Sommaire
Littérature scientifique sur le sujet « Ε-Regularity »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ε-Regularity ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Ε-Regularity"
FOX, JACOB, LÁSZLÓ MIKLÓS LOVÁSZ et YUFEI ZHAO. « On Regularity Lemmas and their Algorithmic Applications ». Combinatorics, Probability and Computing 26, no 4 (28 mars 2017) : 481–505. http://dx.doi.org/10.1017/s0963548317000049.
Texte intégralCONLON, DAVID, JACOB FOX et BENNY SUDAKOV. « Hereditary quasirandomness without regularity ». Mathematical Proceedings of the Cambridge Philosophical Society 164, no 3 (26 janvier 2017) : 385–99. http://dx.doi.org/10.1017/s0305004116001055.
Texte intégralChen, Shibing, et Alessio Figalli. « Boundary ε-regularity in optimal transportation ». Advances in Mathematics 273 (mars 2015) : 540–67. http://dx.doi.org/10.1016/j.aim.2014.12.032.
Texte intégralGerke, Stefanie, Yoshiharu Kohayakawa, Vojtěch Rödl et Angelika Steger. « Small subsets inherit sparse ε-regularity ». Journal of Combinatorial Theory, Series B 97, no 1 (janvier 2007) : 34–56. http://dx.doi.org/10.1016/j.jctb.2006.03.004.
Texte intégralZhang, Yanjun, et Qiaozhen Ma. « Asymptotic Behavior for a Class of Nonclassical Parabolic Equations ». ISRN Applied Mathematics 2013 (1 septembre 2013) : 1–14. http://dx.doi.org/10.1155/2013/204270.
Texte intégralHasselblatt, Boris. « Regularity of the Anosov splitting and of horospheric foliations ». Ergodic Theory and Dynamical Systems 14, no 4 (décembre 1994) : 645–66. http://dx.doi.org/10.1017/s0143385700008105.
Texte intégralHOSSEINI, KAAVE, SHACHAR LOVETT, GUY MOSHKOVITZ et ASAF SHAPIRA. « An improved lower bound for arithmetic regularity ». Mathematical Proceedings of the Cambridge Philosophical Society 161, no 2 (11 mars 2016) : 193–97. http://dx.doi.org/10.1017/s030500411600013x.
Texte intégralChen, Jianyi, Zhitao Zhang, Guijuan Chang et Jing Zhao. « Periodic Solutions to Klein–Gordon Systems with Linear Couplings ». Advanced Nonlinear Studies 21, no 3 (17 juillet 2021) : 633–60. http://dx.doi.org/10.1515/ans-2021-2138.
Texte intégralMiura, Tatsuya, et Felix Otto. « Sharp boundary ε-regularity of optimal transport maps ». Advances in Mathematics 381 (avril 2021) : 107603. http://dx.doi.org/10.1016/j.aim.2021.107603.
Texte intégralHan, Xiaoli, et Jun Sun. « An ε-regularity theorem for the mean curvature flow ». Journal of Geometry and Physics 62, no 12 (décembre 2012) : 2329–36. http://dx.doi.org/10.1016/j.geomphys.2012.07.009.
Texte intégralThèses sur le sujet "Ε-Regularity"
Llerena, Montenegro Henry David. « Sur l'interdépendance des variables dans l'étude de quelques équations de la mécanique des fluides ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM048.
Texte intégralThis thesis is devoted to the study of the relationship between the variables in the micropolar fluids equations. This system, which is based on the Navier-Stokes equations, consists in a coupling of two variables: the velocity field vec{u} and the microrotation field vec{w}. Our aim is to provide a better understanding of how information about one variable influences the behavior of the other. To this end, we have divided this thesis into four chapters, where we will study the local regularity properties of Leray-type weak solutions, and later we will focus on the regularity and uniqueness of weak solutions for the stationary case. The first chapter presents a brief physical derivation of the micropolar equations followed by the construction of the Leray-type weak solutions. In Chapter 2, we begin by proving a gain of integrability for both variables vec{u} and vec{w} whenever the velocity belongs to certain Morrey spaces. This result highlights an effect of domination by the velocity. We then show that this effect can also be observed within the framework of the Caffarelli-Kohn-Nirenberg theory, i.e., under an additional smallness hypothesis only on the gradient of the velocity, we can demonstrate that the solution becomes Hölder continuous. For this, we introduce the notion of a partial suitable solution, which is fundamental in this work and represents one of the main novelties. In the last section of this chapter, we derive similar results in the context of the Serrin criterion. In Chapter 3, we focus on the behavior of the L^3-norm of the velocity vec{u} near possible points where regularity may get lost. More precisely, we establish a blow-up criterion for the L^3 norm of the velocity and we improve this result by presenting a concentration phenomenon. We also verify that the limit point L^infty_t L^3_x of the Serrin criterion remains valid for the micropolar fluids equations. Finally, the problem of existence and uniqueness for the stationary micropolar fluids equations is addressed in Chapter 4. Indeed, we prove the existence of weak solutions (vec{u}, vec{w}) in the natural energy space dot{H}^1(mathbb{R}^3) imes H^1(mathbb{R}^3). Moreover, by using the relationship between the variables, we deduce that these solutions are regular. It is worth noting that the trivial solution may not be unique, and to overcome this difficulty, we develop a Liouville-type theorem. Hence, we demonstrate that by imposing stronger decay at infinity only on vec{u}, we can infer the uniqueness of the trivial solution (vec{u},vec{w})=(0,0)
Reiter, Philipp [Verfasser]. « Repulsive knot energies and pseudodifferential calculus : regorous analysis and regularity theory for O'Hara's knot energy family E(α), α ε (2,3) [E (alpha), alpha epsilon (2,3)] / vorgelegt von Philipp Reiter ». 2009. http://d-nb.info/995661758/34.
Texte intégralActes de conférences sur le sujet "Ε-Regularity"
Zhou, Daqing, et Languo Zhang. « CFD Research on Francis Pump-Turbine Load Rejection Transient Under Pump Condition ». Dans ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64195.
Texte intégralZhang, Yuliang, Zuchao Zhu, Baoling Cui et Yi Li. « Characteristic Study of Pressure Fluctuation in Centrifugal Pump ». Dans ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-06028.
Texte intégralHuang, Xiao-Rui, Zhen Zhang, Xing-Tuan Yang, Sheng-Yao Jiang et Ji-Yuan Tu. « Numerical Investigation on Turbulent Heat Transfer of Supercritical CO2 in a Helically Coiled Tube ». Dans 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81748.
Texte intégral