Articles de revues sur le sujet « Π-Conjugated Polymers »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Π-Conjugated Polymers.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Π-Conjugated Polymers ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Ma, Junyu, Guolin Lu, Xiaoyu Huang et Chun Feng. « π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly : preparation, properties and applications ». Chemical Communications 57, no 98 (2021) : 13259–74. http://dx.doi.org/10.1039/d1cc04825b.

Texte intégral
Résumé :
π-Conjugated-polymer-based nanofibers endowed with both topological merits from fiber-like nanostructures and structural merits from π-conjugated polymers represent one of the most exciting and rapidly expanding fields.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Otsuka, S., G. Tanaka et T. Yamamoto. « π-Conjugated Conductive Polymers ». International Polymer Science and Technology 35, no 7 (juillet 2008) : 23–29. http://dx.doi.org/10.1177/0307174x0803500704.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Holdcroft, S. « Patterning π-Conjugated Polymers ». Advanced Materials 13, no 23 (décembre 2001) : 1753–65. http://dx.doi.org/10.1002/1521-4095(200112)13:23<1753 ::aid-adma1753>3.0.co;2-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chaudhuri, Saikat, Manikandan Mohanan, Andreas V. Willems, Jeffery A. Bertke et Nagarjuna Gavvalapalli. « β-Strand inspired bifacial π-conjugated polymers ». Chemical Science 10, no 23 (2019) : 5976–82. http://dx.doi.org/10.1039/c9sc01724k.

Texte intégral
Résumé :
β-Strand inspired bifacial π-conjugated polymers that are soluble despite the absence of pendant solubilizing chains are reported. Precise tunability of the bifacial monomer height enables control of polymer solubility and intermolecular interactions.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jeong, WonJo, Kyumin Lee, Jaeyoung Jang et In Hwan Jung. « Development of Benzobisoxazole-Based Novel Conjugated Polymers for Organic Thin-Film Transistors ». Polymers 15, no 5 (24 février 2023) : 1156. http://dx.doi.org/10.3390/polym15051156.

Texte intégral
Résumé :
Benzo[1,2-d:4,5-d′]bis(oxazole) (BBO) is a heterocyclic aromatic ring composed of one benzene ring and two oxazole rings, which has unique advantages on the facile synthesis without any column chromatography purification, high solubility on the common organic solvents and planar fused aromatic ring structure. However, BBO conjugated building block has rarely been used to develop conjugated polymers for organic thin film transistors (OTFTs). Three BBO-based monomers, BBO without π-spacer, BBO with non-alkylated thiophene π-spacer and BBO with alkylated thiophene π-spacer, were newly synthesized and they were copolymerized with a strong electron-donating cyclopentadithiophene conjugated building block to give three p-type BBO-based polymers. The polymer containing non-alkylated thiophene π-spacer showed the highest hole mobility of 2.2 × 10−2 cm2 V−1 s−1, which was 100 times higher than the other polymers. From the 2D grazing incidence X-ray diffraction data and simulated polymeric structures, we found that the intercalation of alkyl side chains on the polymer backbones was crucial to determine the intermolecular ordering in the film states, and the introduction of non-alkylated thiophene π-spacer to polymer backbone was the most effective to promote the intercalation of alkyl side chains in the film states and hole mobility in the devices.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ghosh, Samrat, Yusuke Tsutsui, Katsuaki Suzuki, Hironori Kaji, Kayako Honjo, Takashi Uemura et Shu Seki. « Impact of the position of the imine linker on the optoelectronic performance of π-conjugated organic frameworks ». Molecular Systems Design & ; Engineering 4, no 2 (2019) : 325–31. http://dx.doi.org/10.1039/c8me00079d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Matsumoto, Fukashi, et Yoshiki Chujo. « Chiral π-conjugated organoboron polymers ». Pure and Applied Chemistry 81, no 3 (1 janvier 2009) : 433–37. http://dx.doi.org/10.1351/pac-con-08-08-01.

Texte intégral
Résumé :
A novel π-conjugated organoboron polymer with a chiral side chain was prepared by way of hydroboration polymerization between an optically active diyne monomer and triisopropylphenylborane. The achiral analog of this organoboron polymer was also prepared as reference material. Optical properties and optical activity were investigated by UV-vis absorption, fluorescence emission, and circular dichroism (CD) spectroscopy. Concentration dependence and the influence of solvent effects upon chiroptical activity are described.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bässler, H., V. I. Arkhipov, E. V. Emelianova, A. Gerhard, A. Hayer, C. Im et J. Rissler. « Excitons in π-conjugated polymers ». Synthetic Metals 135-136 (avril 2003) : 377–82. http://dx.doi.org/10.1016/s0379-6779(02)00603-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yasuda, Takuma, Itaru Osaka, Kazuo Tanaka et Keiji Tanaka. « Special issue : π-conjugated polymers ». Polymer Journal 55, no 4 (avril 2023) : 295. http://dx.doi.org/10.1038/s41428-022-00750-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kausar, Ayesha. « Conjugated Polymer/Graphene Oxide Nanocomposites—State-of-the-Art ». Journal of Composites Science 5, no 11 (5 novembre 2021) : 292. http://dx.doi.org/10.3390/jcs5110292.

Texte intégral
Résumé :
Graphene oxide is an imperative modified form of graphene. Similar to graphene, graphene oxide has gained vast interest for the myriad of industrial applications. Conjugated polymers or conducting polymers are well known organic materials having conducting backbone. These polymers have semiconducting nature due to π-conjugation along the main chain. Doping and modification have been used to enhance the electrical conductivity of the conjugated polymers. The nanocomposites of the conjugated polymers have been reported with the nanocarbon nanofillers including graphene oxide. This review essentially presents the structure, properties, and advancements in the field of conducting polymer/graphene oxide nanocomposites. The facile synthesis, processability, and physical properties of the polymer/graphene oxide nanocomposites have been discussed. The conjugated polymer/graphene oxide nanocomposites have essential significance for the supercapacitors, solar cells, and anti-corrosion materials. Nevertheless, the further advanced properties and technical applications of the conjugated polymer/graphene oxide nanocomposites need to be explored to overcome the challenges related to the high performance.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Nakajima, Kuniharu, et Hiromasa Goto. « Preparation of Network π-Conjugated Copolymers with Ullmann Type Polycondensation ». International Letters of Chemistry, Physics and Astronomy 25 (janvier 2014) : 33–38. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.25.33.

Texte intégral
Résumé :
Ullmann type polycondensations in the presence of CuI and a base were carried out to afford network type π-conjugated copolymers. Infrared absorption spectroscopy measurements and surface observation using a scanning electron microscopy are carried out. Electron spin resonance spectroscopy measurements revealed that the cross-linked copolymers thus obtained contain small amount of copper. This polymerization conveniently allows production of network π-conjugated polymers. The polymer can be expected to have thermo-resistance.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Nakajima, Kuniharu, et Hiromasa Goto. « Preparation of Network π-Conjugated Copolymers with Ullmann Type Polycondensation ». International Letters of Chemistry, Physics and Astronomy 25 (10 janvier 2014) : 33–38. http://dx.doi.org/10.56431/p-pmm6t5.

Texte intégral
Résumé :
Ullmann type polycondensations in the presence of CuI and a base were carried out to afford network type π-conjugated copolymers. Infrared absorption spectroscopy measurements and surface observation using a scanning electron microscopy are carried out. Electron spin resonance spectroscopy measurements revealed that the cross-linked copolymers thus obtained contain small amount of copper. This polymerization conveniently allows production of network π-conjugated polymers. The polymer can be expected to have thermo-resistance.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wei, Xin, et Mingfeng Wang. « Two dimensional semiconducting polymers ». Materials Chemistry Frontiers 4, no 12 (2020) : 3472–86. http://dx.doi.org/10.1039/d0qm00309c.

Texte intégral
Résumé :
Synthetic chemistry towards two-dimensional semiconducting polymers (2DSPs) with planar π-conjugated structures is reviewed and their unique chemical and physical properties derived from the extended π-conjugation are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Song, Sun Gu, Seonggyun Ha, Kyeong-Bae Seo, Jookyeong Lee, Tae-Lim Choi, Thathan Premkumar et Changsik Song. « Binaphthyl-incorporated π-conjugated polymer/gold nanoparticle hybrids : a facile size- and shape-tailored synthesis ». RSC Advances 6, no 109 (2016) : 107994–99. http://dx.doi.org/10.1039/c6ra22234j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Liang, Ziqi, Alexandre Nardes, Dong Wang, Joseph J. Berry et Brian A. Gregg. « Defect Engineering in π-Conjugated Polymers ». Chemistry of Materials 21, no 20 (27 octobre 2009) : 4914–19. http://dx.doi.org/10.1021/cm902031n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Soos, Z. « π-electron models for conjugated polymers ». Solid State Ionics 26, no 2 (mars 1988) : 145. http://dx.doi.org/10.1016/0167-2738(88)90039-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

SOOS, Z., G. HAYDEN et S. RAMASESHA. « π-Electronic structure of conjugated polymers ». Solid State Ionics 32-33 (février 1989) : 567–74. http://dx.doi.org/10.1016/0167-2738(89)90269-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Yamamoto, Takakazu, Hiroki Fukumoto et Take-aki Koizumi. « Metal Complexes of π-Conjugated Polymers ». Journal of Inorganic and Organometallic Polymers and Materials 19, no 1 (13 janvier 2009) : 3–11. http://dx.doi.org/10.1007/s10904-008-9246-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Jha, Prakash Chandra, Emil Jansson et Hans Ågren. « Triplet energies of π-conjugated polymers ». Chemical Physics Letters 424, no 1-3 (juin 2006) : 23–27. http://dx.doi.org/10.1016/j.cplett.2006.04.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Yamamoto, Yohei. « Spherical resonators from π-conjugated polymers ». Polymer Journal 48, no 11 (21 septembre 2016) : 1045–50. http://dx.doi.org/10.1038/pj.2016.81.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Brinkmann, Martin, Lucia Hartmann, Laure Biniek, Kim Tremel et Navaphun Kayunkid. « Orienting Semi-Conducting π-Conjugated Polymers ». Macromolecular Rapid Communications 35, no 1 (2 décembre 2013) : 9–26. http://dx.doi.org/10.1002/marc.201300712.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Dong, Xin, Hongkun Tian, Zhiyuan Xie, Yanhou Geng et Fosong Wang. « Donor–acceptor conjugated polymers based on two-dimensional thiophene derivatives for bulk heterojunction solar cells ». Polymer Chemistry 8, no 2 (2017) : 421–30. http://dx.doi.org/10.1039/c6py01767c.

Texte intégral
Résumé :
D–A conjugated polymers based on accessible 2D conjugated (E)-1,2-bis(5-alkyl-[2,3′-bithiophen]-2′-yl)ethene units possess low bandgaps, shorter π–π stacking distances, higher mobility and higher photovoltaic performance.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Urgel, José I., Julian Bock, Marco Di Giovannantonio, Pascal Ruffieux, Carlo A. Pignedoli, Milan Kivala et Roman Fasel. « On-surface synthesis of π-conjugated ladder-type polymers comprising nonbenzenoid moieties ». RSC Advances 11, no 38 (2021) : 23437–41. http://dx.doi.org/10.1039/d1ra03253d.

Texte intégral
Résumé :
On-surface synthesis provides a powerful approach toward the fabrication of π-conjugated ladder polymers (CLPs). The synthesis of nonbenzenoid CLPs is achieved following two activation steps, including the formation of an intermediate 1D polymer.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Zhai, Yaxin, Chuanxiang Sheng et Z. Valy Vardeny. « Singlet fission of hot excitons in π -conjugated polymers ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 373, no 2044 (28 juin 2015) : 20140327. http://dx.doi.org/10.1098/rsta.2014.0327.

Texte intégral
Résumé :
We used steady-state photoinduced absorption (PA), excitation dependence (EXPA( ω )) spectrum of the triplet exciton PA band, and its magneto-PA (MPA( B )) response to investigate singlet fission (SF) of hot excitons into two separated triplet excitons, in two luminescent and non-luminescent π -conjugated polymers. From the high energy step in the triplet EXPA( ω ) spectrum of the luminescent polymer poly(dioctyloxy)phenylenevinylene (DOO-PPV) films, we identified a hot-exciton SF (HE-SF) process having threshold energy at E ≈2 E T (=2.8 eV, where E T is the energy of the lowest lying triplet exciton), which is about 0.8 eV above the lowest singlet exciton energy. The HE-SF process was confirmed by the triplet MPA( B ) response for excitation at E >2 E T , which shows typical SF response. This process is missing in DOO-PPV solution, showing that it is predominantly interchain in nature. By contrast, the triplet EXPA( ω ) spectrum in the non-luminescent polymer polydiacetylene (PDA) is flat with an onset at E = E g (≈2.25 eV). From this, we infer that intrachain SF that involves a triplet–triplet pair state, also known as the ‘dark’ 2A g exciton, dominates the triplet photogeneration in PDA polymer as E g >2 E T . The intrachain SF process was also identified from the MPA( B ) response of the triplet PA band in PDA. Our work shows that the SF process in π -conjugated polymers is a much more general process than thought previously.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ohshita, Joji, Masayuki Miyazaki, Makoto Nakashima, Daiki Tanaka, Yousuke Ooyama, Takuya Sasaki, Yoshihito Kunugi et Yasushi Morihara. « Synthesis of conjugated D–A polymers bearing bi(dithienogermole) as a new donor component and their applications to polymer solar cells and transistors ». RSC Advances 5, no 17 (2015) : 12686–91. http://dx.doi.org/10.1039/c4ra16749j.

Texte intégral
Résumé :
Donor–acceptor π-conjugated polymers with alternating bi(dithienogermole) and benzo- or pyridinothiadiazole units were prepared and their potential applications to bulk heterojunction-type polymer solar cells and thin film transistors were explored.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Rudyak, Vladimir Yu, Alexey A. Gavrilov, Daria V. Guseva, Shih-Huang Tung et Pavel V. Komarov. « Accounting for π–π stacking interactions in the mesoscopic models of conjugated polymers ». Molecular Systems Design & ; Engineering 5, no 6 (2020) : 1137–46. http://dx.doi.org/10.1039/d0me00034e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Trhlíková, Olga, Sviatoslav Hladyš, Jan Sedláček et Dmitrij Bondarev. « SEC-DAD - Effective Method for the Characterization of π-Conjugated Polymers ». Materials Science Forum 851 (avril 2016) : 167–72. http://dx.doi.org/10.4028/www.scientific.net/msf.851.167.

Texte intégral
Résumé :
In the article we present a unique analytical tool for the characterization of conjugated polymers – SEC-DAD (Size Exclusion Chromatography – Diode Array Detector). The chromatographic separation is performed in a conventional SEC mode which provides narrow molecular-weight fractions of the analyzed polymer. The uniqueness of the SEC-DAD combination comes out with the utilization of DAD for the monitoring the absorption characteristics of particular fractions along the molecular weight distribution. If applied in the characterization of the conjugated polymers, SEC-DAD helps to reveal the dependencies of (i) the extent of conjugation and (ii) covalent and configuration structure of the polymer on the molecular weight.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wan, Tao, Xiaojun Yin, Chengjun Pan, Danqing Liu, Xiaoyan Zhou, Chunmei Gao, Wai-Yeung Wong et Lei Wang. « Boosting the Adhesivity of π-Conjugated Polymers by Embedding Platinum Acetylides towards High-Performance Thermoelectric Composites ». Polymers 11, no 4 (1 avril 2019) : 593. http://dx.doi.org/10.3390/polym11040593.

Texte intégral
Résumé :
Single-walled carbon nanotubes (SWCNTs) incorporated with π-conjugated polymers, have proven to be an effective approach in the production of advanced thermoelectric composites. However, the studied polymers are mainly limited to scanty conventional conductive polymers, and their performances still remain to be improved. Herein, a new planar moiety of platinum acetylide in the π-conjugated system is introduced to enhance the intermolecular interaction with the SWCNTs via π–π and d–π interactions, which is crucial in regulating the thermoelectric performances of SWCNT-based composites. As expected, SWCNT composites based on the platinum acetylides embedded polymers displayed a higher power factor (130.7 ± 3.8 μW·m−1·K−2) at ambient temperature than those without platinum acetylides (59.5 ± 0.7 μW·m−1·K−2) under the same conditions. Moreover, the strong interactions between the platinum acetylide-based polymers and the SWCNTs are confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Wang, Yufei, Xueliang Hou, Chi Cheng, Ling Qiu, Xuehua Zhang, George P. Simon et Dan Li. « Optical Characterisation of Non-Covalent Interactions between Non-Conjugated Polymers and Chemically Converted Graphene ». Australian Journal of Chemistry 67, no 1 (2014) : 168. http://dx.doi.org/10.1071/ch13243.

Texte intégral
Résumé :
Optical characterisation using dye molecules as probes was used to study the non-covalent interactions between chemically converted graphene (CCG) and non-conjugated, water soluble polymers in aqueous solution. The strong adsorption of non-conjugated polymers such as poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) on CCG is observed by fluorescence and ultraviolet-visible spectroscopy and atomic force microscopy, and this leads to desorption of π-conjugated molecules from CCG. Such adsorption/desorption behaviour can be tailored by modifying the molecular weight of polymers and the chemistry of graphene. This finding provides a facile and non-covalent approach to the functionalisation of CCG and opens up new opportunities for the fabrication of graphene/polymer nanocomposites.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ohshita, Joji, Kazuaki Kawashima, Arihiro Iwata, Heqing Tang, Miho Higashi et Atsutaka Kunai. « Selective Substitution of Hex2SiFCl for the Preparation of Polymers with Two Different Alternate π-Electron Systems Linked by Hex2Si Units ». Zeitschrift für Naturforschung B 59, no 11-12 (1 décembre 2004) : 1332–36. http://dx.doi.org/10.1515/znb-2004-11-1253.

Texte intégral
Résumé :
Abstract Organosilicon polymers having a regular alternate arrangement of -Hex2Si-π-Hex2Si-π’-(π, π’ = π-electron system) were prepared by successive treatment of Hex2SiFCl with dilithiated π- conjugated compounds, Li-π-Li and Li-π’ -Li (π = diethynylanthracene, diethynylpyrene, diethynylcarbazole; π’ = bithiophenediyl, terthiophenediyl). UV-vis absorption spectra and cyclic voltammograms of the resulting polymers indicated that the two π-electron systems, π and π’, are electronically isolated, while the emission spectra indicated that energy transfer between the π-electron systems occurred in the excited states.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Pan, Chengjun, Kazunori Sugiyasu, Yutaka Wakayama, Akira Sato et Masayuki Takeuchi. « Thermoplastic Fluorescent Conjugated Polymers : Benefits of Preventing π-π Stacking ». Angewandte Chemie 125, no 41 (22 août 2013) : 10975–79. http://dx.doi.org/10.1002/ange.201305728.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Pan, Chengjun, Kazunori Sugiyasu, Yutaka Wakayama, Akira Sato et Masayuki Takeuchi. « Thermoplastic Fluorescent Conjugated Polymers : Benefits of Preventing π-π Stacking ». Angewandte Chemie International Edition 52, no 41 (22 août 2013) : 10775–79. http://dx.doi.org/10.1002/anie.201305728.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Mikie, Tsubasa, et Itaru Osaka. « Small-bandgap quinoid-based π-conjugated polymers ». Journal of Materials Chemistry C 8, no 41 (2020) : 14262–88. http://dx.doi.org/10.1039/d0tc01041c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Barford, William, et Xibai Xu. « Groundstate dispersion interaction between π-conjugated polymers ». Journal of Chemical Physics 128, no 3 (21 janvier 2008) : 034705. http://dx.doi.org/10.1063/1.2822127.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Kersting, R., U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler et E. O. Göbel. « Femtosecond energy relaxation in π-conjugated polymers ». Physical Review Letters 70, no 24 (14 juin 1993) : 3820–23. http://dx.doi.org/10.1103/physrevlett.70.3820.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wang, Gang, Nils Persson, Ping-Hsun Chu, Nabil Kleinhenz, Boyi Fu, Mincheol Chang, Nabankur Deb et al. « Microfluidic Crystal Engineering of π-Conjugated Polymers ». ACS Nano 9, no 8 (22 juillet 2015) : 8220–30. http://dx.doi.org/10.1021/acsnano.5b02582.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ley, K. D., et K. S. Schanze. « Photophysics of metal-organic π-conjugated polymers ». Coordination Chemistry Reviews 171 (avril 1998) : 287–307. http://dx.doi.org/10.1016/s0010-8545(98)90043-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Guo, Xin, Martin Baumgarten et Klaus Müllen. « Designing π-conjugated polymers for organic electronics ». Progress in Polymer Science 38, no 12 (décembre 2013) : 1832–908. http://dx.doi.org/10.1016/j.progpolymsci.2013.09.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Rosu, Cornelia, Nabil Kleinhenz, Dalsu Choi, Christopher J. Tassone, Xujun Zhang, Jung Ok Park, Mohan Srinivasarao, Paul S. Russo et Elsa Reichmanis. « Protein-Assisted Assembly of π-Conjugated Polymers ». Chemistry of Materials 28, no 2 (10 décembre 2015) : 573–82. http://dx.doi.org/10.1021/acs.chemmater.5b04192.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

List, E. J. W., C. Creely, G. Leising, N. Schulte, A. D. Schlüter, U. Scherf, K. Müllen et W. Graupner. « Excitation energy migration in π-conjugated polymers ». Synthetic Metals 119, no 1-3 (mars 2001) : 659–60. http://dx.doi.org/10.1016/s0379-6779(00)01417-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Guo, F., M. Chandross et S. Mazumdar. « Theory of Biexcitons in π-Conjugated Polymers ». Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 256, no 1 (novembre 1994) : 53–62. http://dx.doi.org/10.1080/10587259408039231.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Song, Su Hee, Young Eup Jin, Joo Young Shim, Kwang Hee Lee et Hong Suk Suh. « Organic Syntheses and Characteristics of Novel Conjugated Polymers for AMOLEDs ». Advances in Science and Technology 75 (octobre 2010) : 91–96. http://dx.doi.org/10.4028/www.scientific.net/ast.75.91.

Texte intégral
Résumé :
Conjugated polymers with a stabilized blue emission are of importance for the realization of large flat panel AMOLED displays using polymer light-emitting diodes. Several novel conjugated polymers using newly developed templates for the stabilized EL emission are reported. Poly(2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[def]phenanthrene)) (PCPP) is a new class of blue-emitting polymers utilizing a new back-bone. This material emits a efficient blue EL without exhibiting any unwanted peak in the long wavelength region (green region) even after prolonged annealing at an elevated temperature of 150oC in air, or operation of the device. New electroluminescent spiro-PCPPs, poly((2,6-(3',6'-bis(2-ethylhexyloxy)-spiro(4H-cyclopenta[def] phenanthrene-4,9'-[9H]fluorene)))-alt-(2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[def]phenanthrene))) (spiro-PCPP-alt-PCPP) and poly((2,6-(3',6'-bis(2-ethylhexyloxy)-spiro(4H-cyclopenta[def] phenanthrene-4,9'-[9H]fluorene)))-alt-(1,4-phenylene)) (spiro-PCPPP), have been synthesized by the Suzuki polymerization. The PL emission spectra of polymers in THF solution show a same maximum peak at 397 nm. The maximum PL emission spectra of polymers appeared at around 463 and 456 nm in solid state, respectively. The PL spectra in solid thin films show more red-shifted over 60 nm than solution conditions. The blue emissions at 400-409 nm for the π–π* transitions of conjugated polymer backbone are almost completely quenched or decreased.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Dai, Chunhui, et Bin Liu. « Conjugated polymers for visible-light-driven photocatalysis ». Energy & ; Environmental Science 13, no 1 (2020) : 24–52. http://dx.doi.org/10.1039/c9ee01935a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Santos, Jose, Pavel Jelínek, David Ecija et Nazario Martin. « (Invited) On-Surface Synthesis of Acene Polymers ». ECS Meeting Abstracts MA2022-01, no 11 (7 juillet 2022) : 811. http://dx.doi.org/10.1149/ma2022-0111811mtgabs.

Texte intégral
Résumé :
The design and study of π-conjugated polymers has received great attention along the last decades. The relevant optical and electronic properties stemming from their delocalised π-electrons allow for a number of applications in the emerging field of organic electronics. However, the inherent limited solubility of planar π-conjugated systems hinders their development, forcing chemists to introduce ancillary solubilising side-chains. On the other hand, ultrahigh-vacuum on-surface synthesis has become a powerful discipline that enables designing with atomistic precision a new plethora of molecular compounds, polymers, and nanomaterials that otherwise are unachievable by conventional organic chemistry. Herein we present a novel on-surface chemical transformation that allows obtaining π-conjugated acene polymers from simple aromatic molecules carrying =CBr2 functionalities. The deposition of such precursors on an Au(111) surface gives rise to close-packed assemblies. Thermal annealing promotes the debromination of the species that thereafter homocouple and give rise to long anthracene wires linked by acetylene bridges, featuring a bandgap of 1.5 eV (see figure below). When larger acenes or periacenes are used (i.e. pentacene, bisanthene, peripentacene) the resulting polymers undergo dramatic structural and electronic changes. Non-contact-AFM evince that the benzoid subunits evolve from aromatic (anthracene) to quinoid (pentacene, bisanthene...), while the alkyne linkers turn into cumulenic. The STM images allow witnessing the HOMO-LUMO levels crossing from anthracene to pentacene. This swap destabilises the aromatic structure and enables a biradical-quinoid one, that permit almost vanishing bandgaps below 0.35 eV. These findings can also be rationalised by topological band gap theory: DFT, tight binding and GW calculations predict that polymers these quasi-metallic polymers exhibit a topologically non-trivial electronic structure. Our results herald novel pathways to engineer π-conjugated polymers on solid surfaces, addressing the relevant family of acenes and, thus, contributing to develop the field of on-surface chemistry and to steer the design of modern low bandgap polymers. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
45

van der Scheer, Pieter, Quintin van Zuijlen et Joris Sprakel. « Rigidochromic conjugated polymers carrying main-chain molecular rotors ». Chemical Communications 55, no 77 (2019) : 11559–62. http://dx.doi.org/10.1039/c9cc05713g.

Texte intégral
Résumé :
We design and prepare rigidochromic conjugated polymers that carry molecular rotors in the main chain. We show how a suitable design maintains the mechanosensitivity of the rotors upon incorporation into an extended π-conjugated system.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Salaneck, W. R., et J. L. Brédas. « Conjugated Polymer Surfaces and Interfaces for Light-Emitting Devices ». MRS Bulletin 22, no 6 (juin 1997) : 46–51. http://dx.doi.org/10.1557/s0883769400033625.

Texte intégral
Résumé :
Since the discovery of high electrical conductivity in doped polyacetylene in 1977, π-conjugated polymers have emerged as viable semiconducting electronic materials for numerous applications. In the context of polymer electronic devices, one must understand the nature of the polymer surface's electronic structure and the interface with metals. For conjugated polymers, photoelectron spectroscopy—especially in connection with quantum-chemical modeling—provides a maximum amount of both chemical and electronic structural information in one (type of) measurement. Some details of the early stages of interface formation with metals on the surfaces of conjugated polymers and model molecular solids in connection with polymer-based light-emitting devices (LEDs) are outlined. Then a chosen set of issues is summarized in a band structure diagram for a polymer LED, based upon a “clean calcium electrode” on the clean surface of a thin film of poly(p-phenylene vinylene) (PPV). This diagram helps to point out the complexity of the systems involved in polymer LEDs. No such thing as “an ideal metal-on-polymer contact” exists. There is always some chemistry occurring at the interface.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Yokozawa, Tsutomu, Yutaka Nanashima, Haruhiko Kohno, Ryosuke Suzuki, Masataka Nojima et Yoshihiro Ohta. « Catalyst-transfer condensation polymerization for precision synthesis of π-conjugated polymers ». Pure and Applied Chemistry 85, no 3 (12 août 2012) : 573–87. http://dx.doi.org/10.1351/pac-con-12-03-13.

Texte intégral
Résumé :
Catalyst-transfer condensation polymerization, in which the catalyst activates the polymer end-group, followed by reaction with the monomer and transfer of the catalyst to the elongated polymer end-group, has made it feasible to control the molecular weight, polydispersity, and end-groups of π-conjugated polymers. In this paper, our recent progress of Kumada–Tamao Ni catalyst-transfer coupling polymerization and Suzuki–Miyaura Pd catalyst-transfer coupling polymerization is described. In the former polymerization method, the polymerization of Grignard pyridine monomers was investigated for the synthesis of well-defined n-type π-conjugated polymers. Para-type pyridine monomer, 3-alkoxy-2-bromo-5-chloromagnesiopyridine, afforded poly(pyridine-2,5-diyl) with low solubility in the reaction solvent, whereas meta-type pyridine monomer, 2-alkoxy-5-bromo-3-chloromagnesio-pyridine, yielded soluble poly(pyridine-3,5-diyl) with controlled molecular weight and low polydispersity. In Suzuki–Miyaura catalyst-transfer coupling polymerization, t-Bu3PPd(Ph)Br was an effective catalyst, and well-defined poly(p-phenylene) and poly(3-hexylthiophene) (P3HT) were obtained by concomitant use of CsF/18-crown-6 as a base in tetrahydrofuran (THF) and a small amount of water.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Ji, Xiaozhou, et Lei Fang. « Quinoidal conjugated polymers with open-shell character ». Polymer Chemistry 12, no 10 (2021) : 1347–61. http://dx.doi.org/10.1039/d0py01298j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Yan, Zhuojun, Jinni Liu, Congke Miao, Pinjie Su, Guiyue Zheng, Bo Cui, Tongfei Geng et al. « Pyrene-Based Fluorescent Porous Organic Polymers for Recognition and Detection of Pesticides ». Molecules 27, no 1 (26 décembre 2021) : 126. http://dx.doi.org/10.3390/molecules27010126.

Texte intégral
Résumé :
Eating vegetables with pesticide residues over a long period of time causes serious adverse effects on the human body, such as acute poisoning, chronic poisoning, and endocrine system interference. To achieve the goal of a healthy society, it is an urgent issue to find a simple and effective method to detect organic pesticides. In this work, two fluorescent porous organic polymers, LNU-45 and LNU-47 (abbreviation for Liaoning University), were prepared using π-conjugated dibromopyrene monomer and boronic acid compounds as building units through a Suzuki coupling reaction. Due to the large π-electron delocalization effect, the resulting polymers revealed enhanced fluorescence performance. Significantly, in sharp contrast with the planar π-conjugated polymer framework (LNU-47), the distorted conjugated structure (LNU-45) shows a higher specific surface area and provides a broad interface for analyte interaction, which is helpful to achieve rapid response and detection sensitivity. LNU-45 exhibits strong fluorescence emission at 469 nm after excitation at 365 nm in THF solution, providing strong evidence for its suitability as a luminescent chemosensor for organic pesticides. The fluorescence quenching coefficients of LNU-45 for trifluralin and dicloran were 5710 and 12,000 (LNU-47 sample by ca. 1.98 and 3.38 times), respectively. Therefore, LNU-45 serves as an effective “real-time” sensor for the detection of trifluralin and dicloran with high sensitivity and selectivity.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zheng, Feng, Yusuke Komatsuzaki, Naoki Shida, Hiroki Nishiyama, Shinsuke Inagi et Ikuyoshi Tomita. « Te–Li Exchange Reaction of Tellurophene‐Containing π‐Conjugated Polymer as Potential Synthetic Tool for Functional π‐Conjugated Polymers ». Macromolecular Rapid Communications 40, no 20 (2 août 2019) : 1900171. http://dx.doi.org/10.1002/marc.201900171.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie