Littérature scientifique sur le sujet « 3D foam electrodes »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « 3D foam electrodes ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "3D foam electrodes"
Siwek, K. I., S. Eugénio, I. Aldama, J. M. Rojo, J. M. Amarilla, A. P. C. Ribeiro, T. M. Silva et M. F. Montemor. « Tailored 3D Foams Decorated with Nanostructured Manganese Oxide for Asymmetric Electrochemical Capacitors ». Journal of The Electrochemical Society 169, no 2 (1 février 2022) : 020511. http://dx.doi.org/10.1149/1945-7111/ac4d66.
Texte intégralVainoris, Modestas, Henrikas Cesiulis et Natalia Tsyntsaru. « Metal Foam Electrode as a Cathode for Copper Electrowinning ». Coatings 10, no 9 (25 août 2020) : 822. http://dx.doi.org/10.3390/coatings10090822.
Texte intégralOehm, Jonas, Marc Kamlah et Volker Knoblauch. « Ultra-Thick Cathodes for High-Energy Lithium-Ion Batteries Based on Aluminium Foams—Microstructural Evolution during Densification and Its Impact on the Electrochemical Properties ». Batteries 9, no 6 (31 mai 2023) : 303. http://dx.doi.org/10.3390/batteries9060303.
Texte intégralAnsari, Sajid Ali, Hicham Mahfoz Kotb et Mohamad M. Ahmad. « Wrinkle-Shaped Nickel Sulfide Grown on Three-Dimensional Nickel Foam : A Binder-Free Electrode Designed for High-Performance Electrochemical Supercapacitor Applications ». Crystals 12, no 6 (25 mai 2022) : 757. http://dx.doi.org/10.3390/cryst12060757.
Texte intégralFerriday, Thomas B., Suhas Nuggehalli Sampathkumar, Peter Hugh Middleton, Jan Van Herle et Mohan Lal Kolhe. « How Acid Washing Nickel Foam Substrates Improves the Efficiency of the Alkaline Hydrogen Evolution Reaction ». Energies 16, no 5 (21 février 2023) : 2083. http://dx.doi.org/10.3390/en16052083.
Texte intégralArinova, Anar, et Arailym Nurpeissova. « Electrophoretic Deposition of Polyethylene Oxide-Based Gel-Polymer Electrolyte for 3D Lithium-Ion Batteries ». ECS Meeting Abstracts MA2023-02, no 23 (22 décembre 2023) : 3280. http://dx.doi.org/10.1149/ma2023-02233280mtgabs.
Texte intégralKim, Kookhan, Ji-Yong Eom, Jongmin Kim et Yang Soo Kim. « 3D Lithium-Metal Anode for High-Energy Lithium-Metal Batteries ». ECS Meeting Abstracts MA2024-02, no 7 (22 novembre 2024) : 947. https://doi.org/10.1149/ma2024-027947mtgabs.
Texte intégralSliozberg, Kirill, Yauhen Aniskevich, Ugur Kayran, Justus Masa et Wolfgang Schuhmann. « CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction ». Zeitschrift für Physikalische Chemie 234, no 5 (26 mai 2020) : 995–1019. http://dx.doi.org/10.1515/zpch-2019-1466.
Texte intégralNawaz, Bushra, Ghulam Ali, Muhammad Obaid Ullah, Sarish Rehman et Fazal Abbas. « Investigation of the Electrochemical Properties of Ni0.5Zn0.5Fe2O4 as Binder-Based and Binder-Free Electrodes of Supercapacitors ». Energies 14, no 11 (4 juin 2021) : 3297. http://dx.doi.org/10.3390/en14113297.
Texte intégralCheng, Guanhua, Qingguo Bai, Conghui Si, Wanfeng Yang, Chaoqun Dong, Hao Wang, Yulai Gao et Zhonghua Zhang. « Nickel oxide nanopetal-decorated 3D nickel network with enhanced pseudocapacitive properties ». RSC Advances 5, no 20 (2015) : 15042–51. http://dx.doi.org/10.1039/c4ra15556d.
Texte intégralThèses sur le sujet "3D foam electrodes"
Adjez, Yanis. « Stimulation of Electrocatalytic Reduction of Nitrate by Immobilized Ionic Liquids ». Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS337.pdf.
Texte intégralNitrate pollution in water represents a significant environmental challenge and is one of the top ten most common water quality violations worldwide. This challenge offers an opportunity for the circular economy as nitrate electrolysis has been suggested as a sustainable method for valorization of nitrate-contaminated effluents by simultaneous decentralized ammonia production (a commodity chemical). In particular, the electrochemical reduction of nitrate (ERN) is a promising and sustainable strategy for addressing the critical issue of nitrate pollution in water sources. Several earth abundant materials such as copper and tin have been suggested as suitable electrocatalytic materials for ERN. Mostly fundamental electrochemical studies under potentiostatic conditions are reported so far. In contrast, this study presents ERN evaluation under galvanostatic conditions for achieving more representative operational conditions for larger engineered systems. However, this provokes the appearance of the concomitant hydrogen evolution reaction (HER), which takes place at a similar thermodynamic potential than ERN. Thus, faradaic efficiency for ERN significantly diminishes under realistic galvanostatic conditions due to the competition with HER. This project addresses this fundamental challenge in electrocatalysis and proposes a novel strategy based on the immobilization of imidazolium-based ionic molecules on the surface of the cathode to selectively inhibit HER and enhance ERN. Notably, this research explores a range of hybrid cathode materials, including 2D plate and 3D foam carbon- and metal-based electrodes, which are recognized for their potential in real world applications for ERN. The success of the ionic organic layer immobilization onto the cathodes was confirmed through different physicochemical characterization techniques and subsequent electrocatalytic activity and selectivity evaluation, which demonstrated an enhanced selectivity and faradaic efficiency for ammonia production on hybrid cathodes twice as much as the bare electrode material for ERN under the same experimental conditions
Chapitres de livres sur le sujet "3D foam electrodes"
Jena, Debdeep. « Electrons in the Quantum World ». Dans Quantum Physics of Semiconductor Materials and Devices, 83–122. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198856849.003.0005.
Texte intégralSchweitzer, George K., et Lester L. Pesterfield. « The V–Cr–Mn Group ». Dans The Aqueous Chemistry of the Elements. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780195393354.003.0016.
Texte intégralKrishnan, Kannan M. « Transmission and Analytical Electron Microscopy ». Dans Principles of Materials Characterization and Metrology, 552–692. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198830252.003.0009.
Texte intégralSchweitzer, George K., et Lester L. Pesterfield. « The Fe–Co–Ni Group ». Dans The Aqueous Chemistry of the Elements. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780195393354.003.0017.
Texte intégralActes de conférences sur le sujet "3D foam electrodes"
Dai, Rui, Beomjin Kwon et Qiong Nian. « A Novel Packing Hollow Dodecahedron Model to Study the Mechanical and Thermal Properties of Stocastic Metallic Foams ». Dans ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-60520.
Texte intégralChytanya Chinnam, Krishna, Seyed Sepehr Moeini, Simonetta Tuti et Giulia Lanzara. « Annealed Pyrolytic Graphitic Carbon Electrodes for Piezoelectric Acoustic Nanoweb ». Dans ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-111178.
Texte intégralBerhan, L., C. W. Wang et A. M. Sastry. « Damage Initiation in Bonded Particulate Networks : 3D Simulations ». Dans ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/ad-25304.
Texte intégralGunda, Naga Siva Kumar, et Sushanta K. Mitra. « Quantification of Microstructural and Transport Properties of Solid Oxide Fuel Cells From Three-Dimensional Physically Realistic Network Structures ». Dans ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54929.
Texte intégralFan, Jinsheng, Brittany Newell, Jose Garcia, Richard M. Voyles et Robert A. Nawrocki. « Contact-Poling Enhanced, Fully 3D Printed PVdF Pressure Sensors : Towards 3D Printed Functional Materials ». Dans ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67832.
Texte intégralHisted, Rebecca, Justin Ngo, Omar A. Hussain, Chantel Lapins, Kam K. Leang, Yiliang Liao et Matteo Aureli. « Ionic Polymer Metal Composite Sensors With Engineered Interfaces (eIPMCs) : Compression Sensing Modeling and Experiments ». Dans ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3289.
Texte intégralGoncharova, Olga V. « Quasi-Zero-Dimensional Media Formed by Thin-Film Technique : Microstructure, Subpicosecond Optical Nonlinearities, Applications ». Dans International Conference on Ultrafast Phenomena. Washington, D.C. : Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.40.
Texte intégralEdgerton, Alex, Joseph Najem et Donald Leo. « A Hydrogel-Based Droplet Interface Lipid Bilayer Network ». Dans ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7580.
Texte intégralYafia, Mohamed, et Homayoun Najjaran. « The Effect of Changing the Gap Height on Droplet Deformation During Transport in Digital Microfluidics Systems ». Dans ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21296.
Texte intégralIshino, Yojiro, Naoki Hayashi, Yuta Ishiko, Ahmad Zaid Nazari, Kimihiro Nagase, Kazuma Kakimoto et Yu Saiki. « Schlieren 3D-CT Reconstruction of Instantaneous Density Distributions of Spark-Ignited Flame Kernels of Fuel-Rich Propane-Air Premixture ». Dans ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7423.
Texte intégral