Pour voir les autres types de publications sur ce sujet consultez le lien suivant : 3D patterning.

Articles de revues sur le sujet « 3D patterning »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « 3D patterning ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Giakoumaki, Argyro N., George Kenanakis, Argyro Klini, Maria Androulidaki, Zacharias Viskadourakis, Maria Farsari et Alexandros Selimis. « 3D patterning of ZnO nanostructures ». Materials Today 20, no 7 (septembre 2017) : 392–93. http://dx.doi.org/10.1016/j.mattod.2017.07.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Elder, Brian, Rajan Neupane, Eric Tokita, Udayan Ghosh, Samuel Hales et Yong Lin Kong. « Nanomaterial Patterning in 3D Printing ». Advanced Materials 32, no 17 (4 mars 2020) : 1907142. http://dx.doi.org/10.1002/adma.201907142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

UMEZU, Shinjiro, Tomohiko AOKI et Hitoshi OHMORI. « Patterning collagen for 3D cell structures ». Journal of Advanced Science 24, no 1+2 (2012) : 11–15. http://dx.doi.org/10.2978/jsas.24.11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Van Zeijl, Henk W., J. Wei, C. Shen, T. M. Verhaar et P. M. Sarro. « From 2D Lithography to 3D Patterning ». ECS Transactions 33, no 12 (17 décembre 2019) : 55–70. http://dx.doi.org/10.1149/1.3501034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Mayer, Andre, Marc Papenheim, Khalid Dhima, Si Wang, Christian Steinberg, Hella-Christin Scheer et Felix Schröter. « Stamp design towards instability-induced 3D patterning ». Microelectronic Engineering 123 (juillet 2014) : 100–104. http://dx.doi.org/10.1016/j.mee.2014.05.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Corbett, Daniel C., Wesley B. Fabyan, Bagrat Grigoryan, Colleen E. O’Connor, Fredrik Johansson, Ivan Batalov, Mary C. Regier, Cole A. DeForest, Jordan S. Miller et Kelly R. Stevens. « Thermofluidic heat exchangers for actuation of transcription in artificial tissues ». Science Advances 6, no 40 (septembre 2020) : eabb9062. http://dx.doi.org/10.1126/sciadv.abb9062.

Texte intégral
Résumé :
Spatial patterns of gene expression in living organisms orchestrate cell decisions in development, homeostasis, and disease. However, most methods for reconstructing gene patterning in 3D cell culture and artificial tissues are restricted by patterning depth and scale. We introduce a depth- and scale-flexible method to direct volumetric gene expression patterning in 3D artificial tissues, which we call “heat exchangers for actuation of transcription” (HEAT). This approach leverages fluid-based heat transfer from printed networks in the tissues to activate heat-inducible transgenes expressed by embedded cells. We show that gene expression patterning can be tuned both spatially and dynamically by varying channel network architecture, fluid temperature, fluid flow direction, and stimulation timing in a user-defined manner and maintained in vivo. We apply this approach to activate the 3D positional expression of Wnt ligands and Wnt/β-catenin pathway regulators, which are major regulators of development, homeostasis, regeneration, and cancer throughout the animal kingdom.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Unno, Noriyuki, et Jun Taniguchi. « 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology ». Advanced Optical Technologies 8, no 3-4 (26 juin 2019) : 253–66. http://dx.doi.org/10.1515/aot-2019-0004.

Texte intégral
Résumé :
Abstract Nanostructures have unique characteristics, such as large specific surface areas, that provide a wide range of engineering applications, such as electronics, optics, biotics, and thermal and fluid dynamics. They can be used to downsize many engineering products; therefore, new nanofabrication techniques are strongly needed to meet this demand. A simple fabrication process with high throughput is necessary for low-cost nanostructures. In recent years, three-dimensional (3D) nanostructures have attracted much attention because they dramatically opened up new fields for applications. However, conventional techniques for fabricating 3D nanostructures contain many complex processes, such as multiple patterning lithography, metal deposition, lift-off, etching, and chemical-mechanical polishing. This paper focuses on controlled-acceleration-voltage electron beam lithography (CAV-EBL), which can fabricate 3D nanostructures in one shot. The applications of 3D nanostructures are introduced, and the conventional 3D patterning technique is compared with CAV-EBL and various 3D patterning techniques using CAV-EBL with nanoimprinting technology. Finally, the outlook for next-generation devices that can be fabricated by CAV-EBL is presented.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Menon, Nishanth Venugopal, Hui Min Tay, Soon Nan Wee, King Ho Holden Li et Han Wei Hou. « Micro-engineered perfusable 3D vasculatures for cardiovascular diseases ». Lab on a Chip 17, no 17 (2017) : 2960–68. http://dx.doi.org/10.1039/c7lc00607a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ceylan, Hakan, Immihan Ceren Yasa et Metin Sitti. « 3D Chemical Patterning of Micromaterials for Encoded Functionality ». Advanced Materials 29, no 9 (22 décembre 2016) : 1605072. http://dx.doi.org/10.1002/adma.201605072.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Han, Sewoon, Junghyun Kim, Rui Li, Alice Ma, Vincent Kwan, Kevin Luong et Lydia L. Sohn. « Hydrophobic Patterning-Based 3D Microfluidic Cell Culture Assay ». Advanced Healthcare Materials 7, no 12 (26 avril 2018) : 1800122. http://dx.doi.org/10.1002/adhm.201800122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Dinca, V., J. Catherine, A. Mourka, S. Georgiou, M. Farsari et C. Fotakis. « 2D and 3D biotin patterning by ultrafast lasers ». International Journal of Nanotechnology 6, no 1/2 (2009) : 88. http://dx.doi.org/10.1504/ijnt.2009.021709.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Kwag, Hye Rin, Jeong-Hyun Cho, Si-Young Park, Jaehyun Park et David H. Gracias. « Self-folding nanostructures with imprint patterned surfaces (SNIPS) ». Faraday Discussions 191 (2016) : 61–71. http://dx.doi.org/10.1039/c6fd00021e.

Texte intégral
Résumé :
A significant need in nanotechnology is the development of methods to mass-produce three-dimensional (3D) nanostructures and their ordered assemblies with patterns of functional materials such as metals, ceramics, device grade semiconductors, and polymers. While top-down lithography approaches can enable heterogeneous integration, tunability, and significant material versatility, these methods enable inherently two-dimensional (2D) patterning. Bottom-up approaches enable mass-production of 3D nanostructures and their assemblies but with limited precision, and tunability in surface patterning. Here, we demonstrate a methodology to create Self-folding Nanostructures with Imprint Patterned Surfaces (SNIPS). By a variety of examples, we illustrate that SNIPS, either individually or in ordered arrays, are mass-producible and have significant tunability, material heterogeneity, and patterning precision.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Lee, Ulri N., John H. Day, Amanda J. Haack, Ross C. Bretherton, Wenbo Lu, Cole A. DeForest, Ashleigh B. Theberge et Erwin Berthier. « Layer-by-layer fabrication of 3D hydrogel structures using open microfluidics ». Lab on a Chip 20, no 3 (2020) : 525–36. http://dx.doi.org/10.1039/c9lc00621d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Brambach, Max, Ariane Ernst, Sara Nolbrant, Janelle Drouin-Ouellet, Agnete Kirkeby, Malin Parmar et Victor Olariu. « Neural tube patterning : From a minimal model for rostrocaudal patterning toward an integrated 3D model ». iScience 24, no 6 (juin 2021) : 102559. http://dx.doi.org/10.1016/j.isci.2021.102559.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Lee, Younggyun, Jin Woo Choi, James Yu, Dohyun Park, Jungmin Ha, Kyungmin Son, Somin Lee, Minhwan Chung, Ho-Young Kim et Noo Li Jeon. « Microfluidics within a well : an injection-molded plastic array 3D culture platform ». Lab on a Chip 18, no 16 (2018) : 2433–40. http://dx.doi.org/10.1039/c8lc00336j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

J. Sawkins, Michael, Kevin M. Shakesheff, Lawrence J. Bonassar et Glen R. Kirkham. « 3D Cell and Scaffold Patterning Strategies in Tissue Engineering ». Recent Patents on Biomedical Engineering 6, no 1 (1 mars 2013) : 3–21. http://dx.doi.org/10.2174/1874764711306010003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, D. Z., Mohan J. Edirisinghe et S. N. Jayasinghe. « A Novel 3D Patterning Technique for Forming Advanced Ceramics ». Key Engineering Materials 336-338 (avril 2007) : 977–79. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.977.

