Littérature scientifique sur le sujet « 1-dimensional symmetry »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « 1-dimensional symmetry ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "1-dimensional symmetry"

1

Konopelchenko, Boris, Jurij Sidorenko et Walter Strampp. « (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems ». Physics Letters A 157, no 1 (juillet 1991) : 17–21. http://dx.doi.org/10.1016/0375-9601(91)90402-t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Khalil, S. S. « «Chiral» symmetry in (2+1)-dimensional QCD ». Il Nuovo Cimento A 107, no 5 (mai 1994) : 689–96. http://dx.doi.org/10.1007/bf02732078.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

KOVNER, A., et B. ROSENSTEIN. « MASSLESSNESS OF PHOTON AND CHERN-SIMONS TERM IN (2 + 1)-DIMENSIONAL QED ». Modern Physics Letters A 05, no 31 (20 décembre 1990) : 2661–68. http://dx.doi.org/10.1142/s0217732390003103.

Texte intégral
Résumé :
We study the realization of global symmetries in (2 + 1)-dimensional QED with two fermion flavors. It is shown that, in a certain range of mass parameters, the chiral symmetry [Formula: see text] and the flux symmetry Φ = ∫d2xB are both spontaneously broken, but the combination I = Q5 − sign (m)e/πΦ remains unbroken. The photon is identified with the corresponding massless excitation, which is required in this case by Goldstone theorem. An order parameter vanishes and chiral and flux symmetries are realized in the Kosterlitz-Thouless mode. Outside this range of parameters the vacuum is symmetric and simultaneously the photon's topological mass is generated. Similar symmetry breaking pattern U (1) ⊗ U (1) → U (1) is realized in Chern-Simons electrodynamics for a particular value of the bare CS-term coefficient at which the "statistical photon" becomes massless. We point out the direct correspondence of this model to the superconducting anyon gas.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Oshima, Kazuto. « Spontaneous Symmetry Breaking in (1+1)-Dimensional Light-Front φ4Theory ». Journal of the Physical Society of Japan 72, no 1 (15 janvier 2003) : 83–88. http://dx.doi.org/10.1143/jpsj.72.83.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Luo, Xiang-Qian. « Chiral-Symmetry Breaking in (1+1)-Dimensional Lattice Gauge Theories ». Communications in Theoretical Physics 16, no 4 (décembre 1991) : 505–8. http://dx.doi.org/10.1088/0253-6102/16/4/505.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Maris, Pieter, et Dean Lee. « Chiral symmetry breaking in (2+1) dimensional QED ». Nuclear Physics B - Proceedings Supplements 119 (mai 2003) : 784–86. http://dx.doi.org/10.1016/s0920-5632(03)80467-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Babu, K. S., P. Panigrahi et S. Ramaswamy. « Radiative symmetry breaking in (2+1)-dimensional space ». Physical Review D 39, no 4 (15 février 1989) : 1190–95. http://dx.doi.org/10.1103/physrevd.39.1190.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

LIN JI, YU JUN et LOU SEN-YUE. « (3+1)-DIMENSIONAL MODELS WITH INFINITELY DIMENSIONAL VIRASORO TYPE SYMMETRY ALGBRA ». Acta Physica Sinica 45, no 7 (1996) : 1073. http://dx.doi.org/10.7498/aps.45.1073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

SINHA, A., et P. ROY. « (1+1)-DIMENSIONAL DIRAC EQUATION WITH NON-HERMITIAN INTERACTION ». Modern Physics Letters A 20, no 31 (10 octobre 2005) : 2377–85. http://dx.doi.org/10.1142/s0217732305017664.

Texte intégral
Résumé :
We study (1+1)-dimensional Dirac equation with non-Hermitian interactions, but real energies. In particular, we analyze the pseudoscalar and scalar interactions in detail, illustrating our observations with some examples. We also show that the relevant hidden symmetry of the Dirac equation with such an interaction is pseudo-supersymmetry.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kotikov, Anatoly V., et Sofian Teber. « Critical Behavior of (2 + 1)-Dimensional QED : 1/N Expansion ». Particles 3, no 2 (10 avril 2020) : 345–54. http://dx.doi.org/10.3390/particles3020026.

Texte intégral
Résumé :
We present recent results on dynamical chiral symmetry breaking in (2 + 1)-dimensional QED with N four-component fermions. The results of the 1 / N expansion in the leading and next-to-leading orders were found exactly in an arbitrary nonlocal gauge.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "1-dimensional symmetry"

1

Manukure, Solomon. « Hamiltonian Formulations and Symmetry Constraints of Soliton Hierarchies of (1+1)-Dimensional Nonlinear Evolution Equations ». Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6310.

Texte intégral
Résumé :
We derive two hierarchies of 1+1 dimensional soliton-type integrable systems from two spectral problems associated with the Lie algebra of the special orthogonal Lie group SO(3,R). By using the trace identity, we formulate Hamiltonian structures for the resulting equations. Further, we show that each of these equations can be written in Hamiltonian form in two distinct ways, leading to the integrability of the equations in the sense of Liouville. We also present finite-dimensional Hamiltonian systems by means of symmetry constraints and discuss their integrability based on the existence of sufficiently many integrals of motion.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Longino, Brando. « Exact S-matrices for a class of 1+1-dimensional integrable factorized scattering theories with Uq(sl2) symmetry and arbitrary spins ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20542/.

Texte intégral
Résumé :
In this thesis we will study the S-matrices associated to a new class of (1+1)-dimensional integrable models with Uq(sl2) symmetry, whose asymptotic particle states organize into a k/2 isospin multiplet, with k= 0,1,2,... Such S-matrices generalize the case study previously analyzed by S. R. Aladim and M. J. Martins, where it was only investigated the non-deformed limit q→1 of pure SU(2) symmetry. We check that the proposed S-matrix satisfies the constraints due to the the Yang-Baxter equation, crossing-symmetry requirement and unitarity and therefore defines a self-consistent integrable factorized scattering theory.
Styles APA, Harvard, Vancouver, ISO, etc.
3

SOAVE, NICOLA. « Variational and geometric methods for nonlinear differential equations ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/49889.

Texte intégral
Résumé :
This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variational structure of the considered problems plays an essential role, and in particular we obtain existence of oscillating solutions by means of non-standard versions of the Nehari's method and of the Seifert's broken geodesics argument. In the second part, classical tools of geometric analysis, such as the moving planes method and the application of Liouville-type theorems, are used to prove 1-dimensional symmetry of solutions in different situations.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Moleleki, Letlhogonolo Daddy. « Symmetry reductions, exact solutions and conservation laws of a variable coefficient (2+1)-dimensional zakharov-kuznetsov equation / Letlhogonolo Daddy Moleleki ». Thesis, 2011. http://hdl.handle.net/10394/14404.

Texte intégral
Résumé :
This research studies two nonlinear problems arising in mathematical physics. Firstly the Korteweg-de Vrics-Burgers equation is considered. Lie symmetry method is used to obtain t he exact solutions of Korteweg-de Vries-Burgers equation. Also conservation laws are obtained for this equation using the new conservation theorem. Secondly, we consider the generalized (2+ 1)-dimensional Zakharov-Kuznctsov (ZK) equation of time dependent variable coefficients from the Lie group-theoretic point of view. We classify the Lie point symmetry generators to obtain the optimal system of one-dimensional subalgebras of t he Lie symmetry algebras. These subalgebras arc then used to construct a number of symmetry reductions and exact group-invariant solutions of the ZK equation. We utilize the new conservation theorem to construct the conservation laws of t he ZK equation.
Thesis (M. Sci in Applied Mathematics) North-West University, Mafikeng Campus, 2011
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chen, Jian De, et 陳健德. « 1-dimensional symmetric games with a continuum players ». Thesis, 1995. http://ndltd.ncl.edu.tw/handle/68768977048523839244.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Borokhov, Vadim Aleksandrovich. « Monopole Operators and Mirror Symmetry in Three-Dimensional Gauge Theories ». Thesis, 2004. https://thesis.library.caltech.edu/1275/1/thesis.pdf.

Texte intégral
Résumé :

Many gauge theories in three dimensions flow to interacting conformal field theories in the infrared. We define a new class of local operators in these conformal field theories that are not polynomial in the fundamental fields and create topological disorder. They can be regarded as higher-dimensional analogs of twist and winding-state operators in free 2-D CFTs. We call them monopole operators for reasons explained in the text. The importance of monopole operators is that in the Higgs phase, they create Abrikosov-Nielsen-Olesen vortices. We study properties of these operators in three-dimensional gauge theories using large N_f expansion. For non-supersymmetric gauge theories we show that monopole operators belong to representations of the conformal group whose primaries have dimension of order N_f. We demonstrate that these monopole operators transform non-trivially under the flavor symmetry group.

We also consider topology-changing operators in the infrared limits of N=2 and N=4 supersymmetric QED as well as N=4 SU(2) gauge theory in three dimensions. Using large N_f expansion and operator-state isomorphism of the resulting superconformal field theories, we construct monopole operators that are primaries of short representation of the superconformal algebra and compute their charges under the global symmetries. Predictions of three-dimensional mirror symmetry for the quantum numbers of these monopole operators are verified. Furthermore, we argue that some of our large-N_f results are exact. This implies, in particular, that certain monopole operators in N=4 3-D SQED with N_f=1 are free fields. This amounts to a proof of 3-D mirror symmetry in these special cases.

Styles APA, Harvard, Vancouver, ISO, etc.
7

DING, XIANG-FU, et 丁祥富. « Study of Point-Symmetric 1×3 Directional Couplers for Two-Dimensional Photonic Crystal ». Thesis, 2019. http://ndltd.ncl.edu.tw/handle/suxghb.

Texte intégral
Résumé :
碩士
龍華科技大學
電機工程系碩士班
107
This paper is mainly about the design and analysis of point-symmetric 1×3 directional couplers for two-dimensional photonic crystal. Based on a traditional uniform symmetrical directional coupler. Design and perform simulation analysis on the dielectric column radius and the coupling region waveguide length in the coupling region. The purpose is to design the optimal parameter structure of the spectroscopic average, and the influence of various parameters on the transmission rate is observed. In addition, for the stability problem and considering the implementation of the application, this paper also made simulations such as optical frequency tolerance range and temperature coefficient change. In this paper, the structure 2 of 1×3 three-point symmetric direction coupling beam splitters in this paper has the best transmission stability, and the structure 1 has the widest optical frequency range and the best temperature tolerance.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "1-dimensional symmetry"

1

Daghero, D., G. A. Ummarino et R. S. Gonnelli. Andreev Reflection and Related Studies in Low-Dimensional Superconducting Systems. Sous la direction de A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.5.

Texte intégral
Résumé :
This article investigates the potential of the point contact Andreev reflection spectroscopy (PCARS) technique for measuring the symmetry of the energy gap and other key parameters of various 0-, 1-, and 2-dimensional superconducting systems. It begins with a brief description of PCARS, explaining what a point contact is and how it can be made and the conditions under which a PC is ballistic, as well as why and to what extent a PC between normal metals is spectroscopic. It then discusses the basics of Andreev reflection and the length scales in mesoscopic systems before considering the limits of applicability of PCARS for spectroscopy of ‘small’ superconductors. Finally, it reviews some examples of PCARS in quasi-0D, quasi-1D and quasi-2D superconductors.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "1-dimensional symmetry"

1

Jackiw, R., et So-Young Pi. « Finite and Infinite Symmetry in (2+1)-Dimensional Field Theory ». Dans Symmetries in Science VII, 261–74. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2956-9_24.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Berruto, F., G. Grignani et P. Sodano. « Chiral Symmetry Breaking in Strongly Coupled 1 + 1 Dimensional Lattice Gauge Theories ». Dans Lattice Fermions and Structure of the Vacuum, 91–98. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4124-6_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mishra, Shivam Kumar. « Soliton Solutions of (2+1)-Dimensional Modified Calogero-Bogoyavlenskii-Schiff (mCBS) Equation by Using Lie Symmetry Method ». Dans Lecture Notes in Electrical Engineering, 203–19. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1824-7_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Alfakih, A. Y. « Local, Dimensional and Universal Rigidities : A Unified Gram Matrix Approach ». Dans Rigidity and Symmetry, 41–60. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0781-6_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Koltchinskii, Vladimir, et Lyudmila Sakhanenko. « Testing for Ellipsoidal Symmetry of a Multivariate Distribution ». Dans High Dimensional Probability II, 493–510. Boston, MA : Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1358-1_32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Maharana, Jnanadeva. « Spontaneous Symmetry Breaking in 4-Dimensional Heterotic String ». Dans Differential Geometric Methods in Theoretical Physics, 497–503. Boston, MA : Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-9148-7_51.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tjin, T. « Finite W Symmetry in Finite Dimensional Integrable Systems ». Dans NATO ASI Series, 123–30. Boston, MA : Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1612-9_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wolf, Joseph A. « Principal series representations of infinite-dimensional Lie groups, I : Minimal parabolic subgroups ». Dans Symmetry : Representation Theory and Its Applications, 519–38. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1590-3_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bricogne, Gerard, et Richard Tolimieri. « Two Dimensional FFT Algorithms on Data Admitting 90°-Rotational Symmetry ». Dans Signal Processing, 25–35. New York, NY : Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-6393-4_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Roberts, John A. G. « Some Characterisations of Low-dimensional Dynamical Systems with Time-reversal Symmetry ». Dans Control and Chaos, 106–33. Boston, MA : Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-2446-4_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "1-dimensional symmetry"

1

Yazıcı, D. « (2+1)-dimensional bi-Hamiltonian system obtained from symmetry reduction of (3+1)-dimensional Hirota type equation ». Dans TURKISH PHYSICAL SOCIETY 35TH INTERNATIONAL PHYSICS CONGRESS (TPS35). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135447.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

SENTHILVELAN, M., et M. TORRISI. « SYMMETRY ANALYSIS AND LINEARIZATION OF THE (2+1) DIMENSIONAL BURGERS EQUATION ». Dans Proceedings of the 13th Conference on WASCOM 2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773616_0064.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kamath, Gopinath. « Cylindrical symmetry : An aid to calculating the zeta-function in 3 + 1 dimensional curved space ». Dans 38th International Conference on High Energy Physics. Trieste, Italy : Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.282.0791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

CHERNIHA, ROMAN, et MAKSYM DIDOVYCH. « A (1+2)-DIMENSIONAL KELLER-SEGEL MODEL : LIE SYMMETRY AND EXACT SOLUTIONS FOR THE CAUCHY PROBLEM ». Dans International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814667944_0007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hartanto, A., F. P. Zen, J. S. Kosasih, L. T. Handoko, Zaki Su’ud et A. Waris. « Dynamical symmetry breaking of SU(6) GUT in 5—dimensional spacetime with orbifold S[sup 1]∕Z[sub 2] ». Dans THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN NUCLEAR SCIENCE AND ENGINEERING 2009-ICANSE 2009. AIP, 2010. http://dx.doi.org/10.1063/1.4757170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Battaglia, Francine, et George Papadopoulos. « Bifurcation Characteristics of Flows in Rectangular Sudden Expansion Channels ». Dans ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77098.

Texte intégral
Résumé :
The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tamai, Naoto, Tomoko Yamazaki, Iwao Yamazaki et Noboru Mataga. « Fractal Behaviors in Two-Dimensional Excitation Energy Transfer on Vesicle Surface ». Dans International Conference on Ultrafast Phenomena. Washington, D.C. : Optica Publishing Group, 1986. http://dx.doi.org/10.1364/up.1986.thb3.

Texte intégral
Résumé :
Excitation energy transport and trapping in molecular assemblies have been the subject in recent theoretical and experimental photophysics. Very little is known about the dynamical characteristics of dipole-dipole energy transfer in restricted geometries of one- and two-dimensional molecular arrangements. The present paper reports on the two-dimensional excitation energy transfer between dye molecules adsorbed on vesicle surface by using a picosecond time-correlated, single-photon counting apparatus [1]. The fluorescence decay curves of the donor are analyzed on the basis of a theoretical framework of "fractal" [2], following a manner of Klafter and Blumen [3]. The fractal denotes a self-similar structure with dilatational symmetry which will have great potential to describe a multitude of irregular structures [2].
Styles APA, Harvard, Vancouver, ISO, etc.
8

Okamoto, Hiromi, Shun Hashiyada, Yoshio Nishiyama et Tetsuya Narushima. « Imaging Chiral Plasmons ». Dans JSAP-OSA Joint Symposia. Washington, D.C. : Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.5a_a410_1.

Texte intégral
Résumé :
Chirality is a broad concept that characterizes structures of systems in almost all hierarchy of materials in natural sciences. Molecular chirality is sometimes essential in biological functions. Also in nanomaterials sciences, chirality plays a key role. It is of fundamental importance to investigate internal structures (geometrical distributions) of chiral optical responses in nanomaterials, to design chiral features of the materials and their functions. We developed near-field optical activity (typically circular dichroism, CD) imaging systems that allow us to visualize local structures of optical activity in nanomaterials, and observed near-field CD images of two-dimensional gold nanostructures fabricated with electron beam lithography lift-off technique. We found that the amplitudes of local CD signals were as large as 100 times the macroscopic CD signals of the same samples, for two-dimensional chiral gold nanostructures [1]. Even highly symmetric achiral structures that never give CD signals macroscopically gave locally very strong CD signals (a typical example for a rectangular nanostructure is shown in Figure 1) [2,3]. In this case, average of the signal over the nanostructure yielded roughly null CD intensity. While achiral nanostructures show in general local CD activities as mentioned above, circularly symmetric (two-dimensionally isotropic) nanostructures, such as circular disks, never give CD signals at any local positions. However, when the circular disk is illuminated with linearly polarized light, the circular symmetry is broken, and thus the system potentially yields locally chiral optical (i.e., circularly polarized) fields. To demonstrate that, we extended the near-field CD microscope, and enabled irradiation of well- defined linearly polarized near-field on the sample and detection of scattered-field ellipticity and polarization azimuth angle. We found for circular gold disks that the scattered field was actually elliptically polarized. The ellipticity and the azimuth angle of the scattered field depended on the incident polarization angle and relative position on the disk.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Fishman, T., et M. Orenstein. « Structural stability and array modes of odd number cyclic vertical cavity semiconductor laser arrays ». Dans The European Conference on Lasers and Electro-Optics. Washington, D.C. : Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.ctuo5.

Texte intégral
Résumé :
Arrays of Vertical Cavity Surface Emitting Lasers (VCSELs) were prepared by patterning the reflectivity of the laser's back mirror.1 The latter was accomplished by the deposition of metal layers on top of the Bragg mirror, employing a predefined spatial pattern. High quality and very large laser arrays were obtained using this method.2 The cyclic arrays of this paper are “real" two-dimensional (2D) arrays, since cyclic boundary conditions cannot be implemented in one dimension. Cyclic (ring) arrays are of practical interest since, by applying symmetry consideration, it is obvious that the near field (NF) and the far field (FF) intensity patterns of the dominant mode should have the same number of intensity lobes. This is in contrast to rectangular arrays, where the number of FF lobes is always 4. As a consequence, array illumination by multiple beams can be generated using the ring arrays. Odd number ring arrays are of a special interest, since the regular anti-phase mode cannot be supported by odd cyclical symmetry. Thus, spontaneous symmetry breaking is expected. The study presented in this paper explores the self modes of such arrays, their structural stability, and manifests the linear mechanism for spontaneous symmetry breaking with its general implications.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chiou, Arthur, et Pochi Yeh. « Optical autoconvolution using photorefractive four-wave mixing ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.mcc6.

Texte intégral
Résumé :
Two-dimensional images with twofold symmetry such as straight lines, ellipses, and circles form an important class of objects in pattern recognition. In this paper we propose and demonstrate a novel optical method based on autoconvolution (or self-convolution) using photorefractive four-wave mixing for the detection of such objects. The 2-D spatial convolution of an image with itelf is equivalent to the correlation of the object with its 180° rotated version. For objects with twofold symmetry, the rotated version is identical to the original object and hence a strong correlation peak results. The basic idea of spatial convolution/correlation using photorefractive four-wave mixing in the Fourier plane had long been demonstrated.1 The novel feature of our method is the capability to perform autoconvolution from a single input pattern.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "1-dimensional symmetry"

1

Yazıcı, Devrim, et Hakan Sert. Symmetry Reduction of Asymmetric Heavenly Equation and 2+1-Dimensional Bi-Hamiltonian System. GIQ, 2014. http://dx.doi.org/10.7546/giq-15-2014-309-317.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yazici, Devrim, et Hakan Sert. Symmetry Reduction of Asymmetric Heavenly Equation and 2+1-Dimensional Bi-Hamiltonian System. Jgsp, 2014. http://dx.doi.org/10.7546/jgsp-34-2014-87-96.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie