Sommaire
Littérature scientifique sur le sujet « 3D Plastronics »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « 3D Plastronics ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "3D Plastronics"
Nguyen, Xuan Viet Linh, Tony Gerges, Pascal Bevilacqua, Jean-Marc Duchamp, Philippe Benech, Jacques Verdier, Philippe Lombard et al. « Radio-Frequency Energy Harvesting Using Rapid 3D Plastronics Protoyping Approach : A Case Study ». Journal of Low Power Electronics and Applications 13, no 1 (17 février 2023) : 19. http://dx.doi.org/10.3390/jlpea13010019.
Texte intégralGerges, Tony, Vincent Semet, Philippe Lombard, Bruno Allard et Michel Cabrera. « Rapid 3d-Plastronics Prototyping by Selective Metallization of 3d Printed Parts ». SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4329322.
Texte intégralGerges, Tony, Vincent Semet, Philippe Lombard, Bruno Allard et Michel Cabrera. « Rapid 3D-Plastronics prototyping by selective metallization of 3D printed parts ». Additive Manufacturing, juin 2023, 103673. http://dx.doi.org/10.1016/j.addma.2023.103673.
Texte intégralGerges, Tony, Vincent Semet, Philippe Lombard, Sophie Gaillard, Michel Cabrera et Simon Auguste Lambert. « 3D Plastronics for Smartly Integrated Magnetic Resonance Imaging Coils ». Frontiers in Physics 8 (28 juillet 2020). http://dx.doi.org/10.3389/fphy.2020.00240.
Texte intégralManderfeld, Emily, Louisa Vogler et Axel Rosenhahn. « Fouling Inhibition by Replenishable Plastrons on Microstructured, Superhydrophobic Carbon‐Silicone Composite Coatings ». Advanced Materials Interfaces, 22 janvier 2024. http://dx.doi.org/10.1002/admi.202300964.
Texte intégralThèses sur le sujet "3D Plastronics"
Guérin, Thomas. « Développement d'encres fonctionnelles pour l'In-Mold Electronics ». Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0089.
Texte intégralThis thesis explores the emerging field of 3D plastronics, which merges electronics and plastics engineering to integrate electronic circuits on 3D polymer substrates. The work focuses on the development of conductive inks for the In-Mold Electronics (IME) process, a promising technique for the high-volume production of plastronic devices, particularly for human-machine interfaces (HMIs). The IME process involves several steps: printing conductive tracks on a thin polycarbonate film using conductive ink, transferring the electronic components onto the film and connecting them to the circuit by bonding, thermoforming the film in 3D, and 3D overmolding by injection of thermoplastic. After a literature review on plastronics and IME, the thesis proposes the study of different formulations of conductive inks, focusing on those composed of an organic polymer matrix containing micrometric silver fillers. A methodology was set up to characterize the inks at each stage of the process, in terms of electrical resistivity, adhesion, stretching and shear under stress during the printing, thermoforming and overmolding stages. Polycarbonate was used as a reference material for the film and the overmolding material. Several conductive inks were developed from organic materials derived from petrochemicals or bio-based materials. From petro-based materials, we obtained low-resistivity inks (26 µΩ.cm) and with a high deformation capacity by thermoforming. From bio-based materials, new organic matrices were formulated to obtain more responsible inks. The -bio- inks are distinguished by their respect for the environment thanks to a biodegradable binder, a bio-based green solvent and recyclable silver. The performances reach a low resistivity of 20 µΩ.cm and with a high deformation capacity by thermoforming. A -bio- ink was overmolded with polycarbonate, and an IME demonstrator was produced. However, some difficulties persist and limit the application potential of these formulations. Among them, critical cases of delamination and rupture of the conductive tracks during thermoforming. Also, possible washing out of the inks and the detachment of the electronic components during the injection step can occur. These limitations are linked to the geometric constraints generated by 3D and have been studied. However, due to time constraints, not all the inks could be tested until the production of a demonstrator
Actes de conférences sur le sujet "3D Plastronics"
Nguyen, Xuan Viet Linh, Tony Gerges, Jean-Marc Duchamp, Philippe Benech, Jacques Verdier, Philippe Lombard, Michel Cabrera et Bruno Allard. « 3D Plastronics Radio Frequency Energy Harvester on Stereolithography Parts ». Dans 2022 Wireless Power Week (WPW). IEEE, 2022. http://dx.doi.org/10.1109/wpw54272.2022.9854010.
Texte intégral