Texte intégral
Résumé :
In this paper a novel and versatile 3D print-patterning technique coupling electrohydrodyanmics and a specially designed and constructed plotting device is elucidated. This unit is capable of free-forming advanced ceramics and we demonstrate this by using it to print-pattern a 5mm × 5mm × 1mm walled zirconia structure layer by layer. The wall thickness achieved is ~150$m, almost half that of similar structures prepared using ink-jet printing. The as-printed structure was studied by scanning electron microscopy and some of its typical features are discussed and related to the forming process.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Momotenko, Dmitry, Ashley Page, Maria Adobes-Vidal et Patrick R. Unwin. « Write–Read 3D Patterning with a Dual-Channel Nanopipette ». ACS Nano 10, no 9 (14 septembre 2016) : 8871–78. http://dx.doi.org/10.1021/acsnano.6b04761.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

TANAKA, Ryu-ichiro, Katsuhisa SAKAGUCHI, Tatsuya SHIMIZU et Shinjiro UMEZU. « Patterning of biomaterial gels utilizing “Micro bio 3D printer” ». Proceedings of Mechanical Engineering Congress, Japan 2017 (2017) : S1620102. http://dx.doi.org/10.1299/jsmemecj.2017.s1620102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Comeau, Eric S., Denise C. Hocking et Diane Dalecki. « Ultrasound patterning technologies for studying vascular morphogenesis in 3D ». Journal of Cell Science 130, no 1 (27 octobre 2016) : 232–42. http://dx.doi.org/10.1242/jcs.188151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Shin, In Joo, et Min Soo Park. « Direct Conductive Patterning on 3D Printed Structure Using Laser ». physica status solidi (a) 215, no 1 (6 novembre 2017) : 1700597. http://dx.doi.org/10.1002/pssa.201700597.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Stroganov, Vladislav, Jitendra Pant, Georgi Stoychev, Andreas Janke, Dieter Jehnichen, Andreas Fery, Hitesh Handa et Leonid Ionov. « 4D Biofabrication : 3D Cell Patterning Using Shape-Changing Films ». Advanced Functional Materials 28, no 11 (18 janvier 2018) : 1706248. http://dx.doi.org/10.1002/adfm.201706248.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Passinger, S., M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov et M. E. Welland. « Direct 3D Patterning of TiO2 Using Femtosecond Laser Pulses ». Advanced Materials 19, no 9 (7 mai 2007) : 1218–21. http://dx.doi.org/10.1002/adma.200602264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Valentin, Thomas M., Susan E. Leggett, Po-Yen Chen, Jaskiranjeet K. Sodhi, Lauren H. Stephens, Hayley D. McClintock, Jea Yun Sim et Ian Y. Wong. « Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics ». Lab on a Chip 17, no 20 (2017) : 3474–88. http://dx.doi.org/10.1039/c7lc00694b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Fischer, Andreas C., Lyubov M. Belova, Yuri G. M. Rikers, B. Gunnar Malm, Henry H. Radamson, Mohammadreza Kolahdouz, Kristinn B. Gylfason, Göran Stemme et Frank Niklaus. « 3D Patterning : 3D Free-Form Patterning of Silicon by Ion Implantation, Silicon Deposition, and Selective Silicon Etching (Adv. Funct. Mater. 19/2012) ». Advanced Functional Materials 22, no 19 (2 octobre 2012) : 3965. http://dx.doi.org/10.1002/adfm.201290115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Wang, Jikun, Tongqing Lu, Meng Yang, Danqi Sun, Yukun Xia et Tiejun Wang. « Hydrogel 3D printing with the capacitor edge effect ». Science Advances 5, no 3 (mars 2019) : eaau8769. http://dx.doi.org/10.1126/sciadv.aau8769.

Texte intégral
Résumé :
Recent decades have seen intense developments of hydrogel applications for cell cultures, tissue engineering, soft robotics, and ionic devices. Advanced fabrication techniques for hydrogel structures are being developed to meet user-specified requirements. Existing hydrogel 3D printing techniques place substantial constraints on the physical and chemical properties of hydrogel precursors as well as the printed hydrogel structures. This study proposes a novel method for patterning liquids with a resolution of 100 μm by using the capacitor edge effect. We establish a complete hydrogel 3D printing system combining the patterning and stacking processes. This technique is applicable to a wide variety of hydrogels, overcoming the limitations of existing techniques. We demonstrate printed hydrogel structures including a hydrogel scaffold, a hydrogel composite that responds sensitively to temperature, and an ionic high-integrity hydrogel display device. The proposed technique offers great opportunities in rapid prototyping hydrogel devices using multiple compositions and complex geometries.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Yang, Jiayu, Qinghe Cao, Xiaowan Tang, Junjie Du, Tao Yu, Xi Xu, Dongming Cai, Cao Guan et Wei Huang. « 3D-Printed highly stretchable conducting polymer electrodes for flexible supercapacitors ». Journal of Materials Chemistry A 9, no 35 (2021) : 19649–58. http://dx.doi.org/10.1039/d1ta02617h.

Texte intégral
Résumé :
A stretchable conducting polymer electrode has been prepared using extrusion 3D printing technology in combination with rational structural patterning, which shows promising mechanical and electrochemical performance.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Reeves, Jeremy B., Rachael K. Jayne, Lawrence Barrett, Alice E. White et David J. Bishop. « Fabrication of multi-material 3D structures by the integration of direct laser writing and MEMS stencil patterning ». Nanoscale 11, no 7 (2019) : 3261–67. http://dx.doi.org/10.1039/c8nr09174a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Li, Tianzhen, Jiahui Wang, Liyun Zhang, Jinbin Yang, Mengyan Yang, Deyong Zhu, Xiaohu Zhou, Stephan Handschuh-Wang, Yizhen Liu et Xuechang Zhou. « “Freezing”, morphing, and folding of stretchy tough hydrogels ». Journal of Materials Chemistry B 5, no 29 (2017) : 5726–32. http://dx.doi.org/10.1039/c7tb01265a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Kim, Na Kyung, Eun Jung Cha, Mungyo Jung, Jinseok Kim, Gun-Jae Jeong, Yong Seok Kim, Woo Jin Choi, Byung-Soo Kim, Dong-Gyun Kim et Jong-Chan Lee. « 3D hierarchical scaffolds enabled by a post-patternable, reconfigurable, and biocompatible 2D vitrimer film for tissue engineering applications ». Journal of Materials Chemistry B 7, no 21 (2019) : 3341–45. http://dx.doi.org/10.1039/c9tb00221a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Vignes, Justin, Fred Haring, Syed Sajid Ahmad, Kaycie Gerstner et Aaron Reinholz. « Laser Patterning and Via Drilling of Sapphire Wafers and Die ». International Symposium on Microelectronics 2010, no 1 (1 janvier 2010) : 000513–20. http://dx.doi.org/10.4071/isom-2010-wa5-paper3.

Texte intégral
Résumé :
As proliferation of handheld devices drives 3D packaging to achieve densification, embedding increased functionality into a chip is a natural complementary advancement in miniaturization. Ever increasing complexity of microelectronic design and functionality leads to the use of multiple surfaces for circuit development on wafers or individual die. Through-silicon vias, stacked die and stacked wafers, along with circuitry deposited on multiple surfaces and irregular shaped structures are some examples of 3D packaging. Laser patterning and via drilling on sapphire wafers and die with a 532 nm green laser has shown significant capabilities to make micro-features on and in the sapphire. Current structures include vias for die and wafer level interconnects, and patterned grooves for circuitry and antenna patterns. Other possibilities include pocket or trench patterning for adding passive components to the back of die or wafers. Backside patterning may be used for nano-imprinting of inks and other liquids. These grooves may also be used as micro-mixing or dispensing channels for use with nano-materials or liquids. All of these techniques may be applied to 3D die or wafer assembly and packaging.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Zhao, Haili, Jin Sha, Xiaofeng Wang, Yongchao Jiang, Tao Chen, Tong Wu, Xin Chen et al. « Spatiotemporal control of polymer brush formation through photoinduced radical polymerization regulated by DMD light modulation ». Lab on a Chip 19, no 16 (2019) : 2651–62. http://dx.doi.org/10.1039/c9lc00419j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Li, Wenbo, Yonghe Li, Meng Su, Boxing An, Jing Liu, Dan Su, Lihong Li, Fengyu Li et Yanlin Song. « Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors ». Journal of Materials Chemistry A 5, no 31 (2017) : 16281–88. http://dx.doi.org/10.1039/c7ta02041d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Loessberg-Zahl, Joshua, Jelle Beumer, Albert van den Berg, Jan Eijkel et Andries van der Meer. « Patterning Biological Gels for 3D Cell Culture inside Microfluidic Devices by Local Surface Modification through Laminar Flow Patterning ». Micromachines 11, no 12 (16 décembre 2020) : 1112. http://dx.doi.org/10.3390/mi11121112.

Texte intégral
Résumé :
Microfluidic devices are used extensively in the development of new in vitro cell culture models like organs-on-chips. A typical feature of such devices is the patterning of biological hydrogels to offer cultured cells and tissues a controlled three-dimensional microenvironment. A key challenge of hydrogel patterning is ensuring geometrical confinement of the gel, which is generally solved by inclusion of micropillars or phaseguides in the channels. Both of these methods often require costly cleanroom fabrication, which needs to be repeated even when only small changes need be made to the gel geometry, and inadvertently expose cultured cells to non-physiological and mechanically stiff structures. Here, we present a technique for facile patterning of hydrogel geometries in microfluidic chips, but without the need for any confining geometry built into the channel. Core to the technique is the use of laminar flow patterning to create a hydrophilic path through an otherwise hydrophobic microfluidic channel. When a liquid hydrogel is injected into the hydrophilic region, it is confined to this path by the surrounding hydrophobic regions. The various surface patterns that are enabled by laminar flow patterning can thereby be rendered into three-dimensional hydrogel structures. We demonstrate that the technique can be used in many different channel geometries while still giving the user control of key geometric parameters of the final hydrogel. Moreover, we show that human umbilical vein endothelial cells can be cultured for multiple days inside the devices with the patterned hydrogels and that they can be stimulated to migrate into the gel under the influence of trans-gel flows. Finally, we demonstrate that the patterned gels can withstand trans-gel flow velocities in excess of physiological interstitial flow velocities without rupturing or detaching. This novel hydrogel-patterning technique addresses fundamental challenges of existing methods for hydrogel patterning inside microfluidic chips, and can therefore be applied to improve design time and the physiological realism of microfluidic cell culture assays and organs-on-chips.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Su, Yingchun, Mehmet Berat Taskin, Mingdong Dong, Xiaojun Han, Flemming Besenbacher et Menglin Chen. « A biocompatible artificial tendril with a spontaneous 3D Janus multi-helix-perversion configuration ». Materials Chemistry Frontiers 4, no 7 (2020) : 2149–56. http://dx.doi.org/10.1039/d0qm00125b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Pyrowolakis, George, Ville Veikkolainen, Nir Yakoby et Stanislav Y. Shvartsman. « Gene regulation during Drosophila eggshell patterning ». Proceedings of the National Academy of Sciences 114, no 23 (5 juin 2017) : 5808–13. http://dx.doi.org/10.1073/pnas.1610619114.

Texte intégral
Résumé :
A common path to the formation of complex 3D structures starts with an epithelial sheet that is patterned by inductive cues that control the spatiotemporal activities of transcription factors. These activities are then interpreted by the cis-regulatory regions of the genes involved in cell differentiation and tissue morphogenesis. Although this general strategy has been documented in multiple developmental contexts, the range of experimental models in which each of the steps can be examined in detail and evaluated in its effect on the final structure remains very limited. Studies of the Drosophila eggshell patterning provide unique insights into the multiscale mechanisms that connect gene regulation and 3D epithelial morphogenesis. Here we review the current understanding of this system, emphasizing how the recent identification of cis-regulatory regions of genes within the eggshell patterning network enables mechanistic analysis of its spatiotemporal dynamics and evolutionary diversification. It appears that cis-regulatory changes can account for only some aspects of the morphological diversity of Drosophila eggshells, such as the prominent differences in the number of the respiratory dorsal appendages. Other changes, such as the appearance of the respiratory eggshell ridges, are caused by changes in the spatial distribution of inductive signals. Both types of mechanisms are at play in this rapidly evolving system, which provides an excellent model of developmental patterning and morphogenesis.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Lin, Yi-Wei, Ying-Jhen Ciou et Da-Jeng Yao. « Virtual Stencil for Patterning and Modeling in a Quantitative Volume Using EWOD and DEP Devices for Microfluidics ». Micromachines 12, no 9 (14 septembre 2021) : 1104. http://dx.doi.org/10.3390/mi12091104.

Texte intégral
Résumé :
Applying microfluidic patterning, droplets were precisely generated on an electrowetting-on-dielectric (EWOD) chip considering these parameters: number of generating electrodes, number of cutting electrodes, voltage, frequency and gap between upper and lower plates of the electrode array on the EWOD chip. In a subsequent patterning experiment, an environment with three generating electrodes, one cutting electrode and a gap height 10 μm, we obtained a quantitative volume for patterning. Propylene carbonate liquid and a mixed colloid of polyphthalate carbonate (PPC) and photosensitive polymer material were manipulated into varied patterns. With support from a Z-axis lifting platform and a UV lamp, a cured 3D structure was stacked. Using an EWOD system, a multi-layer three-dimensional structure was produced for the patterning. A two-plate EWOD system patterned propylene carbonate in a quantitative volume at 140 Vpp/20 kHz with automatic patterning.
Styles APA, Harvard, Vancouver, ISO, etc.
38

TANAKA, Ryu-ichiro, Katsuhisa SAKAGUCHI, Tatsuya SHIMIZU et Shinjiro UMEZU. « Developing “Micro bio 3D printer&rdquo ; and Patterning of biomaterials ». Proceedings of the Conference on Information, Intelligence and Precision Equipment : IIP 2017 (2017) : PH—07. http://dx.doi.org/10.1299/jsmeiip.2017.ph-07.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Uetani, Kojiro, Hirotaka Koga et Masaya Nogi. « Checkered Films of Multiaxis Oriented Nanocelluloses by Liquid-Phase Three-Dimensional Patterning ». Nanomaterials 10, no 5 (18 mai 2020) : 958. http://dx.doi.org/10.3390/nano10050958.

Texte intégral
Résumé :
It is essential to build multiaxis oriented nanocellulose films in the plane for developing thermal or optical management films. However, using conventional orientation techniques, it is difficult to align nanocelluloses in multiple directions within the plane of single films rather than in the thickness direction like the chiral nematic structure. In this study, we developed the liquid-phase three-dimensional (3D) patterning technique by combining wet spinning and 3D printing. Using this technique, we produced a checkered film with multiaxis oriented nanocelluloses. This film showed similar retardation levels, but with orthogonal molecular axis orientations in each checkered domain as programmed. The thermal transport was enhanced in the domain with the oriented pattern parallel to the heat flow. This liquid-phase 3D patterning technique could pave the way for bottom-up design of differently aligned nanocellulose films to develop sophisticated optical and thermal materials.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Hernandez, D. S., E. T. Ritschdorff, S. K. Seidlits, C. E. Schmidt et J. B. Shear. « Functionalizing micro-3D-printed protein hydrogels for cell adhesion and patterning ». Journal of Materials Chemistry B 4, no 10 (2016) : 1818–26. http://dx.doi.org/10.1039/c5tb02070k.

Texte intégral
Résumé :
A versatile and dynamic photoconjugation platform is introduced that provides high, 3D spatial resolution for functionalizing micro-3D-printed (μ-3DP) hydrogels. Schwann cells are patterned on μ-3DP hydrogels precisely labeled with RGD, a cell adhesive peptide, demonstrating utility of this platform for cell culture applications.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Okuda, Satoru, Yasuhiro Inoue, Tadashi Watanabe et Taiji Adachi. « Coupling intercellular molecular signalling with multicellular deformation for simulating three-dimensional tissue morphogenesis ». Interface Focus 5, no 2 (6 avril 2015) : 20140095. http://dx.doi.org/10.1098/rsfs.2014.0095.

Texte intégral
Résumé :
During morphogenesis, three-dimensional (3D) multicellular structures emerge from biochemical and mechanical interplays among cells. In particular, by organizing their gradient within tissues, the diffusible signalling molecules play an essential role in producing the spatio-temporal patterns of cell status such as the differentiation states. Notably, this biochemical patterning can be dynamically coupled with multicellular deformations by signal-dependent cell activities such as contraction, adhesion, migration, proliferation and apoptosis. However, the mechanism by which these cellular activities mediate the interactions between multicellular deformations and patterning is still unknown. Herein, we propose a novel framework of a 3D vertex model to express molecular signalling among the mechanically deforming cells. By specifying a density of signalling molecules for each cell, we express their transport between neighbouring cells. By simulating signal-dependent epithelial growth, we found various types of tissue morphogenesis such as arrest, expansion, invagination and evagination. In the expansion phase, growth molecules were widely diffused with increasing tissue volume, which diluted the growth molecules in order to support the autonomous suppression of tissue growth. These results indicate that the proposed model successfully expresses 3D multicellular deformations dynamically coupled with biochemical patterning. We expect our proposed model to be a useful tool for predicting new phenomena emerging from mechanochemical coupling in multicellular morphogenesis.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Sahni, Geetika, et Yi Chin Toh. « Directing 3D Neuroepithelium Tissue Patterning from Human Pluripotent Stem Cells ». Mechanisms of Development 145 (juillet 2017) : S170. http://dx.doi.org/10.1016/j.mod.2017.04.491.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Miron-Mendoza, Miguel, Eric Graham, Sujal Manohar et W. Matthew Petroll. « Fibroblast-fibronectin patterning and network formation in 3D fibrin matrices ». Matrix Biology 64 (décembre 2017) : 69–80. http://dx.doi.org/10.1016/j.matbio.2017.06.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Dai, Gaole, Wenfeng Wan, Yuliang Zhao, Zixun Wang, Wenjun Li, Peng Shi et Yajing Shen. « Controllable 3D alginate hydrogel patterning via visible-light induced electrodeposition ». Biofabrication 8, no 2 (25 avril 2016) : 025004. http://dx.doi.org/10.1088/1758-5090/8/2/025004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Johnson, David W., Colin Sherborne, Matthew P. Didsbury, Christopher Pateman, Neil R. Cameron et Frederik Claeyssens. « Macrostructuring of Emulsion-templated Porous Polymers by 3D Laser Patterning ». Advanced Materials 25, no 23 (19 avril 2013) : 3178–81. http://dx.doi.org/10.1002/adma.201300552.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ye, Kang-Hyun, et Hae-Woon Choi. « Laser Head Design and Heat Transfer Analysis for 3D Patterning ». Journal of the Korean Society of Manufacturing Process Engineers 15, no 4 (31 août 2016) : 46–50. http://dx.doi.org/10.14775/ksmpe.2016.15.4.046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Yunus, Doruk Erdem, Salman Sohrabi, Ran He, Wentao Shi et Yaling Liu. « Acoustic patterning for 3D embedded electrically conductive wire in stereolithography ». Journal of Micromechanics and Microengineering 27, no 4 (14 mars 2017) : 045016. http://dx.doi.org/10.1088/1361-6439/aa62b7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Dai, Ziwen, et Pik Kwan Lo. « Photo-switchable patterning of gold nanoparticles along 3D DNA nanotubes ». Nanoscale 10, no 12 (2018) : 5431–35. http://dx.doi.org/10.1039/c7nr09650j.

Texte intégral
Résumé :
This reversible photo-responsive DNA nanotube system become not only a useful tool for drug delivery and nanorobotics but also a reversibly reconfigurable DNA-based plasmonic material for applications in optoelectronics and nanophotonics.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Bellec, Matthieu, Arnaud Royon, Kevin Bourhis, Jiyeon Choi, Bruno Bousquet, Mona Treguer, Thierry Cardinal, Jean-Jacques Videau, Martin Richardson et Lionel Canioni. « 3D Patterning at the Nanoscale of Fluorescent Emitters in Glass ». Journal of Physical Chemistry C 114, no 37 (26 août 2010) : 15584–88. http://dx.doi.org/10.1021/jp104049e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Papadimitriou, V. A., L. I. Segerink, A. van den Berg et J. C. T. Eijkel. « 3D capillary stop valves for versatile patterning inside microfluidic chips ». Analytica Chimica Acta 1000 (février 2018) : 232–38. http://dx.doi.org/10.1016/j.aca.2017.11.055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie