Littérature scientifique sur le sujet « 3D patterning »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « 3D patterning ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "3D patterning"
Giakoumaki, Argyro N., George Kenanakis, Argyro Klini, Maria Androulidaki, Zacharias Viskadourakis, Maria Farsari et Alexandros Selimis. « 3D patterning of ZnO nanostructures ». Materials Today 20, no 7 (septembre 2017) : 392–93. http://dx.doi.org/10.1016/j.mattod.2017.07.003.
Texte intégralElder, Brian, Rajan Neupane, Eric Tokita, Udayan Ghosh, Samuel Hales et Yong Lin Kong. « Nanomaterial Patterning in 3D Printing ». Advanced Materials 32, no 17 (4 mars 2020) : 1907142. http://dx.doi.org/10.1002/adma.201907142.
Texte intégralUMEZU, Shinjiro, Tomohiko AOKI et Hitoshi OHMORI. « Patterning collagen for 3D cell structures ». Journal of Advanced Science 24, no 1+2 (2012) : 11–15. http://dx.doi.org/10.2978/jsas.24.11.
Texte intégralVan Zeijl, Henk W., J. Wei, C. Shen, T. M. Verhaar et P. M. Sarro. « From 2D Lithography to 3D Patterning ». ECS Transactions 33, no 12 (17 décembre 2019) : 55–70. http://dx.doi.org/10.1149/1.3501034.
Texte intégralMayer, Andre, Marc Papenheim, Khalid Dhima, Si Wang, Christian Steinberg, Hella-Christin Scheer et Felix Schröter. « Stamp design towards instability-induced 3D patterning ». Microelectronic Engineering 123 (juillet 2014) : 100–104. http://dx.doi.org/10.1016/j.mee.2014.05.010.
Texte intégralCorbett, Daniel C., Wesley B. Fabyan, Bagrat Grigoryan, Colleen E. O’Connor, Fredrik Johansson, Ivan Batalov, Mary C. Regier, Cole A. DeForest, Jordan S. Miller et Kelly R. Stevens. « Thermofluidic heat exchangers for actuation of transcription in artificial tissues ». Science Advances 6, no 40 (septembre 2020) : eabb9062. http://dx.doi.org/10.1126/sciadv.abb9062.
Texte intégralUnno, Noriyuki, et Jun Taniguchi. « 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology ». Advanced Optical Technologies 8, no 3-4 (26 juin 2019) : 253–66. http://dx.doi.org/10.1515/aot-2019-0004.
Texte intégralMenon, Nishanth Venugopal, Hui Min Tay, Soon Nan Wee, King Ho Holden Li et Han Wei Hou. « Micro-engineered perfusable 3D vasculatures for cardiovascular diseases ». Lab on a Chip 17, no 17 (2017) : 2960–68. http://dx.doi.org/10.1039/c7lc00607a.
Texte intégralCeylan, Hakan, Immihan Ceren Yasa et Metin Sitti. « 3D Chemical Patterning of Micromaterials for Encoded Functionality ». Advanced Materials 29, no 9 (22 décembre 2016) : 1605072. http://dx.doi.org/10.1002/adma.201605072.
Texte intégralHan, Sewoon, Junghyun Kim, Rui Li, Alice Ma, Vincent Kwan, Kevin Luong et Lydia L. Sohn. « Hydrophobic Patterning-Based 3D Microfluidic Cell Culture Assay ». Advanced Healthcare Materials 7, no 12 (26 avril 2018) : 1800122. http://dx.doi.org/10.1002/adhm.201800122.
Texte intégralThèses sur le sujet "3D patterning"
Wang, Dazhi. « 2D and 3D electrohydrodynamic atomization print-patterning ». Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439436.
Texte intégralWolozny, Gomez Robelo Daniel Andre. « Additive Manufacturing for Robust and Affordable Medical Devices ». Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73295.
Texte intégralPh. D.
Singh, Dharaminder. « 2D patterning and 3D printing of novel PGSm for peripheral nerve repair and soft tissue engineering ». Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/19943/.
Texte intégralIssa, Ali. « Functionalization and 2-photon Patterning of Photopolymers for 1D and 3D Directed Assembly of Nano-objects ». Thesis, Troyes, 2018. http://www.theses.fr/2018TROY0015.
Texte intégralThe precise patterning of nanoparticles (NPs) with fine control of their spatial positioning and orientation is highly desirable. Their selective assembly in multiple dimensions and on continuous length scales would lead for the formation of collective properties that differ from those of individual particles providing astronomical potential to many applications. In this context, the 3D patterning of metallic NPs offer the potential to increase the number of electromagnetic “hot spots” towards new generation of integrated and ultrasensitive sensors. In this thesis, we present a general strategy for the immobilization of NPs, particularly gold, on 1D and 3D polymer micro templates. This strategy involves the functionalization of photopolymers and their 2-photon polymerization to fabricate microstructures that selectively attract colloidal NPs with suitable ligands allowing their precise organization even within complex 3D structures. We show monolayers of NPs without aggregations collecting a clean surface besides that the surface density of NPs on the polymer surface can be controlled. We deeply investigated the functionalization mechanism of photopolymer and the interaction of the polymer surface with NPs. Finally, we show the potential of our functionalization strategy for multiple applications including SERS detection of chemicals
Goliath, Jesse Roberto. « A 3D Morphological Analysis of the Ontogenetic Patterning of Human Subchondral Bone Microarchitecture in the Proximal Tibia ». The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494273830449469.
Texte intégralWesser, Andrea. « USER-DEFINED PATTERNING OF NEURAL PROGENITOR CELLS ON 3D MICROPILLAR ARRAYS USING ROUND CROSS-SECTIONAL GEOMETRY, SPECIFIC DIMEN ». Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3973.
Texte intégralM.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering MSME
SRIDHAR, SUPRIYA LALAPET. « Design, Simulation and Physical Characterization of 3D Photonic Crystal Woodpile Structures for High Efficacy Incandescent Thermal Emission ». University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1218030876.
Texte intégralWesser, Andrea Suzette. « User-defined patterning of neural progenitor cells on 3D micropillar arrays using round cross-sectional geometry, specific dimensions and thiol-based chemical adhesion ». Orlando, Fla. : University of Central Florida, 2008. http://purl.fcla.edu/fcla/etd/CFE0002054.
Texte intégralGovindarajan, Sudhanva Raj. « THE DESIGN OF A MULTIFUNCTIONAL INITIATOR-FREE SOFT POLYESTER PLATFORM FOR ROOM-TEMPERATURE EXTRUSION-BASED 3D PRINTING, AND ANALYSIS OF PRINTABILITY ». University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1466778249.
Texte intégralNgoloyi, Nonkululeko Mantombi Nomalanga. « Documentation du patrimoine de l'assemblage de fossiles du site de Kromdraai contenant des hominines (Afrique du Sud) : techniques de numérisation 3D, analyse spatiale quantitative et estimation de volume ». Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30210.
Texte intégralThis thesis uses multi-scalar data to create a three-dimensional (3D) representation and, to generate a complete digital record of the early hominin-bearing fossil assemblage from the lithostratigraphic Unit P at Kromdraai in the Cradle of Humankind World Heritage Site (Gauteng Province, South Africa). The main purposes of this research were to illustrate in 3D the temporal and spatial progression of the excavations at Kromdraai since 2014, to investigate the spatial distribution of the hominin, faunal assemblages and artefacts, and ultimately, to provide an archive documenting the archaeological heritage of Kromdraai. We provided a multi-scalar analysis of various aspects of the study site, with the application of methods such as multi-image land and aerial photogrammetry. In alignment with the principles and guidelines for the management of archaeological heritage mandated by international agencies such as UNESCO, we also present a protocol for heritage documentation. We used 3D data capture technologies to record the Kromdraai site and the archaeological evidence discovered between 2014 and 2018 from its main excavation. This research presents an original technique developed for the quantification and visualization of the volume sediments removed from the site during each excavation period. Volume estimations computed using 3D photogrammetry and digitization, provided a temporal and spatial context to the volume and location of material removed by each excavator and, a more precise and virtual repositioning of the fossil material discovered ex situ. Furthermore, we implemented metadata modelling to demonstrate the use of 4D relational database management systems for the fusion, organisation and dissemination of the Kromdraai site dataset and the sharing of intellectual property. We also introduce one of the first statistical approaches of 3D spatial patterning in Plio-Pleistocene early hominin-bearing assemblages in South Africa. Implementing classic statistical testing methods such as k-means and Density-Based Spatial Clustering and Application with Noise (DBSCAN) cluster computation in 3D, we investigated the spatial patterns of the fossil assemblage within Unit P, a sample of 810 individually catalogued specimens recovered between 2014 and 2018. The clustering of bovids, carnivores, hominins, and non-human primates revealed a non-uniform spatial distribution pattern of fossils in-situ. This research presents valuable methods that can be applied at other hominin-bearing fossil sites within the Cradle of Humankind to document an archaeological excavation and to reconstruct of the site in 3D, to document heritage information, and to enhance the interpretation of the fossil assemblages using evidence-based assessment of spatial patterns within a hominin-bearing assemblage
Livres sur le sujet "3D patterning"
Foam Patterning and Construction Techniques : Turning 2D Designs into 3D Shapes. Taylor & Francis Group, 2016.
Trouver le texte intégralMcClung, Mary. Foam Patterning and Construction Techniques : Turning 2D Designs into 3D Shapes. Taylor & Francis Group, 2016.
Trouver le texte intégralChapitres de livres sur le sujet "3D patterning"
Wang, D. Z., Mohan J. Edirisinghe et S. N. Jayasinghe. « A Novel 3D Patterning Technique for Forming Advanced Ceramics ». Dans Key Engineering Materials, 977–79. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.977.
Texte intégralTsougeni, Katerina, Kosmas Ellinas, George Koukouvinos, Panagiota S. Petrou, Angeliki Tserepi, Sotirios E. Kakabakos et Evangelos Gogolides. « 3D Plasma Nanotextured® Polymeric Surfaces for Protein or Antibody Arrays, and Biomolecule and Cell Patterning ». Dans Methods in Molecular Biology, 27–40. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7792-5_3.
Texte intégralZehbe, Rolf, et Kerstin Zehbe. « Nervous Tissue and Neuronal Cells : Patterning by Electrophoresis for Highly Resolved 3D Images in Tissue Engineering ». Dans Advanced High-Resolution Tomography in Regenerative Medicine, 205–15. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00368-5_14.
Texte intégralÖzdemir, E., L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood et A. Menges. « Towards Self-shaping Metamaterial Shells : ». Dans Proceedings of the 2021 DigitalFUTURES, 275–85. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_26.
Texte intégral« ADVANCED 3D MANUFACTURING : MICRO & ; NANOSCALE PATTERNING ». Dans Lasers in 3D Printing and Manufacturing, 175–96. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789814656436_0006.
Texte intégralGrigoryan, Bagrat, et Jordan S. Miller. « 3D Printing and Patterning Vasculature in Engineered Tissues ». Dans 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine, 171–89. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-800547-7.00008-4.
Texte intégralActes de conférences sur le sujet "3D patterning"
Gang, Oleg. « Programmable assembly of organized 3D nanosystems ». Dans Novel Patterning Technologies 2021, sous la direction de Eric M. Panning et J. Alexander Liddle. SPIE, 2021. http://dx.doi.org/10.1117/12.2584574.
Texte intégralDelly, Evan, Nicholas Liverman, Trevor Fregin, Lynelle Haugabrook et Collin Moore. « 3D micro-mirror lithography for mass production ». Dans Novel Patterning Technologies 2018, sous la direction de Eric M. Panning et Martha I. Sanchez. SPIE, 2018. http://dx.doi.org/10.1117/12.2300951.
Texte intégralBathe, Mark. « Nanoscale 2D and 3D patterning using programmed DNA assemblies ». Dans Novel Patterning Technologies 2021, sous la direction de Eric M. Panning et J. Alexander Liddle. SPIE, 2021. http://dx.doi.org/10.1117/12.2584969.
Texte intégralKueenburg, Bernhard, et Peter Gruber. « UpNano : a new horizon in high-resolution 2PP 3D-printing ». Dans Novel Patterning Technologies 2021, sous la direction de Eric M. Panning et J. Alexander Liddle. SPIE, 2021. http://dx.doi.org/10.1117/12.2585298.
Texte intégralLiu, Tsu-Jae King. « Sustaining the silicon revolution : from 3D transistors to 3D integration (Presentation Recording) ». Dans Advances in Patterning Materials and Processes XXXII, sous la direction de Thomas I. Wallow et Christoph K. Hohle. SPIE, 2015. http://dx.doi.org/10.1117/12.2230912.
Texte intégralNouri, Lamia, Nicolas Possémé, Stéfan Landis, Frédéric Milesi et Frédéric-Xavier Gaillard. « New 3D structuring process for non-integrated circuit related technologies (Conference Presentation) ». Dans Emerging Patterning Technologies 2017, sous la direction de Christopher Bencher et Joy Y. Cheng. SPIE, 2017. http://dx.doi.org/10.1117/12.2258603.
Texte intégralRawlings, Colin D., Tero S. Kulmala, Martin Spieser, Felix Holzner, Thomas Glinsner, Arne Schleunitz et Franziska Bullerjahn. « Single-nanometer accurate 3D nanoimprint lithography with master templates fabricated by NanoFrazor lithography ». Dans Novel Patterning Technologies 2018, sous la direction de Eric M. Panning et Martha I. Sanchez. SPIE, 2018. http://dx.doi.org/10.1117/12.2305905.
Texte intégralGeorge, Derosh, Marc J. Madou et Edwin A. Peraza Hernandez. « Practical fabrication methods for 3D origami structures from 2D films patterned via photolithography ». Dans Novel Patterning Technologies 2021, sous la direction de Eric M. Panning et J. Alexander Liddle. SPIE, 2021. http://dx.doi.org/10.1117/12.2582973.
Texte intégralToombs, Joseph, et Hayden K. Taylor. « Design of a tomographic projection lithography process for roll-to-roll fabrication of 3D microstructures ». Dans Novel Patterning Technologies 2021, sous la direction de Eric M. Panning et J. Alexander Liddle. SPIE, 2021. http://dx.doi.org/10.1117/12.2584009.
Texte intégralRumpf, Raymond C., Pradeep Srinivasan et Eric G. Johnson. « Near-Field Nano-Patterning of 3D Structures ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2005. http://dx.doi.org/10.1364/fio.2005.fws2.
Texte intégral