Articles de revues sur le sujet « Ζ-crystallin »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Ζ-crystallin.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Ζ-crystallin ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Malik, Ajamaluddin, Hajar Ahmed Almaharfi, Javed Masood Khan, Malik Hisamuddin, Salman Freeh Alamery, Samina Hyder Haq et Mohammad Z. Ahmed. « Protection of ζ-crystallin by α-crystallin under thermal stress ». International Journal of Biological Macromolecules 167 (janvier 2021) : 289–98. http://dx.doi.org/10.1016/j.ijbiomac.2020.11.183.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Curthoys, Norman P. « ζ-Crystallin : a tale of two cells ». Kidney International 76, no 7 (octobre 2009) : 691–93. http://dx.doi.org/10.1038/ki.2009.227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Duhaiman, Ali S. « Kinetic properties of camel lens ζ-crystallin ». International Journal of Biochemistry & ; Cell Biology 28, no 10 (octobre 1996) : 1163–68. http://dx.doi.org/10.1016/1357-2725(96)00048-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Duhaiman, Ali S. « Characterization of ζ-Crystallin Inhibition by Juglone ». Biochemical and Biophysical Research Communications 218, no 3 (janvier 1996) : 648–52. http://dx.doi.org/10.1006/bbrc.1996.0116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schroeder, Jill M., Wenlin Liu et Norman P. Curthoys. « pH-responsive stabilization of glutamate dehydrogenase mRNA in LLC-PK1-F+cells ». American Journal of Physiology-Renal Physiology 285, no 2 (août 2003) : F258—F265. http://dx.doi.org/10.1152/ajprenal.00422.2002.

Texte intégral
Résumé :
During chronic metabolic acidosis, the adaptive increase in rat renal ammoniagenesis is sustained, in part, by increased expression of mitochondrial glutaminase (GA) and glutamate dehydrogenase (GDH) enzymes. The increase in GA activity results from the pH-responsive stabilization of GA mRNA. The 3′-untranslated region (3′-UTR) of GA mRNA contains a direct repeat of an eight-base AU-rich element (ARE) that binds ζ-crystallin/NADPH:quinone reductase (ζ-crystallin) with high affinity and functions as a pH-response element. RNA EMSAs established that ζ-crystallin also binds to the full-length 3′-UTR of GDH mRNA. This region contains four eight-base sequences that are 88% identical to one of the two GA AREs. Direct binding assays and competition studies indicate that the two individual eight-base AREs from GA mRNA and the four individual GDH sequences bind ζ-crystallin with different affinities. Insertion of the 3′-UTR of GDH cDNA into a β-globin expression vector (pβG) produced a chimeric mRNA that was stabilized when LLC-PK1-F+cells were transferred to acidic medium. A pH-responsive stabilization was also observed using a βG construct that contained only the single GDH4 ARE and a destabilizing element from phospho enolpyruvate carboxykinase mRNA. Therefore, during acidosis, the pH-responsive stabilization of GDH mRNA may be accomplished by the same mechanism that affects an increase in GA mRNA.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dominova, Irina N., et Valery V. Zhukov. « Mollusc Crystallins : Physical and Chemical Properties and Phylogenetic Analysis ». Diversity 14, no 10 (1 octobre 2022) : 827. http://dx.doi.org/10.3390/d14100827.

Texte intégral
Résumé :
The purpose of the present study was to perform bioinformatic analysis of crystallin diversity in aquatic molluscs based on the sequences in the NCBI Protein database. The objectives were as follows: (1) analysis of some physical and chemical properties of mollusc crystallins, (2) comparison of mollusc crystallins with zebrafish and cubomedusa Tripedalia cystophora crystallins, and (3) determination of the most probable candidates for the role of gastropod eye crystallins. The calculated average GRAVY values revealed that the majority of the seven crystallin groups, except for μ- and ζ-crystallins, were hydrophilic proteins. The predominant predicted secondary structures of the crystallins in most cases were α-helices and coils. The highest values of refractive index increment (dn/dc) were typical for crystallins of aquatic organisms with known lens protein composition (zebrafish, cubomedusa, and octopuses) and for S-crystallin of Pomacea canaliculata. The evolutionary relationships between the studied crystallins, obtained from multiple sequence alignments using Clustal Omega and MUSCLE, and the normalized conservation index, calculated by Mirny, showed that the most conservative proteins were Ω-crystallins but the most diverse were S-crystallins. The phylogenetic analysis of crystallin was generally consistent with modern mollusc taxonomy. Thus, α- and S-, and, possibly, J1A-crystallins, can be assumed to be the most likely candidates for the role of gastropod lens crystallins.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bazzi, Mohammad D., Nayyar Rabbani et Ali S. Duhaiman. « Sequential inactivation of ζ-crystallin by o-phthalaldehyde ». Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1597, no 1 (mai 2002) : 67–73. http://dx.doi.org/10.1016/s0167-4838(02)00272-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sharon-Friling, Ronit, Jill Richardson, Sally Sperbeck, Douglas Lee, Michael Rauchman, Richard Maas, Anand Swaroop et Graeme Wistow. « Lens-Specific Gene Recruitment of ζ-Crystallin through Pax6, Nrl-Maf, and Brain Suppressor Sites ». Molecular and Cellular Biology 18, no 4 (1 avril 1998) : 2067–76. http://dx.doi.org/10.1128/mcb.18.4.2067.

Texte intégral
Résumé :
ABSTRACT ζ-Crystallin is a taxon-specific crystallin, an enzyme which has undergone direct gene recruitment as a structural component of the guinea pig lens through a Pax6-dependent mechanism. Tissue specificity arises through a combination of effects involving three sites in the lens promoter. The Pax6 site (ZPE) itself shows specificity for an isoform of Pax6 preferentially expressed in lens cells. High-level expression of the promoter requires a second site, identical to an αCE2 site or half Maf response element (MARE), adjacent to the Pax6 site. A promoter fragment containing Pax6 and MARE sites gives lens-preferred induction of a heterologous promoter. Complexes binding the MARE in lens nuclear extracts are antigenically related to Nrl, and cotransfection with Nrl elevates ζ-crystallin promoter activity in lens cells. A truncated ζ promoter containing Nrl-MARE and Pax6 sites has a high level of expression in lens cells in transgenic mice but is also active in the brain. Suppression of the promoter in the brain requires sequences between −498 and −385, and a site in this region forms specific complexes in brain extract. A three-level model for lens-specific Pax6-dependent expression and gene recruitment is suggested: (i) binding of a specific isoform of Pax6; (ii) augmentation of expression through binding of Nrl or a related factor; and (iii) suppression of promoter activity in the central nervous system by an upstream negative element in the brain but not in the lens.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bazzi, Mohammad D. « ζ-Crystallin displays strong selectivity for salicylic acid over aspirin ». Biochemical and Biophysical Research Communications 293, no 1 (avril 2002) : 440–45. http://dx.doi.org/10.1016/s0006-291x(02)00248-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Simpanya, Mukoma F., Victor R. Leverenz et Frank J. Giblin. « Expression and purification of his-tagged recombinant mouse ζ-crystallin ». Protein Expression and Purification 69, no 2 (février 2010) : 147–52. http://dx.doi.org/10.1016/j.pep.2009.08.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Abdullah, Ejlal Mohamed, Samina Hyder Haq, Mohammed Asif Ahmed, Javed Masood Khan, Salman Freeh Alamery et Ajamaluddin Malik. « Structural stability and solubility of glycated camel lens ζ-crystallin ». International Journal of Biological Macromolecules 158 (septembre 2020) : 384–93. http://dx.doi.org/10.1016/j.ijbiomac.2020.04.091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Duhaiman, Ali S. « Inhibition of ζ-crystallin by coumarins : A structure-activity study ». Journal of Protein Chemistry 15, no 3 (avril 1996) : 261–64. http://dx.doi.org/10.1007/bf01887114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Bazzi, Mohammad D., Nayyar Rabbani et Ali S. Duhaiman. « High-affinity binding of NADPH to camel lens ζ-crystallin ». Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1544, no 1-2 (janvier 2001) : 283–88. http://dx.doi.org/10.1016/s0167-4838(00)00228-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Gonzalez, Pedro, P. Vasantha Rao et J. Samuel Zigler. « Organization of the Human ζ-Crystallin/Quinone Reductase Gene (CRYZ) ». Genomics 21, no 2 (mai 1994) : 317–24. http://dx.doi.org/10.1006/geno.1994.1272.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Malik, Ajamaluddin, Shurog Albogami, Abdulrahman M. Alsenaidy, Abeer M. Aldbass, Mohammad A. Alsenaidy et Shams Tabrez Khan. « Spectral and thermal properties of novel eye lens ζ-crystallin ». International Journal of Biological Macromolecules 102 (septembre 2017) : 1052–58. http://dx.doi.org/10.1016/j.ijbiomac.2017.04.101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Lee, Douglas C., Pedro Gonzalez et Graeme Wistow. « ζ-Crystallin : A Lens-specific Promoter and the Gene Recruitment of an Enzyme as a Crystallin ». Journal of Molecular Biology 236, no 3 (février 1994) : 669–78. http://dx.doi.org/10.1006/jmbi.1994.1178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

., Abdulaziz A. AI-Hami. « Purification and Characterization of ζ-Crystallin/Quinone Oxidoreductase from Camel Liver ». Pakistan Journal of Biological Sciences 7, no 10 (15 septembre 2004) : 1772–76. http://dx.doi.org/10.3923/pjbs.2004.1772.1776.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Bazzi, Mohammad D., Nayyar Rabbani et Ali S. Duhaiman. « Hydrophobicity of the NADPH binding domain of camel lens ζ-crystallin ». Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1546, no 1 (mars 2001) : 71–78. http://dx.doi.org/10.1016/s0167-4838(00)00264-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Fujii, Yutaka, Hisashi Kimoto, Keiko Ishikawa, Kikuko Watanabe, Yoshifumi Yokota, Noboru Nakai et Akira Taketo. « Taxon-specific ζ-Crystallin in Japanese Tree Frog (Hyla japonica) Lens ». Journal of Biological Chemistry 276, no 30 (22 mai 2001) : 28134–39. http://dx.doi.org/10.1074/jbc.m102880200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Mano, Jun’ichi, Elena Babiychuk, Enric Belles-Boix, Jun Hiratake, Akira Kimura, Dirk Inzé, Sergei Kushnir et Kozi Asada. « A novel NADPH:diamide oxidoreductase activity in Arabidopsis thaliana P1 ζ-crystallin ». European Journal of Biochemistry 267, no 12 (juin 2000) : 3661–71. http://dx.doi.org/10.1046/j.1432-1327.2000.01398.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Duhaiman, Ali S. « Inhibition of Camel Lens ζ-Crystallin/ Nadph:Quinone Oxidoreductase Activity by Cibacron Blue ». Journal of Enzyme Inhibition 10, no 4 (janvier 1996) : 263–69. http://dx.doi.org/10.3109/14756369609036533.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Al-Hamidi, Abdulaziz, Riskuwa Shehu et Ali Duhaiman. « Inhibition of camel lens ζ-crystallin/NADPH:Quinone oxidoreductase activity by chloranilic acid ». IUBMB Life 41, no 2 (février 1997) : 415–21. http://dx.doi.org/10.1080/15216549700201431.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Bazzi, Mohammad D., Nayyar Rabbani et Ali S. Duhaiman. « Inhibition of camel lens ζ-crystallin by aspirin and aspirin-like analgesics ». International Journal of Biochemistry & ; Cell Biology 34, no 1 (janvier 2002) : 70–77. http://dx.doi.org/10.1016/s1357-2725(01)00099-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Rabbani, Nayyar, et Ali S. Duhaiman. « Inhibition of camel lens ζ-crystallin/NADPH:quinone oxidoreductase by pyridoxal-5′-phosphate ». Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1388, no 1 (octobre 1998) : 175–80. http://dx.doi.org/10.1016/s0167-4838(98)00185-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

VASANTHARAO, P., et J. SAMUELZIGLERJR. « Purification and characterization of ζ-crystallin / quinone reductase from guinea pig liver ». Biochimica et Biophysica Acta (BBA) - General Subjects 1117, no 3 (27 octobre 1992) : 315–20. http://dx.doi.org/10.1016/0304-4165(92)90030-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Garland, Donita, P. Vasantha Rao, Antonella Del Corso, Umberto Mura et J. Samuel Zigler. « ζ-Crystallin is a major protein in the lens of Camelus dromedarius ». Archives of Biochemistry and Biophysics 285, no 1 (février 1991) : 134–36. http://dx.doi.org/10.1016/0003-9861(91)90339-k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Szutkowska, Marta, Catherine Vernimmen, Huguette Debaix, Olivier Devuyst, Gérard Friedlander et Zoubida Karim. « ζ-Crystallin mediates the acid pH-induced increase of BSC1 cotransporter mRNA stability ». Kidney International 76, no 7 (octobre 2009) : 730–38. http://dx.doi.org/10.1038/ki.2009.265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Duhaiman, Ali S., et Nayyar Rabbani. « Involvement of a Disulfide Bridge in Catalytic Activity of Camel Lens ζ-Crystallin ». Biochemical and Biophysical Research Communications 221, no 2 (avril 1996) : 229–33. http://dx.doi.org/10.1006/bbrc.1996.0578.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Gonzalez, P., P. V. Rao et J. S. Zigler. « Molecular Cloning and Sequencing of ζ-Crystallin/Quinone Reductase cDNA from Human Liver ». Biochemical and Biophysical Research Communications 191, no 3 (mars 1993) : 902–7. http://dx.doi.org/10.1006/bbrc.1993.1302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Porté, Sergio, Agrin Moeini, Irene Reche, Naeem Shafqat, Udo Oppermann, Jaume Farrés et Xavier Parés. « Kinetic and structural evidence of the alkenal/one reductase specificity of human ζ-crystallin ». Cellular and Molecular Life Sciences 68, no 6 (11 septembre 2010) : 1065–77. http://dx.doi.org/10.1007/s00018-010-0508-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Edwards, Karen J., John D. Barton, Jamie Rossjohn, Jennifer M. Thorn, Garry L. Taylor et David L. Ollis. « Structural and Sequence Comparisons of Quinone Oxidoreductase, ζ-Crystallin, and Glucose and Alcohol Dehydrogenases ». Archives of Biochemistry and Biophysics 328, no 1 (avril 1996) : 173–83. http://dx.doi.org/10.1006/abbi.1996.0158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Rao, P. Vasantha, et J. Samuel Zigler. « ζ-Crystallin from guinea pig lens is capable of functioning catalytically as an oxidoreductase ». Archives of Biochemistry and Biophysics 284, no 1 (janvier 1991) : 181–85. http://dx.doi.org/10.1016/0003-9861(91)90281-m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Duncan, Melinda K., John I. Haynes, Ales Cvekl et Joram Piatigorsky. « Dual Roles for Pax-6 : a Transcriptional Repressor of Lens Fiber Cell-Specific β-Crystallin Genes ». Molecular and Cellular Biology 18, no 9 (1 septembre 1998) : 5579–86. http://dx.doi.org/10.1128/mcb.18.9.5579.

Texte intégral
Résumé :
ABSTRACT It has been demonstrated previously that Pax-6, a paired domain (PD)/homeodomain (HD) transcription factor critical for eye development, contributes to the activation of the αB-, αA-, δ1-, and ζ-crystallin genes in the lens. Here we have examined the possibility that the inverse relationship between the expression of Pax-6 and β-crystallin genes within the developing chicken lens reflects a negative regulatory role of Pax-6. Cotransfection of a plasmid containing the βB1-crystallin promoter fused to the chloramphenicol acetyltransferase reporter gene and a plasmid containing the full-length mouse Pax-6 coding sequences into primary embryonic chicken lens epithelial cells or fibroblasts repressed the activity of this promoter by as much as 90%. Pax-6 constructs lacking the C-terminal activation domain repressed βB1-crystallin promoter activity as effectively as the full-length protein, but the PD alone or Pax-6 (5a), a splice variant with an altered PD affecting its DNA binding specificity, did not. DNase footprinting analysis revealed that truncated Pax-6 (PD+HD) binds to three regions (−183 to −152, −120 to −48, and −30 to +1) of the βB1-crystallin promoter. Earlier experiments showed that the βB1-crystallin promoter sequence from −120 to −48 contains a cis element (PL2 at −90 to −76) that stimulates the activity of a heterologous promoter in lens cells but not in fibroblasts. In the present study, we show by electrophoretic mobility shift assay and cotransfection that Pax-6 binds to PL2 and represses its ability to activate promoter activity; moreover, mutation of PL2 eliminated binding by Pax-6. Taken together, our data indicate that Pax-6 (via its PD and HD) represses the βB1-crystallin promoter by direct interaction with the PL2 element. We thus suggest that the relatively high concentration of Pax-6 contributes to the absence of βB1-crystallin gene expression in lens epithelial cells and that diminishing amounts of Pax-6 in lens fiber cells during development allow activation of this gene.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Bazzi, Mohammad D. « Interaction of Camel Lens ζ-Crystallin with Quinones : Portrait of a Substrate by Fluorescence Spectroscopy ». Archives of Biochemistry and Biophysics 395, no 2 (novembre 2001) : 185–90. http://dx.doi.org/10.1006/abbi.2001.2538.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Schroeder, Jill M., Hend Ibrahim, Lynn Taylor et Norman P. Curthoys. « Role of deadenylation and AUF1 binding in the pH-responsive stabilization of glutaminase mRNA ». American Journal of Physiology-Renal Physiology 290, no 3 (mars 2006) : F733—F740. http://dx.doi.org/10.1152/ajprenal.00250.2005.

Texte intégral
Résumé :
During chronic metabolic acidosis, increased expression of renal glutaminase (GA) results from selective stabilization of the GA mRNA. This response is mediated by a direct repeat of an 8-base adenylate-uridylate (AU) sequence that binds ζ-crystallin and functions as a pH response element (pH-RE). A tetracycline-responsive promoter system was developed in LLC-PK1-F+ cells to perform pulse-chase analysis of the turnover of a chimeric β-globin (βG) mRNA that contains 960 bp of the 3′-UTR of GA mRNA including the pH-RE. The βG-GA mRNA exhibits a 14-fold increase in half-life when the LLC-PK1-F+ cells are transferred to acidic medium. RNase H cleavage and Northern blot analysis of the 3′-ends established that rapid deadenylation occurred concomitantly with the rapid decay of the βG-GA mRNA in cells grown in normal medium. Stabilization of the βG-GA mRNA in acidic medium is associated with a pronounced decrease in the rate of deadenylation. Mutation of the pH-RE within the βG-GA mRNA blocked the pH-responsive stabilization, but not the rapid decay, whereas insertion of only a 29-bp segment containing the pH-RE was sufficient to produce both a rapid decay and a pH-responsive stabilization. Various kidney cells express multiple isoforms of AUF1, an AU-binding protein that enhances mRNA turnover. RNA gel-shift assays demonstrated that the recombinant p40 isoform of AUF1 binds to the pH-RE with high affinity and specificity. Thus AUF1 may mediate the rapid turnover of the GA mRNA, whereas increased binding of ζ-crystallin during acidosis may inhibit degradation and result in selective stabilization.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Mano, Jun’ichi, Hye-Jin Yoon, Kozi Asada, Elena Babiychuk, Dirk Inzé et Bunzo Mikami. « Crystallization and preliminary X-ray crystallographic analysis of NADPH : azodicarbonyl/quinone oxidoreductase, a plant ζ-crystallin ». Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1480, no 1-2 (juillet 2000) : 374–76. http://dx.doi.org/10.1016/s0167-4838(00)00073-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Huang, Qing-Ling, Xin-Yu Du, Sanford H. Stone, Diana F. Amsbaugh, Manuel Datiles, Tian-Sheng Hu et J. Samuel Zigler. « Association of hereditary cataracts in strain guinea-pigs with mutation of the gene for ζ-crystallin ». Experimental Eye Research 50, no 3 (mars 1990) : 317–25. http://dx.doi.org/10.1016/0014-4835(90)90217-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Tang, Aimin, et Norman P. Curthoys. « Identification of ζ-Crystallin/NADPH:Quinone Reductase as a Renal Glutaminase mRNA pH Response Element-binding Protein ». Journal of Biological Chemistry 276, no 24 (9 avril 2001) : 21375–80. http://dx.doi.org/10.1074/jbc.m101941200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Jörnvall, Hans, Bengt Persson, Garrett C. Du Bois, Gene C. Lavers, John H. Chen, Pedro Gonzalez, P. Vasantha Rao et J. Samuel Zigler. « ζ-Crystallin versus other members of the alcohol dehydrogenase super-family Variability as a functional characteristic ». FEBS Letters 322, no 3 (17 mai 1993) : 240–44. http://dx.doi.org/10.1016/0014-5793(93)81578-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Kim, Min-Young, Hye-Kyung Lee, Jung-Sun Park, Sun-Hwa Park, Hyuk-Bang Kwon et Jaemog Soh. « Identification of a ζ-Crystallin (Quinone Reductase)-like 1 Gene (CRYZL1) Mapped to Human Chromosome 21q22.1 ». Genomics 57, no 1 (avril 1999) : 156–59. http://dx.doi.org/10.1006/geno.1998.5714.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Liu, Xuan, et Kwang-Poo Chang. « Identification by extrachromosomal amplification and overexpression of ζ-crystallin/NADPH-oxidoreductase homologue constitutively expressed in Leishmania spp. » Molecular and Biochemical Parasitology 66, no 2 (août 1994) : 201–10. http://dx.doi.org/10.1016/0166-6851(94)90147-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Goenka, Shradha, et Ch Mohan Rao. « Expression of Recombinant ζ-Crystallin in Escherichia coli with the Help of GroEL/ES and Its Purification ». Protein Expression and Purification 21, no 2 (mars 2001) : 260–67. http://dx.doi.org/10.1006/prep.2000.1359.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Heinzmann, C., T. L. Kojis, P. Gonzalez, P. V. Rao, J. S. Zigler, M. H. Polymeropoulos, I. Klisak, R. S. Sparkes, T. Mohandas et J. B. Bateman. « Assignment of the ζ-Crystallin Gene (CRYZ) to Human Chromosome 1p22-p31 and Identification of Restriction Fragment Length Polymorphisms ». Genomics 23, no 2 (septembre 1994) : 403–7. http://dx.doi.org/10.1006/geno.1994.1516.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lapucci, Andrea, Matteo Lulli, Amedeo Amedei, Laura Papucci, Ewa Witort, Federico Di Gesualdo, Francesco Bertolini et al. « ζ‐Crystallin is a bcl‐2 mRNA binding protein involved in bcl‐2 overexpression in T‐cell acute lymphocytic leukemia ». FASEB Journal 24, no 6 (26 janvier 2010) : 1852–65. http://dx.doi.org/10.1096/fj.09-140459.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Crosas, Eva, Sergio Porté, Agrin Moeini, Jaume Farrés, Josep A. Biosca, Xavier Parés et M. Rosario Fernández. « Novel alkenal/one reductase activity of yeast NADPH:quinone reductase Zta1p. Prospect of the functional role for the ζ-crystallin family ». Chemico-Biological Interactions 191, no 1-3 (mai 2011) : 32–37. http://dx.doi.org/10.1016/j.cbi.2011.01.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Kumagai, Yoshito, Toshihiko Wakayama, Song Li, Azusa Shinohara, Akihiro Iwamatsu, Guifan Sun et Nobuhiro Shimojo. « ζ-Crystallin catalyzes the reductive activation of 2,4,6-trinitrotoluene to generate reactive oxygen species : a proposed mechanism for the induction of cataracts ». FEBS Letters 478, no 3 (31 juillet 2000) : 295–98. http://dx.doi.org/10.1016/s0014-5793(00)01841-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Mano, Jun’ichi, Yoshimitsu Torii, Shun-ichiro Hayashi, Koichi Takimoto, Kenji Matsui, Kaoru Nakamura, Dirk Inzé, Elena Babiychuk, Sergei Kushnir et Kozi Asada. « The NADPH:Quinone Oxidoreductase P1-ζ-crystallin in Arabidopsis Catalyzes the α,β-Hydrogenation of 2-Alkenals : Detoxication of the Lipid Peroxide-Derived Reactive Aldehydes ». Plant and Cell Physiology 43, no 12 (15 décembre 2002) : 1445–55. http://dx.doi.org/10.1093/pcp/pcf187.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Curthoys, Norman P., et Gerhard Gstraunthaler. « Mechanism of increased renal gene expression during metabolic acidosis ». American Journal of Physiology-Renal Physiology 281, no 3 (1 septembre 2001) : F381—F390. http://dx.doi.org/10.1152/ajprenal.2001.281.3.f381.

Texte intégral
Résumé :
Increased renal catabolism of plasma glutamine during metabolic acidosis generates two ammonium ions that are predominantly excreted in the urine. They function as expendable cations that facilitate the excretion of acids. Further catabolism of α-ketoglutarate yields two bicarbonate ions that are transported into the venous blood to partially compensate for the acidosis. In rat kidney, this adaptation is sustained, in part, by the induction of multiple enzymes and various transport systems. The pH-responsive increases in glutaminase (GA) and phospho enolpyruvate carboxykinase (PEPCK) mRNAs are reproduced in LLC-PK1-fructose 1,6-bisphosphatase (FBPase) cells. The increase in GA activity results from stabilization of the GA mRNA. The 3′-untranslated region of the GA mRNA contains a direct repeat of an eight-base AU sequence that functions as a pH-response element. This sequence binds ζ-crystallin/NADPH:quinone reductase with high affinity and specificity. Increased binding of this protein during acidosis may initiate the pH-responsive stabilization of the GA mRNA. In contrast, induction of PEPCK occurs at the transcriptional level. In LLC-PK1-FBPase+ kidney cells, a decrease in intracellular pH leads to activation of the p38 stress-activated protein kinase and subsequent phosphorylation of transcription factor ATF-2. This transcription factor binds to cAMP-response element 1 within the PEPCK promoter and may enhance its transcription during metabolic acidosis.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Crosas, Eva, Lauro Sumoy, Eva González, Maykelis Díaz, Salvador Bartolomé, Jaume Farrés, Xavier Parés, Josep Antoni Biosca et María Rosario Fernández. « The yeast ζ-crystallin/NADPH:quinone oxidoreductase (Zta1p) is under nutritional control by the target of rapamycin pathway and is involved in the regulation of argininosuccinate lyase mRNA half-life ». FEBS Journal 282, no 10 (18 mars 2015) : 1953–64. http://dx.doi.org/10.1111/febs.13246.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Porté, Sergio, Eva Crosas, Evgenia Yakovtseva, Josep A. Biosca, Jaume Farrés, M. Rosario Fernández et Xavier Parés. « MDR quinone oxidoreductases : The human and yeast ζ-crystallins ». Chemico-Biological Interactions 178, no 1-3 (mars 2009) : 288–94. http://dx.doi.org/10.1016/j.cbi.2008.10.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie