Articles de revues sur le sujet « 1766-1840 »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : 1766-1840.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 19 meilleurs articles de revues pour votre recherche sur le sujet « 1766-1840 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Dickerson, Dennis C. « LIBERATION, WESLEYAN THEOLOGY AND EARLY AFRICAN METHODISM, 1766-1840 ». Wesley and Methodist Studies 3 (1 janvier 2011) : 109–20. http://dx.doi.org/10.2307/42909806.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dickerson, Dennis C. « LIBERATION, WESLEYAN THEOLOGY AND EARLY AFRICAN METHODISM, 1766-1840 ». Wesley and Methodist Studies 3 (1 janvier 2011) : 109–20. http://dx.doi.org/10.5325/weslmethstud.3.2011.0109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pérol, Lucette. « De l'Auvergne à Odessa : la destinée de Jeudy-Dugour (1766-1840) ». Dix-huitième Siècle 25, no 1 (1993) : 355–68. http://dx.doi.org/10.3406/dhs.1993.1933.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Paul, Lissa. « A place to call home : Journeys of Eliza Fenwick (1766–1840) ». Book 2.0 8, no 1 (1 septembre 2018) : 29–41. http://dx.doi.org/10.1386/btwo.8.1-2.29_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Walusinski, Olivier. « Antoine-Marie Chambeyron (1797–1851) : a forgotten disciple of Jean-Etienne Esquirol (1772–1840) ». History of Psychiatry 28, no 3 (10 avril 2017) : 344–51. http://dx.doi.org/10.1177/0957154x17704602.

Texte intégral
Résumé :
Antoine-Marie Chambeyron (1797–1851) was a disciple of Jean-Etienne Esquirol (1772–1840) that history forgot, undoubtedly because he made no original contribution to psychiatric nosography. In 1827, his interest in the medical-legal status of the insane led him to translate into French and annotate the first medical-legal psychiatric treatise ever published, which was the work of the German philosopher Johann Christoph Hoffbauer (1766–1827). His translation played a role in shaping the French Law of 1838, the first piece of modern legislation aimed at protecting the rights of mental patients and limiting the State’s power to confine them arbitrarily. Chambeyron is among the least-cited contributors to the prestigious work of nineteenth-century French alienists.
Styles APA, Harvard, Vancouver, ISO, etc.
6

RODRÍGUEZ-BRAVO, Javier, Adriana IGLESIAS-VÁSQUEZ, Jean François RENNO, Fernando ALCANTARA-BOCANEGRA et Carmen Rosa GARCÍA-DÁVILA. « VARIABILIDAD GENÉTICA DE Pseudoplatystoma fasciatum (Linnaeus, 1766) Y Pseudoplatystoma tigrinum (Valenciennes, 1840), EN LA AMAZONÍA PERUANA ». Folia Amazónica 16, no 1-2 (31 décembre 2007) : 145. http://dx.doi.org/10.24841/fa.v16i1-2.284.

Texte intégral
Résumé :
La variabilidad genética de Pseudoplatystoma fasciatum y P. tigrinum fue estimada en tres localidades de la Amazonía peruana mediante las técnicas "Exon - Primed Intron - Croosing" (EPIC) y "Restriction Fragment Length Polymorphism (RFLP). Un total de 102 especímenes fueron analizados con tres sistemas intrónicos (Ck, RPEX y PmOPSI). El intron PmOPSI es diagnóstico para diferenciar ambas especies. Los tres intrones fueron digeridos con enzimas de restricción para analizar la variabilidad de secuencia observando el polimorfismo de longitud de los fragmentos de restricción (RFLP). Los resultados del Análisis Factorial de Correspondencia (AFC), índice de fijación (Fst= 0.43) y distancia genética (D = 0.76) entre ambas especies corroboraron la identidad genética de las mismas, sin híbridos naturales observado entre ellas. A nivel intraespecífico, los resultados encontrados por AFC, Fst ,y D mostraron en P.fasciatum como en P. tigrinum que la variabilidad genética observada no estás relacionada con la ubicación geográfica de las poblaciones. Los resultados podrían ser explicados por el caráctermigratorio y ladistribución de estas especies enlacuencaAmazónica
Styles APA, Harvard, Vancouver, ISO, etc.
7

deVries, Jacqueline R. « Timothy Whelan, Other British Voices : Women, Poetry, and Religion, 1766–1840 (Palgrave Macmillan, 2015) xiii+265 $90.00 ». Wordsworth Circle 47, no 4 (septembre 2016) : 182–84. http://dx.doi.org/10.1086/twc47040182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Adang, Lucas K., Sonnie J. Oniye, Augustine U. Ezealor, Paul A. Abdu et Joseph O. Ajanusi. « Ectoparasites of the Laughing Dove Streptopelia senegalensis (Linnaeus, 1766) (Aves : Columbidae) in Zaria, Nigeria ». Lundiana : International Journal of Biodiversity 9, no 1 (15 juillet 2009) : 67–71. http://dx.doi.org/10.35699/2675-5327.2008.23216.

Texte intégral
Résumé :
A survey of ectoparasites of the Laughing Dove (Streptopelia senegalensis Linnaeus, 1766) was carried out in Zaria, Nigeria, to determine the prevalence, intensity and mean intensity of infestation. A total of 382 (231 males and 151 females) doves trapped from different locations in Zaria, Nigeria, were examined through plumage brushing. Eighty-eight (23.0%) of the birds were infested by the following six species of ectoparasites: lice – 32 (8.4%) Menopon gallinae Linnaeus, 1758, 37 (9.7%) Columbicola columbae Linnaeus, 1758, and 18(4.7%) Goniodes sp.; flies – 19 (5.0%) Pseudolynchia canariensis Macquart, 1840; ticks – 12 (3.1%) Argas persicus Oken, 1818; and mite: 1 (0.23%) Dermanyssus gallinae (Degeer, 1778). The frequency of single infestations (59 – 15.4%), was higher than that of double (27 – 7.1%) and triple (2 – 0.52%) infestations, though the difference was not statistically significant (p > 0.05). The males had a higher prevalence (55 – 23.8%) than the females (33 – 21.9%). However, this difference was also not significant (p > 0.05). Ectoparasites were collected from the birds through out the year, with highest prevalence (60.0%) in November. The difference between the prevalence of ectoparasites in the wet (23.5%) and the dry seasons (22.6%) was also not significant (p > 0.05). The implications and significance of the results are discussed. Keywords: lice, flies, ticks, mites, prevalence
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chi-Espínola, Ariel A., M. Eugenia Vega-Cendejas et J. Mirella Hernández De Santillana. « Length–weight relations of 39 continental-shelf and deep-water fishes (Actinopterygii) from northwestern Gulf of México ». Acta Ichthyologica et Piscatoria 53 (23 mai 2023) : 59–64. http://dx.doi.org/10.3897/aiep.53.101788.

Texte intégral
Résumé :
Fishes from the northwestern Gulf of Mexico were surveyed during four oceanographic campaigns (February and October 2016, June and September 2017) using a shrimp trawl net and benthic sled net in 20 locations at depths that ranged from 43 to 3608 m. Length–weight relations (LWR) were estimated for 39 fish species (in alphabetical order): Bembrops gobioides (Goode, 1880); Centropristis philadelphica (Linnaeus, 1758); Chauliodus sloani Bloch et Schneider, 1801; Chlorophthalmus agassizi Bonaparte, 1840; Chloroscombrus chrysurus (Linnaeus, 1766); Citharichthys spilopterus Günther, 1862; Coelorinchus caelorhincus (Risso, 1810); Cyclopsetta chittendeni Bean, 1895; Cyclothone alba Brauer, 1906; Cyclothone braueri Jespersen et Tåning, 1926; Cyclothone pseudopallida Mukhacheva, 1964; Dibranchus atlanticus Peters, 1876; Epigonus pandionis (Goode et Bean, 1881); Fowlerichthys radiosus (Garman, 1896); Laemonema goodebeanorum Meléndez et Markle, 1997; Lagocephalus laevigatus (Linnaeus, 1766); Lepophidium brevibarbe (Cuvier, 1829); Lutjanus campechanus (Poey, 1860); Malacocephalus occidentalis Goode et Bean, 1885; Merluccius albidus (Mitchill, 1818); Micropogonias furnieri (Desmarest, 1823); Monolene sessilicauda Goode, 1880; Ogcocephalus declivirostris Bradbury, 1980; Peristedion greyae Miller, 1967; Porichthys plectrodon Jordan et Gilbert, 1882; Prionotus longispinosus Teague, 1951; Prionotus paralatus Ginsburg, 1950; Pristipomoides aquilonaris (Goode et Bean, 1896); Rhynchoconger flavus (Goode et Bean, 1896); Sardinella aurita Valenciennes, 1847; Saurida brasiliensis Norman, 1935; Sternoptyx diaphana Hermann, 1781; Symphurus diomedeanus (Goode et Bean, 1885); Synagrops bellus (Goode et Bean, 1896); Trachurus lathami Nichols, 1920; Trichiurus lepturus Linnaeus, 1758; Trichopsetta ventralis (Goode et Bean, 1885); Urophycis cirrata (Goode et Bean, 1896); Zalieutes mcgintyi (Fowler, 1952). The fish species studied represented 28 families (in alphabetical order): Antennariidae, Batrachoididae, Bembropidae, Bothidae, Carangidae, Chlorophthalmidae, Congridae, Cyclopsettidae, Cynoglossidae, Dorosomatidae, Epigonidae, Gonostomatidae, Lutjanidae, Macrouridae, Merlucciidae, Moridae, Ogcocephalidae, Ophidiidae, Phycidae, Sciaenidae, Serranidae, Sternoptychidae, Stomiidae, Synagropidae, Synodontidae, TetraodontidaeTrichiuridae, Triglidae. A new maximum standard length (SL) was recorded for Cyclothone alba, C. braueri, C. pseudopallida, and Lepophidium brevibarbe. A positive allometric growth was reported in nine species, negative allometric growth in 16 species, and isometric growth in 14 species.
Styles APA, Harvard, Vancouver, ISO, etc.
10

DITCHFIELD, G. M. « Other British Voices : Women, Poetry, and Religion, 1766-1840. By Timothy Whelan. Palgrave Macmillan. 2015. xiii + 265 pp. £55.00. » History 101, no 347 (22 septembre 2016) : 616–17. http://dx.doi.org/10.1111/1468-229x.12252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Лебедева, Н. В. « РЕДКИЕ ВИДЫ И КОНЦЕНТРАЦИИ ПТИЦ В РАЙОНЕ ТЕМРЮКА (ВОСТОЧНОЕ ПРИАЗОВЬЕ) В 2020–2021 гг., "Наука юга России" ». Science in the South of Russia, no 1 (2022) : 62–71. http://dx.doi.org/10.7868/s25000640220108.

Texte intégral
Résumé :
В результате орнитологических наблюдений в районе Темрюка (Восточное Приазовье) в разные сезоны 2020–2021 гг. получены новые сведения о пребывании 17 видов и подвидов редких и подлежащих охране птиц: западная чернозобая гагара Gavia arctica arctica (Linnaeus, 1758), кудрявый пеликан Pelecanus crispus Bruch, 1832, малый баклан Phalacrocorax pygmaeus (Pallas, 1773), желтая цапля Ardeola ralloides (Scopoli, 1769), каравайка Plegadis falcinellus (Linnaeus, 1766), орлан-белохвост Haliaetus albicilla (Linnaeus, 1758), кобчик Falco vespertinus Linnaeus, 1766, серый журавль Grus grus (Linnaeus, 1758), ходулочник Himantopus himantopus (Linnaeus, 1758), материковый кулик-сорока Haematopus ostralegus longipes Buturlin, 1910, большой веретенник Limosa limosa (Linnaeus, 1758), черноголовый хохотун Larus ichthyaetus Pallas, 1773, черноголовая чайка Larus melanocephalus Temminck, 1820, морской голубок Larus genei Br me, 1840, пестроносая крачка Thalasseus sandvicensis (Latham, 1787), чеграва Hydroprogne caspia (Pallas, 1770), малая крачка Sterna albifrons Pallas, 1764. Обнаружены смешанные колонии белощекой Chlidonias hybridus (Pallas, 1811), речной Sterna hirundo Linnaeus, 1758 крачек и чомги Podiceps cristatus (Linnaeus, 1758). В середине марта 2021 г. в связи с резким понижением температуры в регионе на лиманах дельты Кубани сформировались крупные скопления гусеобразных, а также кудрявых пеликанов, больших бакланов Phalacrocorax carbo (Linnaeus, 1758) и других видов, задержавшихся на миграции. В начале сентября 2021 г. на побережье залива, на песчаных косах и островках обнаружены скопления морского голубка, пестроносой крачки, в которых также были большой баклан, хохотунья Larus cachinnans Pallas, 1811, озерная чайка Larus ridibundus Linnaeus, 1766, чеграва и речная крачка. В это время на лиманах начала концентрироваться лысуха Fulica atra Linnaeus, 1758. Разнообразие местообитаний в районе Темрюкского залива является ценным природным ресурсом, который поддерживает видовое разнообразие птиц в разные сезоны года. В миграционный период песчаные косы и острова являются прибежищем перелетных птиц и способствуют поддержанию численности голенастых, ржанкообразных и др. Морские мелководные заливы – кормовая стация водоплавающих и морских птиц, а лиманы являются местом гнездования, кормежки и отдыха в миграционный период для многочисленных водоплавающих птиц, поганок, цапель, лебедей, гусей, уток, куликов, чайковых птиц. В летний период лиманы Большой Червонный, Малый Червонный и Долгий имеют хорошо развитые «луга» из подводной растительности, которые служат стацией гнездования белощекой, речной крачек и чомг. Во внегнездовое время на большинстве обследованных лиманов формируются скопления птиц. Особую роль играет сельскохозяйственная отрасль рисосеяния с системой оросительных каналов, заросших тростниками, и залитыми водой рисовыми чеками, которые привлекают многие виды птиц, в том числе ходулочника и каравайку. Некоторые из видов, подлежащих охране, в частности желтая цапля и каравайка, проявляют относительную устойчивость к фактору беспокойства в рекреационных зонах, вблизи автомобильных дорог.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Felicetti, Denise, Chrystian Aparecido Grillo Haerter, Lucas Baumgärtner, Leonardo Marcel Paiz, Daniel Rodrigues Blanco, Eliana Feldberg, Vladimir Pavan Margarido, Maelin Silva et Roberto Laridondo Lui. « Cytogenetic analysis of sympatric Trachelyopterus Valenciennes 1840 (Siluriformes, Auchenipteridae) species reveals highly conserved karyotypes despite the geographic distance ». Caryologia 76, no 2 (31 décembre 2023) : 41–50. http://dx.doi.org/10.36253/caryologia-2284.

Texte intégral
Résumé :
Trachelyopterus Valenciennes 1840 species exhibit striking morphological and cytogenetic similarities, leading to persistent taxonomic challenges. This research focuses on Trachelyopterus galeatus Linnaeus 1766 and Trachelyopterus porosus Eigenmann & Eigenmann 1888, both widely distributed throughout South America and often sympatric, facilitating cytogenetic comparisons. These taxonomic entities are noteworthy for their extensive geographical ranges within the genus. We examined two populations of T. galeatus and T. porosus collected from sympatric sites in the Amazon and Pantanal regions. Both species had the same diploid number and simple Ag-NORs. The 18S rDNA sites were found in only one subtelocentric chromosome pair. Meanwhile, the 5S rDNA sites were found on two distinct chromosomal pairs, with differences in the chromosomal morphology and site position among the species, constituting the most efficient chromosomal marker to distinguish them. The 5S rDNA pattern differed between species but remained consistent between populations of the same species. Minor differences were observed between the T. galeatus populations, probably related to chromosomal rearrangements. In contrast, despite the considerable geographical distance, no cytogenetic differences were detected among the T. porosus populations. Overall, the congruence between cytogenetic and morphological characteristics, combined with our findings from sympatric samples and existing data from geographically separated populations of Trachelyopterus, indicates that the cytogenetic is a promising tool for species differentiation and for delving into the cytotaxonomic and evolutionary aspects of Auchenipteridae.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kasper, Carlos B., Fábio D. Mazim, José B. G. Soares, Tadeu G. de Oliveira et Marta E. Fabián. « Composição e abundância relativa dos mamíferos de médio e grande porte no Parque Estadual do Turvo, Rio Grande do Sul, Brasil ». Revista Brasileira de Zoologia 24, no 4 (décembre 2007) : 1087–100. http://dx.doi.org/10.1590/s0101-81752007000400028.

Texte intégral
Résumé :
Entre janeiro de 2005 e dezembro de 2006 foram realizados estudos sobre a composição e abundância relativa dos mamíferos de médio e grande porte do Parque Estadual do Turvo. Para tanto, foram utilizados registros de armadilhas fotográficas além de visualizações e dados sobre presença e ausência de pegadas ao longo de transectos pré-determinados. No total foram registradas 29 espécies de mamíferos de médio e grande porte, das quais Dasyprocta azarae Lichtenstein, 1823 e Sylvilagus brasiliensis (Linnaeus, 1758) foram as espécies com maior número de registros. No que se refere a Carnivora, Nasua nasua (Linnaeus, 1766) e Leopardus pardalis (Linnaeus, 1758) tiveram os maiores índices de registro, enquanto Leopardus tigrinus (Schreber, 1775), Leopardus wiedii (Schinz, 1782) e Galictis cuja (Molina 1782) os menores. Entre os ungulados apenas Pecari tajacu (Linnaeus, 1758) mostrou-se freqüente, sendo a quarta espécie em número de registros. Algumas espécies comuns em outros ambientes apresentaram baixos índices de registro no Parque Estadual do Turvo, tais como Dasypus novemcinctus Linnaeus, 1758 e Didelphis albiventris Lund, 1840. Finalmente, constata-se a provável extinção local de Tayassu pecari (Link, 1795), uma vez que não foram obtidos registros de sua presença ao longo do estudo. A conservação dos mamíferos de médio e grande porte do Parque está fortemente associada à preservação do "Corredor Verde de Misiones", que provavelmente representa uma área fonte para diversas espécies.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Houpt, N. S. B., A. P. H. Bose, T. Warriner, N. A. W. Brown, J. S. Quinn et S. Balshine. « Foraging behaviour of four avian species feeding on the same temporarily available prey ». Canadian Journal of Zoology 98, no 9 (septembre 2020) : 581–90. http://dx.doi.org/10.1139/cjz-2019-0286.

Texte intégral
Résumé :
Low tide events provide terrestrial predators with ephemeral, but predictable and abundant sources of prey. Understanding the relationships between tidal cycles, prey availability, and predator abundances is vital to characterizing the ecological relationship between terrestrial predators and their marine prey. Here, we describe the foraging tactics of four common bird species in western North America — Bald Eagles (Haliaeetus leucocephalus (Linnaeus, 1766)), Great Blue Herons (Ardea herodias Linnaeus, 1758), Glaucous-winged Gulls (Larus glaucescens J.F. Naumann, 1840), and Northwestern Crows (Corvus caurinus S.F. Baird, 1858) — feeding on the same transiently accessible fish species, the plainfin midshipman (Porichthys notatus Girard, 1854). We conducted avian predator surveys at breeding beaches of plainfin midshipman across multiple years and sites. Our census data showed that Bald Eagle and Great Blue Heron abundances were higher when the tides were receding than incoming at Ladysmith Harbour, British Columbia, Canada, but the opposite trend was found for total predator abundance at a second site in Dabob Bay, Washington, USA. Glaucous-winged Gull abundance decreased over the course of the plainfin midshipman breeding season (April–July), whereas the abundances of the other three species remained stable. Our data suggest that the foraging activities of birds in the intertidal zones of western North America are linked with the tidal cycles, corresponding to periods of high prey vulnerability.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Bouchard, Patrice, Yves Bousquet, Anthony E. Davies et Chenyang Cai. « On the nomenclatural status of type genera in Coleoptera (Insecta) ». ZooKeys 1194 (13 mars 2024) : 1–981. http://dx.doi.org/10.3897/zookeys.1194.106440.

Texte intégral
Résumé :
More than 4700 nominal family-group names (including names for fossils and ichnotaxa) are nomenclaturally available in the order Coleoptera. Since each family-group name is based on the concept of its type genus, we argue that the stability of names used for the classification of beetles depends on accurate nomenclatural data for each type genus. Following a review of taxonomic literature, with a focus on works that potentially contain type species designations, we provide a synthesis of nomenclatural data associated with the type genus of each nomenclaturally available family-group name in Coleoptera. For each type genus the author(s), year of publication, and page number are given as well as its current status (i.e., whether treated as valid or not) and current classification. Information about the type species of each type genus and the type species fixation (i.e., fixed originally or subsequently, and if subsequently, by whom) is also given. The original spelling of the family-group name that is based on each type genus is included, with its author(s), year, and stem. We append a list of nomenclaturally available family-group names presented in a classification scheme. Because of the importance of the Principle of Priority in zoological nomenclature, we provide information on the date of publication of the references cited in this work, when known. Several nomenclatural issues emerged during the course of this work. We therefore appeal to the community of coleopterists to submit applications to the International Commission on Zoological Nomenclature (henceforth “Commission”) in order to permanently resolve some of the problems outlined here. The following changes of authorship for type genera are implemented here (these changes do not affect the concept of each type genus): CHRYSOMELIDAE: Fulcidax Crotch, 1870 (previously credited to “Clavareau, 1913”); CICINDELIDAE: Euprosopus W.S. MacLeay, 1825 (previously credited to “Dejean, 1825”); COCCINELLIDAE: Alesia Reiche, 1848 (previously credited to “Mulsant, 1850”); CURCULIONIDAE: Arachnopus Boisduval, 1835 (previously credited to “Guérin-Méneville, 1838”); ELATERIDAE: Thylacosternus Gemminger, 1869 (previously credited to “Bonvouloir, 1871”); EUCNEMIDAE: Arrhipis Gemminger, 1869 (previously credited to “Bonvouloir, 1871”), Mesogenus Gemminger, 1869 (previously credited to “Bonvouloir, 1871”); LUCANIDAE: Sinodendron Hellwig, 1791 (previously credited to “Hellwig, 1792”); PASSALIDAE: Neleides Harold, 1868 (previously credited to “Kaup, 1869”), Neleus Harold, 1868 (previously credited to “Kaup, 1869”), Pertinax Harold, 1868 (previously credited to “Kaup, 1869”), Petrejus Harold, 1868 (previously credited to “Kaup, 1869”), Undulifer Harold, 1868 (previously credited to “Kaup, 1869”), Vatinius Harold, 1868 (previously credited to “Kaup, 1869”); PTINIDAE: Mezium Leach, 1819 (previously credited to “Curtis, 1828”); PYROCHROIDAE: Agnathus Germar, 1818 (previously credited to “Germar, 1825”); SCARABAEIDAE: Eucranium Dejean, 1833 (previously “Brullé, 1838”). The following changes of type species were implemented following the discovery of older type species fixations (these changes do not pose a threat to nomenclatural stability): BOLBOCERATIDAE: Bolbocerus bocchus Erichson, 1841 for Bolbelasmus Boucomont, 1911 (previously Bolboceras gallicum Mulsant, 1842); BUPRESTIDAE: Stigmodera guerinii Hope, 1843 for Neocuris Saunders, 1868 (previously Anthaxia fortnumi Hope, 1846), Stigmodera peroni Laporte & Gory, 1837 for Curis Laporte & Gory, 1837 (previously Buprestis caloptera Boisduval, 1835); CARABIDAE: Carabus elatus Fabricius, 1801 for Molops Bonelli, 1810 (previously Carabus terricola Herbst, 1784 sensu Fabricius, 1792); CERAMBYCIDAE: Prionus palmatus Fabricius, 1792 for Macrotoma Audinet-Serville, 1832 (previously Prionus serripes Fabricius, 1781); CHRYSOMELIDAE: Donacia equiseti Fabricius, 1798 for Haemonia Dejean, 1821 (previously Donacia zosterae Fabricius, 1801), Eumolpus ruber Latreille, 1807 for Euryope Dalman, 1824 (previously Cryptocephalus rubrifrons Fabricius, 1787), Galeruca affinis Paykull, 1799 for Psylliodes Latreille, 1829 (previously Chrysomela chrysocephala Linnaeus, 1758); COCCINELLIDAE: Dermestes rufus Herbst, 1783 for Coccidula Kugelann, 1798 (previously Chrysomela scutellata Herbst, 1783); CRYPTOPHAGIDAE: Ips caricis G.-A. Olivier, 1790 for Telmatophilus Heer, 1841 (previously Cryptophagus typhae Fallén, 1802), Silpha evanescens Marsham, 1802 for Atomaria Stephens, 1829 (previously Dermestes nigripennis Paykull, 1798); CURCULIONIDAE: Bostrichus cinereus Herbst, 1794 for Crypturgus Erichson, 1836 (previously Bostrichus pusillus Gyllenhal, 1813); DERMESTIDAE: Dermestes trifasciatus Fabricius, 1787 for Attagenus Latreille, 1802 (previously Dermestes pellio Linnaeus, 1758); ELATERIDAE: Elater sulcatus Fabricius, 1777 for Chalcolepidius Eschscholtz, 1829 (previously Chalcolepidius zonatus Eschscholtz, 1829); ENDOMYCHIDAE: Endomychus rufitarsis Chevrolat, 1835 for Epipocus Chevrolat, 1836 (previously Endomychus tibialis Guérin-Méneville, 1834); EROTYLIDAE: Ips humeralis Fabricius, 1787 for Dacne Latreille, 1797 (previously Dermestes bipustulatus Thunberg, 1781); EUCNEMIDAE: Fornax austrocaledonicus Perroud & Montrouzier, 1865 for Mesogenus Gemminger, 1869 (previously Mesogenus mellyi Bonvouloir, 1871); GLAPHYRIDAE: Melolontha serratulae Fabricius, 1792 for Glaphyrus Latreille, 1802 (previously Scarabaeus maurus Linnaeus, 1758); HISTERIDAE: Hister striatus Forster, 1771 for Onthophilus Leach, 1817 (previously Hister sulcatus Moll, 1784); LAMPYRIDAE: Ototreta fornicata E. Olivier, 1900 for Ototreta E. Olivier, 1900 (previously Ototreta weyersi E. Olivier, 1900); LUCANIDAE: Lucanus cancroides Fabricius, 1787 for Lissotes Westwood, 1855 (previously Lissotes menalcas Westwood, 1855); MELANDRYIDAE: Nothus clavipes G.-A. Olivier, 1812 for Nothus G.-A. Olivier, 1812 (previously Nothus praeustus G.-A. Olivier, 1812); MELYRIDAE: Lagria ater Fabricius, 1787 for Enicopus Stephens, 1830 (previously Dermestes hirtus Linnaeus, 1767); NITIDULIDAE: Sphaeridium luteum Fabricius, 1787 for Cychramus Kugelann, 1794 (previously Strongylus quadripunctatus Herbst, 1792); OEDEMERIDAE: Helops laevis Fabricius, 1787 for Ditylus Fischer, 1817 (previously Ditylus helopioides Fischer, 1817 [sic]); PHALACRIDAE: Sphaeridium aeneum Fabricius, 1792 for Olibrus Erichson, 1845 (previously Sphaeridium bicolor Fabricius, 1792); RHIPICERIDAE: Sandalus niger Knoch, 1801 for Sandalus Knoch, 1801 (previously Sandalus petrophya Knoch, 1801); SCARABAEIDAE: Cetonia clathrata G.-A. Olivier, 1792 for Inca Lepeletier & Audinet-Serville, 1828 (previously Cetonia ynca Weber, 1801); Gnathocera vitticollis W. Kirby, 1825 for Gnathocera W. Kirby, 1825 (previously Gnathocera immaculata W. Kirby, 1825); Melolontha villosula Illiger, 1803 for Chasmatopterus Dejean, 1821 (previously Melolontha hirtula Illiger, 1803); STAPHYLINIDAE: Staphylinus politus Linnaeus, 1758 for Philonthus Stephens, 1829 (previously Staphylinus splendens Fabricius, 1792); ZOPHERIDAE: Hispa mutica Linnaeus, 1767 for Orthocerus Latreille, 1797 (previously Tenebrio hirticornis DeGeer, 1775). The discovery of type species fixations that are older than those currently accepted pose a threat to nomenclatural stability (an application to the Commission is necessary to address each problem): CANTHARIDAE: Malthinus Latreille, 1805, Malthodes Kiesenwetter, 1852; CARABIDAE: Bradycellus Erichson, 1837, Chlaenius Bonelli, 1810, Harpalus Latreille, 1802, Lebia Latreille, 1802, Pheropsophus Solier, 1834, Trechus Clairville, 1806; CERAMBYCIDAE: Callichroma Latreille, 1816, Callidium Fabricius, 1775, Cerasphorus Audinet-Serville, 1834, Dorcadion Dalman, 1817, Leptura Linnaeus, 1758, Mesosa Latreille, 1829, Plectromerus Haldeman, 1847; CHRYSOMELIDAE: Amblycerus Thunberg, 1815, Chaetocnema Stephens, 1831, Chlamys Knoch, 1801, Monomacra Chevrolat, 1836, Phratora Chevrolat, 1836, Stylosomus Suffrian, 1847; COLONIDAE: Colon Herbst, 1797; CURCULIONIDAE: Cryphalus Erichson, 1836, Lepyrus Germar, 1817; ELATERIDAE: Adelocera Latreille, 1829, Beliophorus Eschscholtz, 1829; ENDOMYCHIDAE: Amphisternus Germar, 1843, Dapsa Latreille, 1829; GLAPHYRIDAE: Anthypna Eschscholtz, 1818; HISTERIDAE: Hololepta Paykull, 1811, Trypanaeus Eschscholtz, 1829; LEIODIDAE: Anisotoma Panzer, 1796, Camiarus Sharp, 1878, Choleva Latreille, 1797; LYCIDAE: Calopteron Laporte, 1838, Dictyoptera Latreille, 1829; MELOIDAE: Epicauta Dejean, 1834; NITIDULIDAE: Strongylus Herbst, 1792; SCARABAEIDAE: Anisoplia Schönherr, 1817, Anticheira Eschscholtz, 1818, Cyclocephala Dejean, 1821, Glycyphana Burmeister, 1842, Omaloplia Schönherr, 1817, Oniticellus Dejean, 1821, Parachilia Burmeister, 1842, Xylotrupes Hope, 1837; STAPHYLINIDAE: Batrisus Aubé, 1833, Phloeonomus Heer, 1840, Silpha Linnaeus, 1758; TENEBRIONIDAE: Bolitophagus Illiger, 1798, Mycetochara Guérin-Méneville, 1827. Type species are fixed for the following nominal genera: ANTHRIBIDAE: Decataphanes gracilis Labram & Imhoff, 1840 for Decataphanes Labram & Imhoff, 1840; CARABIDAE: Feronia erratica Dejean, 1828 for Loxandrus J.L. LeConte, 1853; CERAMBYCIDAE: Tmesisternus oblongus Boisduval, 1835 for Icthyosoma Boisduval, 1835; CHRYSOMELIDAE: Brachydactyla annulipes Pic, 1913 for Pseudocrioceris Pic, 1916, Cassida viridis Linnaeus, 1758 for Evaspistes Gistel, 1856, Ocnoscelis cyanoptera Erichson, 1847 for Ocnoscelis Erichson, 1847, Promecotheca petelii Guérin-Méneville, 1840 for Promecotheca Guérin- Méneville, 1840; CLERIDAE: Attelabus mollis Linnaeus, 1758 for Dendroplanetes Gistel, 1856; CORYLOPHIDAE: Corylophus marginicollis J.L. LeConte, 1852 for Corylophodes A. Matthews, 1885; CURCULIONIDAE: Hoplorhinus melanocephalus Chevrolat, 1878 for Hoplorhinus Chevrolat, 1878; Sonnetius binarius Casey, 1922 for Sonnetius Casey, 1922; ELATERIDAE: Pyrophorus melanoxanthus Candèze, 1865 for Alampes Champion, 1896; PHYCOSECIDAE: Phycosecis litoralis Pascoe, 1875 for Phycosecis Pascoe, 1875; PTILODACTYLIDAE: Aploglossa sallei Guérin-Méneville, 1849 for Aploglossa Guérin-Méneville, 1849, Colobodera ovata Klug, 1837 for Colobodera Klug, 1837; PTINIDAE: Dryophilus anobioides Chevrolat, 1832 for Dryobia Gistel, 1856; SCARABAEIDAE: Achloa helvola Erichson, 1840 for Achloa Erichson, 1840, Camenta obesa Burmeister, 1855 for Camenta Erichson, 1847, Pinotus talaus Erichson, 1847 for Pinotus Erichson, 1847, Psilonychus ecklonii Burmeister, 1855 for Psilonychus Burmeister, 1855. New replacement name: CERAMBYCIDAE: Basorus Bouchard & Bousquet, nom. nov. for Sobarus Harold, 1879. New status: CARABIDAE: KRYZHANOVSKIANINI Deuve, 2020, stat. nov. is given the rank of tribe instead of subfamily since our classification uses the rank of subfamily for PAUSSINAE rather than family rank; CERAMBYCIDAE: Amymoma Pascoe, 1866, stat. nov. is used as valid over Neoamymoma Marinoni, 1977, Holopterus Blanchard, 1851, stat. nov. is used as valid over Proholopterus Monné, 2012; CURCULIONIDAE: Phytophilus Schönherr, 1835, stat. nov. is used as valid over the unnecessary new replacement name Synophthalmus Lacordaire, 1863; EUCNEMIDAE: Nematodinus Lea, 1919, stat. nov. is used as valid instead of Arrhipis Gemminger, 1869, which is a junior homonym. Details regarding additional nomenclatural issues that still need to be resolved are included in the entry for each of these type genera: BOSTRICHIDAE: Lyctus Fabricius, 1792; BRENTIDAE: Trachelizus Dejean, 1834; BUPRESTIDAE: Pristiptera Dejean, 1833; CANTHARIDAE: Chauliognathus Hentz, 1830, Telephorus Schäffer, 1766; CARABIDAE: Calathus Bonelli, 1810, Cosnania Dejean, 1821, Dicrochile Guérin-Méneville, 1847, Epactius D.H. Schneider, 1791, Merismoderus Westwood, 1847, Polyhirma Chaudoir, 1850, Solenogenys Westwood, 1860, Zabrus Clairville, 1806; CERAMBYCIDAE: Ancita J. Thomson, 1864, Compsocerus Audinet-Serville, 1834, Dorcadodium Gistel, 1856, Glenea Newman, 1842; Hesperophanes Dejean, 1835, Neoclytus J. Thomson, 1860, Phymasterna Laporte, 1840, Tetrops Stephens, 1829, Zygocera Erichson, 1842; CHRYSOMELIDAE: Acanthoscelides Schilsky, 1905, Corynodes Hope, 1841, Edusella Chapuis, 1874; Hemisphaerota Chevrolat, 1836; Physonota Boheman, 1854, Porphyraspis Hope, 1841; CLERIDAE: Dermestoides Schäffer, 1777; COCCINELLIDAE: Hippodamia Chevrolat, 1836, Myzia Mulsant, 1846, Platynaspis L. Redtenbacher, 1843; CURCULIONIDAE: Coeliodes Schönherr, 1837, Cryptoderma Ritsema, 1885, Deporaus Leach, 1819, Epistrophus Kirsch, 1869, Geonemus Schönherr, 1833, Hylastes Erichson, 1836; DYTISCIDAE: Deronectes Sharp, 1882, Platynectes Régimbart, 1879; EUCNEMIDAE: Dirhagus Latreille, 1834; HYBOSORIDAE: Ceratocanthus A. White, 1842; HYDROPHILIDAE: Cyclonotum Erichson, 1837; LAMPYRIDAE: Luciola Laporte, 1833; LEIODIDAE: Ptomaphagus Hellwig, 1795; LUCANIDAE: Leptinopterus Hope, 1838; LYCIDAE: Cladophorus Guérin-Méneville, 1830, Mimolibnetis Kazantsev, 2000; MELOIDAE: Mylabris Fabricius, 1775; NITIDULIDAE: Meligethes Stephens, 1829; PTILODACTYLIDAE: Daemon Laporte, 1838; SCARABAEIDAE: Allidiostoma Arrow, 1940, Heterochelus Burmeister, 1844, Liatongus Reitter, 1892, Lomaptera Gory & Percheron, 1833, Megaceras Hope, 1837, Stenotarsia Burmeister, 1842; STAPHYLINIDAE: Actocharis Fauvel, 1871, Aleochara Gravenhorst, 1802; STENOTRACHELIDAE: Stenotrachelus Berthold, 1827; TENEBRIONIDAE: Cryptochile Latreille, 1828, Heliopates Dejean, 1834, Helops Fabricius, 1775. First Reviser actions deciding the correct original spelling: CARABIDAE: Aristochroodes Marcilhac, 1993 (not Aritochroodes); CERAMBYCIDAE: Dorcadodium Gistel, 1856 (not Dorcadodion), EVODININI Zamoroka, 2022 (not EVODINIINI); CHRYSOMELIDAE: Caryopemon Jekel, 1855 (not Carpopemon), Decarthrocera Laboissière, 1937 (not Decarthrocerina); CICINDELIDAE: Odontocheila Laporte, 1834 (not Odontacheila); CLERIDAE: CORMODINA Bartlett, 2021 (not CORMODIINA), Orthopleura Spinola, 1845 (not Orthoplevra, not Orthopleuva); CURCULIONIDAE: Arachnobas Boisduval, 1835 (not Arachnopus), Palaeocryptorhynchus Poinar, 2009 (not Palaeocryptorhynus); DYTISCIDAE: Ambarticus Yang et al., 2019 and AMBARTICINI Yang et al., 2019 (not Ambraticus, not AMBRATICINI); LAMPYRIDAE: Megalophthalmus G.R. Gray, 1831 (not Megolophthalmus, not Megalopthalmus); SCARABAEIDAE: Mentophilus Laporte, 1840 (not Mintophilus, not Minthophilus), Pseudadoretus dilutellus Semenov, 1889 (not P. ditutellus). While the correct identification of the type species is assumed, in some cases evidence suggests that species were misidentified when they were fixed as the type of a particular nominal genus. Following the requirements of Article 70.3.2 of the International Code of Zoological Nomenclature we hereby fix the following type species (which in each case is the taxonomic species actually involved in the misidentification): ATTELABIDAE: Rhynchites cavifrons Gyllenhal, 1833 for Lasiorhynchites Jekel, 1860; BOSTRICHIDAE: Ligniperda terebrans Pallas, 1772 for Apate Fabricius, 1775; BRENTIDAE: Ceocephalus appendiculatus Boheman, 1833 for Uroptera Berthold, 1827; BUPRESTIDAE: Buprestis undecimmaculata Herbst, 1784 for Ptosima Dejean, 1833; CARABIDAE: Amara lunicollis Schiødte, 1837 for Amara Bonelli, 1810, Buprestis connexus Geoffroy, 1785 for Polistichus Bonelli, 1810, Carabus atrorufus Strøm, 1768 for Patrobus Dejean, 1821, Carabus gigas Creutzer, 1799 for Procerus Dejean, 1821, Carabus teutonus Schrank, 1781 for Stenolophus Dejean, 1821, Carenum bonellii Westwood, 1842 for Carenum Bonelli, 1813, Scarites picipes G.-A. Olivier, 1795 for Acinopus Dejean, 1821, Trigonotoma indica Brullé, 1834 for Trigonotoma Dejean, 1828; CERAMBYCIDAE: Cerambyx lusitanus Linnaeus, 1767 for Exocentrus Dejean, 1835, Clytus supernotatus Say, 1824 for Psenocerus J.L. LeConte, 1852; CICINDELIDAE: Ctenostoma jekelii Chevrolat, 1858 for Ctenostoma Klug, 1821; CURCULIONIDAE: Cnemogonus lecontei Dietz, 1896 for Cnemogonus J.L. LeConte, 1876; Phloeophagus turbatus Schönherr, 1845 for Phloeophagus Schönherr, 1838; GEOTRUPIDAE: Lucanus apterus Laxmann, 1770 for Lethrus Scopoli, 1777; HISTERIDAE: Hister rugiceps Duftschmid, 1805 for Hypocaccus C.G. Thomson, 1867; HYBOSORIDAE: Hybosorus illigeri Reiche, 1853 for Hybosorus W.S. MacLeay, 1819; HYDROPHILIDAE: Hydrophilus melanocephalus G.-A. Olivier, 1793 for Enochrus C.G. Thomson, 1859; MYCETAEIDAE: Dermestes subterraneus Fabricius, 1801 for Mycetaea Stephens, 1829; SCARABAEIDAE: Aulacium carinatum Reiche, 1841 for Mentophilus Laporte, 1840, Phanaeus vindex W.S. MacLeay, 1819 for Phanaeus W.S. MacLeay, 1819, Ptinus germanus Linnaeus, 1767 for Rhyssemus Mulsant, 1842, Scarabaeus latipes Guérin-Méneville, 1838 for Cheiroplatys Hope, 1837; STAPHYLINIDAE: Scydmaenus tarsatus P.W.J. Müller & Kunze, 1822 for Scydmaenus Latreille, 1802. New synonyms: CERAMBYCIDAE: CARILIINI Zamoroka, 2022, syn. nov. of ACMAEOPINI Della Beffa, 1915, DOLOCERINI Özdikmen, 2016, syn. nov. of BRACHYPTEROMINI Sama, 2008, PELOSSINI Tavakilian, 2013, syn. nov. of LYGRINI Sama, 2008, PROHOLOPTERINI Monné, 2012, syn. nov. of HOLOPTERINI Lacordaire, 1868.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Гасанова, Гюнель Самир, Айтен Исмет Агазаде, Юсиф Амиралы Юсибов et Магомед Баба Бабанлы. « Термодинамическое исследование системы Bi2Se3–Bi2Te3 методом ЭДС ». Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no 3 (18 septembre 2020) : 310–19. http://dx.doi.org/10.17308/kcmf.2020.22/2961.

Texte intégral
Résumé :
Бинарные и сложные халькогениды с тетрадимитоподобной слоистой структурой представляют большой практический интерес как топологические изоляторы, термоэлектрические и оптоэлектронные материалы. Их фундаментальные термодинамические функции в совокупности с фазовыми диаграммами важны для разработки и оптимизации методов синтеза и выращивания кристаллов. В работе представлены результаты термодинамического исследования исходных соединений и твердых растворов системы Bi2Se3-Bi2Te3 методом электродвижущих сил (ЭДС). Различные модификации этого метода широко применяются для исследования бинарных и сложных халькогенидов металлов. Исследования проводили измерением ЭДС концентрационных цепей типа:(–) Bi (тв.) | ионная жидкость + Bi3+ | Bi в сплаве (тв.) (+) в интервале температур 300-450 K.В качестве правых электродов были использованы предварительно синтезированные равновесные сплавы Bi2Se3–хTex (х = 0; 0.6; 1.2; 1.8; 2.0; 2.4; 3.0) с 0.5 ат. % избытком теллура. В качестве электролита использовали ионную жидкость (формиат морфолина) с добавлением BiCl3.Полученные экспериментальные данные обработаны с помощью компьютерной программы «Microsoft Office Excel 2003» методом наименьших квадратов и получены линейные уравнения типа E = a + bT. Из полученных уравнений температурных зависимостей ЭДС рассчитаны относительные парциальные молярные функции висмута в сплавах. На основании диаграммы твердофазных равновесий системы Bi–Se–Te были определены уравнения потенциалобразующих реакций, с использованием которых вычислены стандартные термодинамические функцииобразования и стандартные энтропии соединений Bi2Se3, Bi2Te3 и твердых растворов Bi2Se3–xTex вышеуказанных составов. Также вычислены термодинамические функции образования твердых растворов Bi2Se3–xTex из исходных бинарных соединений. Полученные результаты хорошо коррелируют со структурными данными о том, что в кристаллической решетке b-фазы состава Bi2SeTe2 в расположении атомов селена и теллура наблюдается некоторая упорядоченность – атомы селена преимущественно занимают центральный слой пятислойника, а атомы теллура – два внешних слоя. ЛИТЕРАТУРА 1. Rowe D. M. Thermoelectrics Handbook: Macro toNano. Boca Raton, FL, USA: CRC Press, Taylor & FrancisGroup; 2006. 1008 р.2. Шевельков А. В. Химические аспекты созда-ния термоэлектрических материалов. Успехи химии.2008;77(1): 3–21. DOI: https://doi.org/10.1070/rc2008v077n01abeh0037463. Adam A. M., Lilov E., Ibrahim E. M. M., Petkov P.,Panina L. V., Darwish M. A. Correlation of structuraland optical properties in as-prepared and annealedBi2Se3 thin films. Journal of Materials Processing Technology.2019;264: 76–83. DOI: https://doi.org/10.1016/j.jmatprotec.2018.09.0054. Wang Q., Wu X., Wu L., Xiang Y. Broadbandnonlinear optical response in Bi2Se3-Bi2Te3 heterostructureand its application in all-optical switching.AIP Advances 9. 2019; 025022. DOI: https://doi.org/10.1063/1.50827255. Hosokawa Y., Wada K., Tanaka M., Tomita K.,Takashiri M. Thermal annealing effect on structuraland thermoelectric properties of hexagonal Bi2Te3nanoplate thin films by drop-casting technique. JapaneseJournal of Applied Physics. 2017;57(2S2): 02CC02.DOI: https://doi.org/10.7567/jjap.57.02cc026. Adam A. M., Elshafaie A., Abd El-Moez A. M.,Petkov P., Ibrahim E. M. M. Thermoelectric propertiesof Te doped bulk Bi2Se3 system. Materials ResearchExpress. 2018;5(3): 035514. DOI: https://doi.org/10.1088/2053-1591/aab5e87. Flammini R., Colonna S., Hogan C., Mahatha S.,Papagno M., Barla A., Sheverdyaeva P., Moras P.,Aliev Z., Babanly M. B, Chulkov E. V., Carbone C.,Ronci F. Evidence of b-antimonene at the Sb/Bi2Se3interface. Nanotechnology. 2018;29(6): 065704. DOI:https://doi.org/10.1088/1361-6528/aaa2c48. Hogan C., Holtgrewe K., Ronci F., Colonna S.,Sanna S., Moras P., Sheverdyaeva P. M., Mahatha S.,Papagno M., Aliev Z. S., Babanly M. B., Chulkov E. V.,Carbone C., Flammini R. Temperature driven phasetransition at the antimonene/Bi2Se3 van der Waalsheterostructure. ACS Nano. 2019;13(9): 10481–10489.DOI: https://doi.org/10.1021/acsnano.9b043779. Otrokov M. M., Ernst A., Mohseni K., Fulara H.,Roy S., Castro G. R., Rubio-Zuazo J., RyabishchenkovaA. G., Kokh K. A., Tereshchenko O. E., Aliev Z. S.,Babanly M. B., Chulkov E. V., Meyerheim H. L., ParkinS. S. P. Geometric and electronic structure of theCs‑doped Bi2Se3(0001) surface. Phys. Rev. B. 2017;95(20):205429. DOI: https://doi.org/10.1103/physrevb.95.20542910. Lamuta C., Cupolillo A., Politano A., Aliev Z. S.,Babanly M. B., Chulkov E. V., Pagnotta L. Indentationfracture toughness of a single-crystal Bi2Te3 topologicalinsulator. Nano Research. 2016;9(4): 1032–1042.DOI: https://doi.org/10.1007/s12274-016-0995-z11. Viti L., Coquillat D., Politano A., Kokh K. A.,Aliev Z. S., Babanly M. B., Tereshchenko O. E., Knap W.,Chulkov E. V., Vitiello M. S. Plasma-wave terahertzdetection mediated by topological insulators surfacestates. Nano Letters. 2016;16(1): 80−87. DOI: https://doi.org/10.1021/acs.nanolett.5b0290112. Babanly M. B., Chulkov E. V., Aliev Z. S., Shevel’kovA. V., Amiraslanov I. R. Phase diagrams inmaterials science of topological insulators based onmetal chalkogenides. Russ. J. Inorg. Chem. 2017;62(13):1703–1729. DOI: https://doi.org/10.1134/S003602361713003413. Otrokov M. M., Klimovskikh I. I., Bentmann H.,et al. Prediction and observation of the antiferromagnetictopological insulator. Nature. 2019;576(7787):416–422. DOI: https://doi.org/10.1038/s41586-019-1840-914. Shanna Z., Gang S., Peng Z., Dechao M.,Genhao L., Xiaofang Z., Yalin L., Yongqing L., Lan C.,Kehui W. Growth and transport properties of topologicalinsulator Bi2Se3 thin film on a ferromagneticinsulating substrate. Chinese Physics B. 2017;27(7).DOI: https://doi.org/10.1088/1674-1056/27/7/07680115. Walsh L. A., Smyth C. M., Barton A. T., QingxiaoW., Zifan C., Ruoyu Y., Jiyoung K., Moon J. K.,Wallace R.M., Hinkle C. L. Interface chemistry of contactmetals and ferromagnets on the topological insulatorBi2Se3. J. Phys. Chem. C. 2017;121(42): 23551–23563. DOI: https://doi.org/10.1021/acs.jpcc.7b0848016. Liguo Z., Dapeng Z., Yunyi Z., Yonghao Y.,Gaoyuan J., Menghan L., Ding Z., Ke H., Xucun M.,Qikun X. Ferromagnetism in vanadium-doped Bi2Se3topological insulator films. APL Materials. 2017;5(7):076106. DOI: https://doi.org/10.1063/1.499054817. Воронин Г. Ф., Герасимо Ю. И. Роль химиче-ской термодинамики в развитии полупроводни-кового материаловедения. Термодинамика и полу-проводниковое материаловедение. M.: МИЭТ; 1980.с. 3–10. Режим доступа: https://search.rsl.ru/ru/record/0100106996118. Babanly M. B., Mashadiyeva L. F., Babanly D. M.,Imamaliyeva S. Z., Taghiyev D. B., Yusibov Y. A. Someissues of complex investigation of the phase equilibriaand thermodynamic properties of the ternary chalcogenidsystems by the EMF method. Russian J. Iniorg.Chem. 2019;64(13): 1649–1671. DOI: https://doi.org/10.1134/S003602361913003519. Barin I. Thermochemical data of pure substances.Third Edition. Weinheim: Wiley-VCH; 1995. DOI:https://doi.org/10.1002/978352761982520. Кubaschewski O., Alcock C. B., Spenser P. J.Materials Thermochemistry. New York: Pergamon Press;1993. 350 p.21. База данных термических констант веществ.Электронная версия под. ред. В. С. Юнгмана. 2006.http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcom.html22. Герасимов Я. И., Крестовников А. Н, Гор-бов С. И. Химическая термодинамика в цветнойметаллургии. Справочник. т.6. М.: Металлургия;1974. 312 с.23. Sidorko V. R., Goncharuk L. V., Antonenko R. V.Thermodynamic properties of bismuth sesquiselenideand sesquitelluride and their solid solutions. PowderMetallurgy and Metal Ceramics. 2008;47: 234–241. DOI:https://doi.org/10.1007/s11106-008-9009-324. Воронин Г. Ф. Парциальные термодинами-ческие функции гетерогенных смесей и их приме-нение в термодинамике сплавов. / В кн.: Современ-ные проблемы физической химии. т. 9. М.: изд. МГУ;1976. 29–48 с.25. Вагнер K. Термодинамика сплавов. M.: Ме-таллургиздат; 1957. 179 с.26. Морачевский А. Г., Воронин Г. Ф., Гейде-рих В. А., Куценок И. Б. Электрохимическиеметоды исследования в термодинамике металлических сис-тем ИЦК. М.: Академкнига; 2003. 334 с27. Бабанлы М. Б., Юсибов Ю. А. Электрохими-ческие методы в термодинамике неорганическихсистем. Баку: ЭЛМ; 2011. 306 с.28. Vassiliev V., Gong W. Electrochemical cells withthe liquid electrolyte in the study of semiconductor,metallic and oxide systems. In: Electrochemical cells– new advances in fundamental researches and applications.Shao Y. Rijeka (ed.) IntechOpen; 2012. pp. 71–102. DOI: https://doi.org/10.5772/3900729. Babanly D. M., Veliyeva G. M., ImamaliyevaS. Z., Babanly M. B. Thermodynamic functions ofarsenic selenides. Russ. J. Phys. Chem. A. 2017;91(7):170–1173. DOI: https://doi.org/10.1134/s003602441707004430. Aliev Z. S., Musayeva S. S., Jafarli F. Y.,Amiraslanov I. R., Shevelkov A. V., Babanly M. B. Thephase equilibria in the Bi–S–I ternary system andthermodynamic properties of the BiSI and Bi19S27I3ternary compounds. Journal of Alloys and Compounds.2014;610: 522–528. DOI: https://doi.org/10.1016/j.jallcom.2014.05.01531. Jafarov Y. I., Ismaylova S. A., Aliev Z. S., ImamaliyevaS. Z., Yusibov Y. A., Babanly M. B. Experimentalstudy of the phase diagram and thermodynamicproperties of the Tl-Sb-S system. Calphad. 2016;55:231–237. DOI: https://doi.org/10.1016/j.calphad.2016.09.00732. Imamaliyeva S. Z., Babanly D. M., Gasanly T. M.,Tagiev D. B., Babanly M. B. Thermodynamic propertiesof Tl9GdTe6 and TlGdTe2. Russian Journal of PhysicalChemistry A. 2018;92(11): 2111–2117. DOI: https://doi.org/10.1134/s003602441811015833. Moroz M. V., Prokhorenko M. V., ProkhorenkoS. V., Yatskov M. V., Reshetnyak O. V. Thermodynamicproperties of AgIn2Te3I and AgIn2Te3Br, determinedby the EMF method. Russian Journal of PhysicalChemistry A. 2018;92(1): 19–23. DOI: https://doi.org/10.1134/s003602441801016834. Козин Л.Ф., Нигметова Р. Ш. Термодинами-ческие свойства жидких сплавов олово–ртуть. Ж.Неорган. химии, 1963;8(11): 2556-2562.35. Aliev Z. S., Musayeva S. S. Imamaliyeva S. Z.,Babanlэ M. B. Thermodynamic study of antimonychalcoiodides by EMF method with an ionic liquid. J.Therm. Anal. Calorim. 2018;133(2): 1115–1120. DOI:https://doi.org/10.1007/s10973-017-6812-436. Imamaliyeva S. Z., Musayeva S. S., BabanlyD. M., Jafarov Y. I., Tagiyev D. B., Babanly M. B.Determination of the thermodynamic functions ofbismuth chalcoiodides by EMF method with morpholiniumformate as electrolyte. Thermochimica Acta.2019;679: 178319. DOI: https://doi.org/10.1016/j.tca.2019.17831937. Brigouleix C., Anouti M., Jacquemin J., Caillon-Caravanier M., Galiano H., Lemordant D. Physicochemicalcharacterization of morpholinium cationbased protic ionic liquids used as electrolytes. J. Phys.Chem. B. 2010;114(5): 1757–1766. DOI: https://doi.org/10.1021/jp906917v38. Абрикосов Н. Х., Банкина В. Ф., Порец-кая Л. В. и др. Полупроводниковые халькогениды исплавы на их основе. М.: Наука; 1975. 220 с.39. Chizhevskaya S. N. Shelimova L. E. Se–Te phasediagram and structures of amorphous and crystallineSe1–xTex alloys: critical review. Russ. J. Inorg. Chem.1997;42(5): 827–837.40. Ghosh G., Lukas H. L., Delaey L. A thermodynamicassessment of the Se–Te system. Calphad.1988; 12(3):295–299. DOI: https://doi.org/10.1016/0364-5916(88)90010-741. Васильев В. П., Сомов А. П., Никольская А. В.,Герасимов Я. И. Исследование термодинамическихсвойства селенида висмута методом ЭДС. Ж. Физ.химии. 1968; 42(3): 675–678.42. Мелех Б. Т., Семенкович С. А. Термодина-мические свойства теллурида и селенида трехва-лентного висмута. Изв. АН СССР. Неорган. матер.1968;4(8): 1346–1348.43. Герасимов Я. И. и Никольская А. В. Термо-динамические свойства теллурида висмута (Bi2Te3)и теллурида сурьмы (Sb2Te3). В кн.: Металлургия ифизика полупроводников. М.: 1961. с. 30–33.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Webster, Rachel. « Other British Voices : Women, Poetry, and Religion, 1766-1840. By Timothy Whelan. » Literature and Theology, 31 octobre 2015, frv041. http://dx.doi.org/10.1093/litthe/frv041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Bochkov, Andre V., et Michel P. Valim. « New species and records of mites of the superfamily Sarcoptoidea (Acariformes : Psoroptidia) from mammals in Brazil ». Acta Parasitologica 61, no 1 (1 janvier 2016). http://dx.doi.org/10.1515/ap-2016-0003.

Texte intégral
Résumé :
AbstractSixteen species of the superfamily Sarcoptoidea (Acariformes: Psoroptidia) belonging to 10 genera of the families Atopomelidae, Listrophoridae, Chirodiscidae, and Listropsoralgidae are recorded in Brazil. Among them, three species, Prolistrophorus hylaeamys sp. nov. from Hylaeamys laticeps (Lund, 1840) (Cricetidae: Sigmodontinae) from Minas Gerais, Lynxacarus serrafreirei sp. nov. from Galictis cuja (Molina, 1782) (Carnivora: Mustelidae) from Rio de Janeiro (Listrophoridae), and Didelphoecius micoureus sp. nov. (Atopomelidae) from Micoureus paraguayanus (Tate, 1931) (Didelphimorphia: Didelphidae) from Minas Gerais are described as new for science. Three species of the family Listrophoridae, Prolistrophorus bidentatus Fain et Lukoschus, 1984 from Akodon cursor (Winge, 1887) (Rodentia: Cricetidae) (new host), Prolistrophorus ctenomys Fain, 1970 from Ctenomys torquatus Lichtenstein, 1830 (Rodentia: Ctenomyidae) (new host), and Leporacarus sylvilagi Fain, Whitaker et Lukoschus, 1981 from Sylvilagus brasiliensis (Linnaeus, 1758) (Lagomorpha: Leporidae) (new host) -from Minas Gerais and Rio Grande do Sul, and one species of the family Chirodiscidae, Parakosa tadarida McDaniel and Lawrence, 1962 from Molossus molossus (Pallas, 1766) (Chiroptera: Molossidae) are recorded for the first time in Brazil. The previously unknown female of Didelphoecius validus Fain, Zanatta-Coutinho et Fonseca, 1996 (Atopomelidae) from Metachirus nudicaudatus (Geoffroy, 1803) (Didelphimorphia: Didelphidae) from Minas Gerais is described. All data on host-parasite associations of sarcoptoids in Brazil are summarized. Totally, 61 sarcoptoid species of 8 families are recorded in Brazil.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lago Carvalho, Angélica, Leticia Poblete Vidal et José Luís Luque. « ASPECTOS CUANTITATIVOS DE LA FAUNA PARASITARIA DE LAS CACHARAS PSEUDOPLATYSTOMA FASCIATUM Y P. TIGRINUM (SILURIFORMES : PIMELODIDAE) DEL RÍO JAMARI, ARIQUEMES, RONDÔNIA, BRASIL ». Neotropical Helminthology 13, no 1 (29 mai 2020). http://dx.doi.org/10.24039/rnh2019131627.

Texte intégral
Résumé :
Pseudoplatystoma (Bleeker, 1862) species are of commercial importance in the region of Rondônia, however studies with the species are scarce, so the objective of the research was to carry out a diagnosis of the composition and structure of the parasite communities of Pseudoplatystoma fasciatum (Linnaeus, 1766) and P. tigrinum (Valenciennes, 1840) of the river basin Jamari, Ariquemes - RO, Brazil. During the period from November / 2016 to February / 2018, 50 specimens of P. tigrinum and 51 specimens of P. fasciatum were collected. Of the total sampled fish, 45 specimens of P. tigrinum and 51 specimens P. fasciatum were parasitized by at least one species of parasite presenting a prevalence level of 90% and 100%, respectively. In the parasitic infrapopulations of P. tigrinum, the groups with the highest prevalence rates were nematodes, with larvae being the largest representative of the group, followed by monogenean Vancleaveus ciccinus Kritsky, Thatcher e Boeger, 1986 and for P. fasciatum the parasite helminths that presented the highest prevalence level were the Cestoda groups: Megathylacus sp. Woodland, 1934; Harriscolex sp. Rego, 1987; Monticellia sp. La Rue, 1911; Nominoscolex sp. Woodland, 1934; Nematoda: larvae; Eustrongylides sp. Jägerskiöld, 1909; Cucullanus sp. Müller, 1777; Contracaecum sp. Railliet Henry, 1912 and Monogenea: Vancleaveus ciccinus One species showed a negative correlation between total length and average abundance for P. tigrinum, while P. fasciatum correlation was positive for three species. The comparison of abundance averages by sex for P. tigrinum showed no significant difference between groups, for P. fasciatum a significant difference was observed among the individuals parasitized by Peltidocotyle sp., Monticellia sp., Nominoscolex sp. where females showed higher average abundance in relation to males.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie