building Envelope ». Applied Composite Materials 29, no 1 (15 octobre 2021) : 343–56. http://dx.doi.org/10.1007/s10443-021-09941-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractWithin the field of textile construction, textiles are traditionally used either as decorative elements in interior design or as flat textiles in tensile-stressed lightweight constructions (roofs, temporary buildings, etc.). Technical textiles made of glass or carbon fibers are now also used as steel substitutes in concrete construction. There, flat textiles are also used as lost formwork or shaping semi-finished products. Applications for 3D textiles and in particular spacer textiles have so far only been investigated as part of multilayer constructions in combination with other elements. Otherwise, there are no studies for their application potential in the roof and wall areas of buildings and as a starting structure for opaque and translucent components. The two research projects presented here, "ReFaTex" (adjustable spacer fabrics for solar shading devices) and "ge3TEX" (warp-knitted, woven and foamed spacer fabrics) illustrate for one thing the possibilities for using 3D textiles for the construction of movable and translucently variable solar protection elements in the building envelope. Otherwise they show how 3D textiles in combination with foamed materials can be transformed into opaque, lightweight, self-supporting and insulated wall and ceiling components in the building envelope. Both projects are designed experimentally and iteratively. The results are compared in a qualifying manner, the aim being not to quantify individual measured variables but to explore the development potential of textile construction for sustainable future components and to realize the first demonstrators. In the ReFaTex project, 1:1 demonstrators with different movement mechanisms for controlling the incidence of light were realized. In the ge3TEX project, 1:1 demonstrators made of three different textile and foam materials were added to form new single-origin composite components for ceiling elements. Both projects show the great application potential for 3D textiles in the construction industry.
8

Zhao, Dong Lin, Hong Feng Yin, Yong Dong Xu, Fa Luo et Wan Cheng Zhou. « Complex Permittivity of 3D Textile SiC/C/SiC Composites Fabricated by Chemical Vapor Infiltration at X-Band Frequency ». Key Engineering Materials 368-372 (février 2008) : 1028–30. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Three-dimensional textile SiC fiber reinforced SiC composites with pyrolytic carbon interfacial layer (3D-SiC/C/SiC) were fabricated by chemical vapor infiltration. The microstructure and complex permittivity of the 3D textile SiC/C/SiC composites were investigated. The flexural strength of the 3D textile SiC/C/SiC composites was 860 MPa at room temperature. The real part (ε′) and imaginary part (ε″) of the complex permittivity of the 3D-SiC/C/SiC composites are 9.11~10.03 and 4.11~4.49, respectively at the X-band frequency. The 3D-SiC/C/SiC composites would be a good candidate for structural microwave absorbing material.
9

Assi, P., S. Achiche et L. Laberge Lebel. « 3D printing process for textile composites ». CIRP Journal of Manufacturing Science and Technology 32 (janvier 2021) : 507–16. http://dx.doi.org/10.1016/j.cirpj.2021.02.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Heimbs, Sebastian, Björn Van Den Broucke, Yann Duplessis Kergomard, Frederic Dau et Benoit Malherbe. « Rubber Impact on 3D Textile Composites ». Applied Composite Materials 19, no 3-4 (2 juin 2011) : 275–95. http://dx.doi.org/10.1007/s10443-011-9205-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "3D textile composites":

1

Goktas, Devrim. « Interlaminar properties of 3D textile composites ». Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/interlaminar-properties-of-3d-textile-composites(275e9cef-7b35-47b0-84ca-bcf6fb0c7fb4).html.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Multilayer composite materials have a high tendency to interlaminar delamination when they are subjected to out-of-plane loading, because of their low-stiffness in the through-thickness (T-T) direction. The main aim of this research was to improve the interlaminar fracture toughness (IFT) of textile composites by using stitching as a T-T reinforcement technique. The intention was to provide greater delamination resistance and also to enhance the interlaminar fracture toughness between adjacent layers. In this research, E-glass 2x2 twill weave structure fabric layers and an epoxy resin were chosen as the base materials. Three different types of stitching; including the commonly-used modified lock-stitch and orthogonal-stitch (OS) geometries, the single-yarn orthogonal-stitch (SOS) and a newly-developed double-yarn orthogonal-stitch (DOS), as well as five different stitch densities were used to reinforce the multilayer preform lay-ups. The resin infusion moulding method was used to manufacture the E-glass/Epoxy 3D textile composites. The effect of stitched reinforcement on the Mode I-IFT mechanism was examined by performing double cantilever beam (DCB) tests and the Mode II-IFT mechanism by performing four-point bend end-notched flexure (4ENF) tests, respectively. Optical microscopy and scanning electron microscopy (SEM) imaging techniques were used to study the fracture surfaces of the stitched composite specimens, to assess the improvement in IFT mechanisms imparted by the stitched reinforcement used. The effect of stitching was analysed by comparing the various stitching geometries, stitch densities and the mechanical properties highlighted by the Mode I-IFT and Mode II-IFT results. It was found that the use of the novel double-yarn orthogonal-stitch (DOS) reinforcement allied with the use of high stitch densities gave the greatest improvement on both Mode I-IFT and Mode II-IFT tests. Moreover, in every case, the use of DOS and high stitch densities gave a significant improvement of 74.5% in Mode I-IFT and 18.3% for Mode II-IFT tests when compared with unstitched samples. It has been shown that the novel DOS stitch geometry yields significant benefits over established stitching techniques in respect of stitched reinforcement for laminated composite preforms. Besides this, the double column 5x5 mm stitch pattern reveals the highest delamination resistance performance among all the stitching formations tested for Mode I-IFT and II-IFT.
2

Waterton, Taylor Lindsey. « Design and manufacture of 3D nodal structures for advanced textile composites ». Thesis, University of Manchester, 2007. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:151244.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Traditional weaving technologies have been utilised over the past twenty-to-thirty years in producing woven textile components that meet engineering requirements through the interlacement of high performance yarns such as carbon, glass and Kevlar. The end performance properties and lightweight characteristics of these fabrics have been adapted within the development of both flat multilevel and shaped configurations for the composites industry. The purpose of the present research required the employment of conventional weaving technologies with limited modifications for the production of 3D woven textile preforms in a variety of truss like configurations; therefore, generating a generic procedure for all yarn combinations and strut and node dimensions for production on dissimilar jacquard looms. The ultimate driving force behind the research was to produce a truss like configuration for the aerospace industry incorporating the design criterion of solid and hollow woven counterparts. This would enable the end truss configuration to have two functions; the first being a lightweight structure by the elimination of bonding applications, through the utilisation of a fully integrated fabrication process; secondly to incorporate hollow struts for a novel storage solution.
3

Stig, Fredrik. « An Introduction to the Mechanics of 3D-Woven Fibre Reinforced Composites ». Licentiate thesis, Stockholm : Skolan för teknikvetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10235.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rudov-Clark, Shoshanna Danielle, et srudov-clark@phmtechnology com. « Experimental Investigation of the Tensile Properties and Failure Mechanisms of Three-Dimensional Woven Composites ». RMIT University. AEROSPACE, MECHANICAL AND MANUFACTURING ENGINEERING, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080808.115853.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
This PhD thesis presents an experimental investigation into the tensile properties, strengthening mechanics and failure mechanisms of three-dimensional (3D) woven composites with through-the-thickness (z-binder) reinforcement. 3D composites are being developed for the aerospace industry for structural applications in next-generation aircraft, such as wing panels, joints and stiffened components. The use of 3D woven composites in primary aircraft structures cannot occur until there has been a detailed assessment of their mechanical performance, including under tensile loading conditions. The aim of this PhD project is to provide new insights into the in-plane tensile properties, fatigue life, tensile delamination resistance and failure mechanisms of 3D woven composites with different amounts of z-binder reinforcement. Previous research has revealed that excessive amounts of z-binder reinforcement dramatically improves the tensile delamination toughness, but at the expense of the in-plane structural properties. For this reason, this PhD project aims to evaluate the tensile performance of 3D woven composites with relatively small z-binder contents (less than ~1%). The research aims to provide a better understanding of the manufacture, microstructure and tensile properties of 3D woven composites to assist the process of certification and application of these materials to aircraft structures as well as high performance marine and civil structures.
5

Liu, Yang. « Multi-scale damage modelling of 3D textile reinforced composites including microstructural variability generation and meso-scale reconstruction ». Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Les matériaux composites à renforts tissés 3D connaissent une utilisation grandissante dans de nombreux domaines de par entre autres leurs excellentes propriétés mécaniques. Cependant, le manque de compréhension de leur comportement est un facteur limitant. Ces limites sont liées à la complexité des phénomènes intervenant à différentes échelles qui jouent un rôle essentiel sur la prédiction de la réponse du matériau. Pour comprendre et résoudre ce problème, ce travail a pour objectifs d’étudier les matériaux composites 3D à l’aide de simulations numériques et d’observations expérimentales réalisées aux échelles micro, méso et macro. L’étude expérimentale a été réalisée afin d’obtenir : les propriétés macroscopiques du matériau et les paramètres nécessaires à la reconstruction géométrique. Ces caractéristiques ont été évaluées à l’aide de diverses techniques : microscopies optique et électronique et tomographie par rayons X sur des éprouvettes avant et après essais mécaniques afin de détecter les éventuels endommagements. Ces observations ont permis de définir les stratégies numériques à mettre en place aux différentes échelles. Ainsi, à l’échelle microscopique, un algorithme de dynamique moléculaire a été développé et testé sur des volumes représentatifs élémentaires et sur des sections de fils. Les résultats obtenus montrent une grande capacité à générer la variabilité microstructurale. A l’échelle mésoscopique, une stratégie de reconstruction à partir d’images tomographiques a permis de prendre en compte l’architecture réelle du composite 3D. Cette technique de modélisation a montré son grand intérêt dans la prédiction de la réponse non linéaire du matériau
3D textile reinforced composites have gained extensive application in many industrial domains by taking their excellent mechanical properties and neat-shape manufacturing. However, lack of understanding in material behaviour might be limiting factors at the design stage. One of these limits is the complexity of the multi-scale phenomena which play a critical role in predicting the material response. In order to tackle this problem, the systematic and detailed investigations are required at different material scales. Therefore, this work addresses to study 3D composites alternating and combining numerical simulations and experimental observations at different material scales. Experiments were carried out to provide twofold parameters: material properties and required geometrical reconstruction parameters. X-ray tomography was employed to inspect the intact samples. Electronic and optical microscopy techniques have been used in order to investigate in details the yarn cross-sections at initial states and eventual damages mechanisms accumulated during mechanical tests. All those observations allowed choosing numerical strategies at different material scales. Thus, at the micro-scale, the modified molecular dynamics algorithm has been developed and tested on RVE and irregular cross-section yarns. The results show great capacity and originality in the generation of the microstructural variability. Consequently, at the meso-scale, the reconstruction strategy was chosen which allowed representing real mesostructure of the composites. This modelling technique has great importance in the prediction of the material response, especially at the non-linear stage
6

Risicato, Jean-Vincent. « Optimisation de l'architecture des fils dans une structure textile 3D pour le renforcement de pièces composites ». Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10070/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Dans le cadre du projet RaidOUTILS, un nouveau procédé de production de renforts textiles pour pièces composites est conçu. Il permet de réaliser des pièces profilées à section constantes ou non avec des orientations et liages multiples dans l'épaisseur. Un large choix de géométries est possible, il est donc nécessaire d'anticiper la structure à partir de la cinématique du procédé. Une modélisation permet cette anticipation. La technologie RaidOUTILS est une hybridation entre les procédés de tissage et de tressage. La combinaison des caractéristiques de ces deux technologies vise à éviter les découpes, les assemblages ou la mise en forme qui sont des manipulations sources de défaut. Les entrelacements peuvent se faire sur plusieurs couches comme sur un interlock. L'indépendance des guide-fils permet des entrelacements dans toute la structure. Elle perme enfin de proposer des structures à section évolutives par le choix d'une cinématique adaptée. La modélisation géométrique est basée sur une détection de rencontre des fils les uns par rapport aux autres et ne fait pas intervenir de notions mécaniques telles que le contact ou le frottement. La structure est définit par les fils, à section circulaire et constante, et par une ligne moyenne passant par les nœuds. Le temps de calcul est réduit pour obtenir une première estimation de la structure à l'échelle macro en termes de géométrie globale : orientation et entrelacement des fils. Le but est de permettre de faire le lien entre un moyen de production de renfort textile 3D, sa compréhension et l'optimisation de son utilisation selon des critères utiles à la réalisation de pièces composites élancées
The RaidOUTILS project aims the production of textile reinforcement for composite parts. Manufacturing of stiffeners with constant, as well as variable, cross sectional shape is possible. Interlacing is possible trough the thickness of the material and leads to a wide range of fibre orientation within the textile reinforcement. The RaidOUTILS technology is a hybridisation of braiding and weaving manufacturing. By combining properties from both technologies, steps such as cutting, joining and forming can be avoid. Those steps introduce defect in traditional reinforcement manufacturing cycle. Based on independent motion for each yarn within the structure it is possible to control interlacing and modify cross section. Modelling is also proposed for this process. It represents the yarn kinematic based on the existing machinery. The simple model is necessary to have a low calculation time to get the virtual skeleton of the structure. This skeleton returns data such as interlacing, orientation of the preform. The aim of the project is the creation of a new 3D textile manufacturing process and also to make the link between a product (textile) and the process by modelling
7

Nauman, Saad. « Geometrical modelling and characterization of 3D warp interlock composites and their on-line structural health monitoring using flexible textile sensors ». Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10010/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Ce mémoire de thèse de doctorat est structuré en deux parties. Dans la 1ère partie, une nouvelle approche traitant la caractérisation géométrique et mécanique est décrite. La modélisation géométrique de tissu 3D interlock est corrélée avec les paramètres de tissage afin de mieux prendre en compte ces paramètres. Le tissage de tissu 3D interlock est décrit en détail. Par la suite, une étude a été menée pour mieux comprendre les changements qui se produisent dans une mèche de carbone lorsque cette dernière est intégrée dans un renfort. Un coefficient de transfert des propriétés mécaniques a été proposé permettant une meilleure compréhension de l’influence des paramètres structuraux sur les propriétés d’un composite. Dans la 2eme partie du mémoire, un système de mesure in situ pour les composites a été développé. Ce système comporte un capteur souple et un module de traitement de données et d’amplification des signaux. Le capteur fibreux développé durant nos recherches a été inséré pendant le tissage comme un fil de trame. Le système a été testé sur une plaque en composite, contenant les renforts en 3D interlock, en traction. Le capteur suit fidèlement les déformations de la plaque composite jusqu’à la rupture
This thesis is divided in two parts. In the first part a geometrical modelling approach has been developed in tandem with weaving parameters. The reinforcements were woven on a modified conventional loom to study the geometry of these structures. Their weaving has been described in detail. The weaving parameters have been correlated to the modelling approach. The meso structural modelling approach is capable of predicting essential reinforcement geometrical characteristics at meso structural level without being too complicated. Furthermore, mechanical characterization of 3D interlock reinforcements has been carried out in such a way that a track of mechanical properties during the complete production cycle has been maintained. A novel parameter called strength transfer coefficient was proposed which allows better understanding of the influence of structural parameters on the final properties of the composite. In the second part of the thesis an online structural health monitoring system which is composed of a textile based sensor and signal amplification and treatment module, has been developed. This system is capable of detecting structural deformations in the composite as the sensor is integrated during the manufacturing of the reinforcement and can follow its deformation pattern when composite is subjected to tensile loading in a real time
8

Verone, Benjamin. « Étude du comportement statique et dynamique d'un matériau composite textile interlock 3D - caractérisation expérimentale et modélisation numérique ». Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/35273.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Ce mémoire présente les travaux de développement d’un outil de simulation numérique du comportement d’un matériau composite textile spécial appelé interlock 3D. Ce tissé composite présente des performances intéressantes de résistance au choc et de tolérance aux dommages. Ces propriétés lui viennent de la présence de torons tissés à travers l’épaisseur. De ce fait, ce matériau peut être une alternative très intéressante aux composites stratifiés conventionnels, qui n’ont que des fibres orientées dans le plan, pour des applications aéronautiques où des éléments sont soumis à des impacts et sujets au délaminage. Ce travail présente une campagne expérimentale qui vise à caractériser le comportement du matériau dans les directions du plan et à travers l’épaisseur. Par la suite des lois de comportement sont développées pour reproduire le comportement dans chaque direction. Mettre en place la mécanique d’endommagement, ainsi que le comportement inélastique ont été les parties les plus complexes. Ce modèle est par la suite implanté dans le logiciel éléments finis ABAQUS/Explicit en utilisant une sous-routine VUMAT. Des simulations du comportement mécanique du matériau sont premièrement réalisées pour valider les prédictions du modèle dans l’ensemble des directions. Ensuite, des essais d’indentation quasi-statique sont effectués et les résultats sont comparés aux prédictions du modèle. Enfin, des simulations dynamiques d’impact sont réalisées sur le composite tissé en utilisant des projectiles rigides et mous ainsi que différentes configurations. Des comparaisons avec des résultats expérimentaux montrent la bonne capacité du modèle à reproduire le comportement du matériau lors de l’impact avec un projectile rigide à faible vitesse. Les hautes énergies d’impact traduisent des lacunes dans la mécanique d’endommagement proche de la rupture. Les résultats d’impact avec un projectile mou à faible vitesse sont encourageants et montrent l’aptitude du modèle à fournir une estimation correcte de la force d’impact, bien que surestimée dans certaines configurations
This study presents the development of a tool for numerical simulation of the behavior of a special textile composite material called interlock 3D. This composite woven fabric exhibits interesting performance in terms of impact resistance and damage tolerance. These properties come from the presence of strands woven through the thickness. As a result, this material can be a very interesting alternative to conventional laminated composite, which have only planar oriented fibers, for aeronautical applications where elements are subjected to impacts and subjected to delamination. This work presents an experimental campaign aimed at characterizing the behavior of the material in the in-plane directions and through the thickness. Subsequently behavior laws are developed to reproduce the mechanical behavior in each direction. Seting up the mechanics of damage, as well as the inelastic behavior were the most complex parts. This model is subsequently implemented in the ABAQUS / Explicit finite element software using a VUMAT subroutine. Simulations of the material mechanical behavior are first performed to validate the predictions of the model in all the directions. Then, quasi-static indentation tests are performed and the results compared to the model predictions. Finally, dynamic impact simulations are carried out on the woven composite using rigid and soft projectiles as well as different configurations. Comparisons with experimental results show the model's good ability to reproduce the behavior of the material during impact with a rigid low-velocity projectile. High impact energies reflect shortcomings in the mechanics of damage close to rupture. Impact results with a soft low-velocity projectile are encouraging and show the ability of the model to provide a correct estimate of the impact force, although overestimated in some configurations
9

Parvathaneni, Keerthi Krishna. « Characterization and multiscale modeling of textile reinforced composite materials considering manufacturing defects ». Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Lille Douai, 2020. http://www.theses.fr/2020MTLD0016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
L’influence des porosités induites par les procédés de fabrication sur les propriétés mécaniques des composites textiles a été étudiée à la fois par caractérisation expérimentale et par modélisation multi-échelle. En particulier, les porosités ont été caractérisés en termes de fraction volumique, taille, forme et distribution, et les effets de chaque caractéristique sur les propriétés mécaniques des composites textiles ont été analysés. De nombreuses plaques de composites textiles ont été fabriquées par le procédé Resin Transfer Molding (RTM). Ainsi, un renfort textile en verre interlock 3D a été imprégné par une résine époxy injectée sous une pression constante pour générer différents types de porosités. Des essais mécaniques ont été réalisés pour examiner la dépendance du module et de la résistance en traction des composites par rapport au taux de porosité total, intra-toron et inter-toron et également par rapport aux caractéristiques géométriques des porosités. Des analyses au microscope électronique ont été effectuées pour obtenir des informations locales sur les fibres (diamètre et distribution) et les porosités intra-toron (rayon, rapport d’aspect et distribution). A partir de ces résultats, un nouvel algorithme a été développé pour générer le Volume Elémentaire Représentatif (VER) qui est statistiquement équivalent au composite contenant les porosités. De plus, l’effet de la morphologie, du diamètre et de la distribution spatiale des porosités (homogène, aléatoire et concentré) sur les propriétés homogénéisées des torons a également été étudié par la méthode des éléments finis. La tomographie par rayons X a été utilisée pour extraire la géométrie méso-échelle réelle en trois dimensions et les porosités intra-toron. Ensuite, ces données ont été utilisées pour créer un modèle numérique à l’échelle mésoscopique (VER) et prédire les propriétés élastiques des composites avec porosités. Une étude paramétrique utilisant une méthode numérique multi-échelle a été effectuée pour étudier l’effet de chaque caractéristique des porosités, c.-à-d. le taux volumique, la taille, la forme, la distribution et la localisation sur les propriétés élastiques de composites. Ainsi, la méthode multi-échelle proposée permet d’établir une corrélation entre les porosités à différentes échelles et les propriétés mécaniques des composites textiles
The influence of void-type manufacturing defects on the mechanical properties of textile composites was investigated both by experimental characterization and by multiscale modeling. In particular, voids characteristics such as not only void volume fraction but also its size, shape, and distribution have been characterized for textile composites and their effect on the mechanical properties have been analyzed. Several textile composite plates were fabricated by the resin transfer molding (RTM) process where 3D interlock glass textile reinforcement was impregnated by epoxy resin under a constant injection pressure to generate different types of voids. A series of mechanical tests were performed to examine the dependency of tensile modulus and strength of composites on the total void volume fraction, intra & inter-yarn void volume fraction, and their geometrical characteristics. Microscopy observations were performed to obtain the local information about fibers (diameter and distribution), and intra-yarn voids (radius, aspect ratio and distribution). Based on these results, a novel algorithm was proposed to generate the statistically equivalent representative volume element (RVE) containing voids. Moreover, the effect of void morphology, diameter and spatial distribution (homogeneous, random and clustering) on the homogenized properties of the yarns was also investigated by the finite element method. X-ray micro-computed tomography was employed to extract the real meso-scale geometry and inter-yarn voids. Subsequently, this data was utilized to create a numerical model at meso-scale RVE and used to predict the elastic properties of composites containing voids. A parametric study using a multiscale numerical method was proposed to investigate the effect of each void characteristic, i.e. volume fraction, size, shape, distribution, and location on the elastic properties of composites. Thus, the proposed multiscale method allows establishing a correlation between the void defects at different scales and the mechanical properties of textile composites
10

Bai, Renzi. « Modélisation de la mise en forme des renforts fibreux : Nouvelle Approche de coque spécifique et étude expérimentale ». Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La déformation des renforts composites textiles est fortement conditionnée par leur composition fibreuse. Les théories classiques des plaques et des coques sont basées sur des hypothèses cinématiques qui ne sont pas vérifiées pour les renforts textiles. Des expérimentations montrent que le glissement entre fibres (couche) dans l’épaisseur fait la spécificité des matériaux fibreux. Le processus RTM (Resin Transfer Molding) est largement utilisé pour obtenir des pièces composites avec géométrie complexe. La mise en forme est une étape très importante. Afin d’optimiser la fabrication de produit (spécialement le tissu multicouche), des modèles numériques sont nécessaires. Par conséquent une approche de coque 3D spécifique aux renforts fibreux est proposée. Elle est basée sur deux spécificités : la quasi-inextensibilité des fibres et le glissement possible entre les fibres. L'approche est développée dans le cadre « Continuum-based shells ». La nouvelle hypothèse basée sur la conservation d’épaisseur est appliquée dans l’équation cinématique. La forme de puissance virtuelle reflète les spécificités de la déformation des renforts fibreux. Il prend en compte la rigidité de traction et de flexion des fibres et aussi de cisaillement dans le plan. Le frottement entre fibres est pris en compte de manière simple en lien avec la flexion. La présente approche est basée sur la physique réelle de la déformation des renforts textiles. Il permet de simuler les déformations 3D des renforts textiles et fournit des déplacements et déformations pour tous les points dans l'épaisseur du tissu et les bonnes rotations du directeur matériel. Enfin, des expérimentations et simulations réalisées sur des renforts multicouches sont présentées dans ce travail, et une nouvelle méthode d’expérimentation est proposée
The deformation of textile composite reinforcements is strongly conditioned by their fibrous composition. Classic plate and shell theories are based on kinematic assumptions that are not verified for textile reinforcements. Experiments show that the slippage between fiber (layer) in the thickness makes the specificity of fibrous materials. The RTM process (one of the forming process) is widely used to obtain composite parts with complex geometry is with great importance. In order to optimize the manufacturing of product, numerical models are necessary. Therefore, a 3D shell approach specific to fiber reinforcements is proposed which is based on two specificities: the quasi-inextensibility of the fibers and the possible sliding between the fibers. This approach is developed in the frame of continuum-based shell, the new assumption who based on the conservation of the thickness is applied to the kinematic equation. The theory of virtual power reflects the specific deformation of the fibrous reinforcements. It considers the tensile and bending stiffness of the fibers and the in-plan shear stiffness. The friction between fibers is taken into account in a simple way in connection with bending. The present approach is based on the real physics of the deformation of textile reinforcements. It simulates the 3D deformations of textile reinforcements and provides displacements and deformations for all the points along the thickness of the fabric and simulates the correct rotations of the material director. Finally, experiments and simulations performed on multilayer reinforcements are presented in this work, and a new method of experimentation is proposed

Livres sur le sujet "3D textile composites":

1

3d Textile Reinforcements In Composite Materials. Woodhead Publishing, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "3D textile composites":

1

El Kadi, Michael, Svetlana Verbruggen, Jolien Vervloet, Matthias De Munck, Jan Wastiels, Danny Van Hemelrijck et Tine Tysmans. « Experimental Investigation and Benchmarking of 3D Textile Reinforced Cementitious Composites ». Dans Strain-Hardening Cement-Based Composites, 400–408. Dordrecht : Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1194-2_47.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhao, Dong Lin, Hong Feng Yin, Yong Dong Xu, Fa Luo et Wan Cheng Zhou. « Complex Permittivity of 3D Textile SiC/C/SiC Composites Fabricated by Chemical Vapor Infiltration at X-Band Frequency ». Dans High-Performance Ceramics V, 1028–30. Stafa : Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nikravan, Ata, Olcay Gurabi Aydogan, Gozdem Dittel, Martin Scheurer, Shantanu Bhat, Nilufer Ozyurt et Thomas Gries. « Implementation of Continuous Textile Fibers in 3D Printable Cementitious Composite ». Dans Lecture Notes in Civil Engineering, 1243–52. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32519-9_126.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yang, Yu Qiu, Asami Nakai, Tadashi Uozumi et Hiroyuki Hamada. « Energy Absorption Capability of 3D Braided-Textile Composite Tubes with Rectangular Cross Section ». Dans Advances in Composite Materials and Structures, 581–84. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.581.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pickett, A. K., M. Schneider, B. Wulfhorst et P. J. Langer. « Design and Manufacture of 3D-Braided Textiles As a Reinforcement for Composites ». Dans Materials for Transportation Technology, 169–75. Weinheim, FRG : Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606025.ch28.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gielis, Ciska, Michael El Kadi, Tine Tysmans et Didier Snoeck. « Mix Optimisation and Bending Behaviour of Cement Composites Reinforced with 3D Textiles and Microfibres ». Dans RILEM Bookseries, 209–16. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15805-6_22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

El Kadi, M., C. Gielis, D. Toma, D. Van Hemelrijck, H. Rahier et T. Tysmans. « Spacers for 3D Textiles as Reinforcement in Cement Composites : Influence on the Flexural and Cracking Behavior ». Dans RILEM Bookseries, 217–27. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15805-6_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mouritz, A. P. « Fatigue of 3D textile-reinforced composites ». Dans Fatigue of Textile Composites, 255–74. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-78242-281-5.00011-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Carvelli, V., et S. V. Lomov. « Fatigue damage evolution in 3D textile composites ». Dans Fatigue of Textile Composites, 223–53. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-78242-281-5.00010-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Byun, J.-H., M.-K. Urn, B.-S. Hwang et S.-W. Song. « Impact Performance of 3D Interlock Textile Composites ». Dans Composite Technologies for 2020, 488–93. Elsevier, 2004. http://dx.doi.org/10.1016/b978-1-85573-831-7.50085-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "3D textile composites":

1

WANG, YOUQI, BINGHUI LIU, LUN LI, AARON TOMICH et CHIAN FONG YEN. « CAD/CAM Tool for 3D Woven Textile Fabric Design ». Dans American Society for Composites 2017. Lancaster, PA : DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhou, Eric, David Mollenhauer et Endel Iarve. « Image Reconstruction Based Modeling of 3D Textile Composites ». Dans 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2157.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pochiraju, Kishore, T. W. Chou et Bharat Shah. « Modeling stiffness and strength of 3D textile structural composites ». Dans 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1579.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

PATEL, DEEPAK, et ANTHONY M. WAAS. « Direct Numerical Simulation of 3D Woven Textile Composites Subjected to Compressive Loading : A Multiscale Approach ». Dans American Society for Composites 2018. Lancaster, PA : DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/asc33/25978.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dickinson, Larry, et Mansour Mohamed. « Recent Advances in 3D Weaving for Textile Preforming ». Dans ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2148.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Abstract There have been many publications on “3D Weaving”, and there are numerous patents on a variety of devices that may be used to make a “3D Woven” structure. The majority of the 3D woven products that are currently commercially available are formed by a 2D weaving process that is used to build up a preform with fibers oriented in three dimensions. Recent advances have lead to multiple insertion 3D weaving, i.e. 3D fabric formation with each process cycle, or multi-layers at one time. The 3Weaving™ process is a multiple insertion 3D weaving technology that is different from traditional weaving. These distinctions about the different processes will be detailed in this paper. Additionally, the economics, manufacturing and performance of 3D woven textile preforms for composites will be discussed. Problems and solutions in each of these areas that prevent the large scale production of advanced composites will be presented. The advantage of 3D textile preforming is the ability to take complexity and labor out of manually intensive and expensive composites fabrication processes, and put it in the relatively inexpensive automated preforming process.
6

PATEL, DEEPAK K., et ANTHONY M. WAAS. « Compressive Strength Prediction of 3D Woven Textile Composites : Single RVE Multiscale Analysis and Imperfection Sensitivity Study ». Dans American Society for Composites 2018. Lancaster, PA : DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/asc33/26103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cox, Brian, et Qingda Yang. « Failure Prediction for Textile Composites Via Micromechanics ». Dans ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43491.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The question of failure criteria for textile composites is taken up, with reference to the micormechanics of known failure mechanisms in broad classes of 2D and 3D textile composites. Of primary importance is the definition of the measure of local stress or strain that should be compared against a putative material constant to predict local damage. In most prior work, some combination of strain or stress components evaluated at a single point has been used. Due to the complexity and inevitahle irregularity of textile composites, this approach is not favoured. Instead, micromechanical considreations recommend using strains averaged over gauge volumes whose dimensions are greater than or equal to approximately half the width dimensions of a single tow. Engineering tests that can be used for calibration are suggested but remain to be proven repeatable and consistent.
8

AGNIPROBHO MAZUMDER, AGNIPROBHO MAZUMDER, LI ZHENG LI ZHENG, YANG JIAO YANG JIAO, YONG YU YONG YU et YOUQI WANG YOUQI WANG. « PREDICTING DEFORMATION RESPONSE AND FAILURE OF 3D TEXTILE COMPOSITES USING REALISTIC MICROMECHANICAL MODELS ». Dans Proceedings for the American Society for Composites-Thirty Eighth Technical Conference. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/asc38/36522.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
3D woven composites are increasingly being utilized to construct structural components due to their ability to obtain high fiber volume fractions, potential for improved interlaminar properties, and ability to reduce manufacturing time via automated formation of component-shaped preforms. Properties of the 3D woven composite are determined by weaving architecture and the constituent material system. A detailed representation of its woven unit cell architecture is thus sought to closely capture local variations and imperfections arising during the weaving process, in order to predict mechanical properties with greater accuracy. Accurate mechanical property prediction can reduce the material selection cost and cycle time by minimizing coupon fabrication and testing. In this paper, a complex 3D woven angle interlock (3DWAI) unit cell is first modeled using DEA Fabric and Composite Analyzer (DFCA). Cross-section slices from the numerical model are compared to micrographs from the corresponding test sample to highlight the important meso-scale features that are captured by the model in a detailed fashion. Then a progressive damage model based on a gradual stiffness reduction technique is implemented to predict the tensile, compressive and shear stress-strain responses as well as failure strengths of the 3DWAI unit cell. The numerical predictions are compared to the test results and a discussion on the failure mechanisms is presented. The results demonstrate that the proposed modeling methodology not only captures the actual microstructures, but also predicts properties of 3D woven composites with a high degree of accuracy.
9

HOOS, KEVIN H., HARI K. ADLURU, ERIC ZHOU, CARL POPELAR, M. KEITH BALLARD, ENDEL V. IARVE et DAVID MOLLENHAUER. « PROGRESSIVE DAMAGE ANALYSIS OF OPEN HOLE COMPRESSION SPECIMENS CONTAINING COMPLEX 3D TEXTILE ARCHITECTURES USING DISCRETE DAMAGE MODELING AND INDEPENDENT MESH METHOD ». Dans Proceedings for the American Society for Composites-Thirty Eighth Technical Conference. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/asc38/36667.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Discrete Damage Modeling (DDM) and Independent Mesh Method (IMM) are applied to progressive damage analysis in angle-interlock woven 3D textile composites with open hole loaded in uniaxial compression. The predictions were made by considering, geometrically nonlinear formulation, thermal residual stresses and compression-shear interaction in the tows in the framework of LaRC04 failure criterion. The effects of each of these consideration as well as their combinations was evaluated and concluded that while each separately has only an incremental effect it is their combined effect that resulted in accurate prediction of the warp direction open hole compression strength in angle-interlock woven 3D textile.
10

Corte, C. « Fluid-structure Interaction of a 3D Finn Dinghy Sail Membrane with Surrounding Viscous Air Flow ». Dans 10th edition of the conference on Textile Composites and Inflatable Structures. CIMNE, 2021. http://dx.doi.org/10.23967/membranes.2021.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Vers la bibliographie