Literatura académica sobre el tema "Zinc metalloenzyme"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Zinc metalloenzyme".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Zinc metalloenzyme"
Stoecker, Walter, Russell L. Wolz, Robert Zwilling, Daniel J. Strydom y David S. Auld. "Astacus protease, a zinc metalloenzyme". Biochemistry 27, n.º 14 (12 de julio de 1988): 5026–32. http://dx.doi.org/10.1021/bi00414a012.
Texto completoVallee, B. L. "Zinc metalloenzyme structure and function". Journal of Inorganic Biochemistry 36, n.º 3-4 (agosto de 1989): 299. http://dx.doi.org/10.1016/0162-0134(89)84446-0.
Texto completoHaeggström, Jesper Z., Anders Wetterholm, Robert Shapiro, Bert L. Vallee y Bengt Samuelsson. "Leukotriene A4 hydrolase: A zinc metalloenzyme". Biochemical and Biophysical Research Communications 172, n.º 3 (noviembre de 1990): 965–70. http://dx.doi.org/10.1016/0006-291x(90)91540-9.
Texto completoHadianawala, Murtuza y Bhaskar Datta. "Design and development of sulfonylurea derivatives as zinc metalloenzyme modulators". RSC Advances 6, n.º 11 (2016): 8923–29. http://dx.doi.org/10.1039/c5ra27341b.
Texto completoMillian, Norman S. y Timothy A. Garrow. "Human Betaine–Homocysteine Methyltransferase Is a Zinc Metalloenzyme". Archives of Biochemistry and Biophysics 356, n.º 1 (agosto de 1998): 93–98. http://dx.doi.org/10.1006/abbi.1998.0757.
Texto completoGonzález, Julio C., Katrina Peariso, James E. Penner-Hahn y Rowena G. Matthews. "Cobalamin-Independent Methionine Synthase fromEscherichia coli: A Zinc Metalloenzyme†". Biochemistry 35, n.º 38 (enero de 1996): 12228–34. http://dx.doi.org/10.1021/bi9615452.
Texto completoBrothers, Edward N., Dimas Suarez, David W. Deerfield y Kenneth M. Merz. "PM3-compatible zinc parameters optimized for metalloenzyme active sites". Journal of Computational Chemistry 25, n.º 14 (2004): 1677–92. http://dx.doi.org/10.1002/jcc.20086.
Texto completoTanaka, Tomoaki y Eiji Ichishima. "Molecular properties of aminopeptidase ey as a zinc-metalloenzyme". International Journal of Biochemistry 25, n.º 11 (noviembre de 1993): 1681–88. http://dx.doi.org/10.1016/0020-711x(93)90528-m.
Texto completoShapir, Nir, Charlotte Pedersen, Omer Gil, Lisa Strong, Jennifer Seffernick, Michael J. Sadowsky y Lawrence P. Wackett. "TrzN from Arthrobacter aurescens TC1 Is a Zinc Amidohydrolase". Journal of Bacteriology 188, n.º 16 (15 de agosto de 2006): 5859–64. http://dx.doi.org/10.1128/jb.00517-06.
Texto completoÁlvarez-Santos, Silvia, Àngels González-Lafont y José M. Lluch. "Effect of the hydrogen bond network in carbonic anhydrase II zinc binding site. A theoretical study". Canadian Journal of Chemistry 76, n.º 7 (1 de julio de 1998): 1027–32. http://dx.doi.org/10.1139/v98-098.
Texto completoTesis sobre el tema "Zinc metalloenzyme"
Xie, Juan. "Synthèse, étude biologique et pharmacologique de nouveaux inhibiteurs des enzymes de dégradation des enképhalines". Paris 5, 1988. http://www.theses.fr/1988PA05P617.
Texto completoMcMillen, Lyle y l. mcmillen@sct gu edu au. "Isolation and Characterisation of the 5'-Nucleotidase from Escherichia coli". Griffith University. School of Biomolecular and Biomedical Science, 2001. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20030226.153545.
Texto completoMcMillen, Lyle. "Isolation and Characterisation of the 5'-Nucleotidase from Escherichia coli". Thesis, Griffith University, 2001. http://hdl.handle.net/10072/366487.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Biomolecular and Biomedical Sciences
Science, Environment, Engineering and Technology
Full Text
Myers, Andrew Ross. "Cloning, Expression, and Sequence Analysis of Camelysin, a Zinc Metalloprotease from Bacillus anthracis and B. cereus". [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001218.
Texto completoNedonchelle, Elsa. "Les anticorps catalytiques : des outils pour la production et l'étude des anticorps catalytiques semi-synthétiques et auto-immuns". Compiègne, 2000. http://www.theses.fr/2000COMP1320.
Texto completoPatil, Vishal. "Design and synthesis of small molecule inhibitors of zinc metalloenzymes". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45859.
Texto completoSalter, Michael H. "The study of models for zinc(II) metalloenzymes in aqueous solution /". Electronic version (PDF), 2003. http://dl.uncw.edu/etd/2003/salterm/michaelsalter.html.
Texto completoPérez, Olmo Cristina. "Polar tris(pyrazolyl)borates for the modeling of zinc metalloenzymes in aqueous solution". [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975035436.
Texto completoCamberlein, Virgyl. "Target-guided synthesis of metalloenzymes ligands with therapeutic applications". Thesis, Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILS004.
Texto completoTarget-guided synthesis of protein ligands is an innovative strategy to discover bioactive compounds. In particular, the Kinetic Target-Guided Synthesis (KTGS) and the Dynamic Combinatorial Chemistry (DCC) have allowed, in recent years, the discovery of novel ligands for poorly explored therapeutic targets, which has enabled drug-discovery projects. This thesis project aims at using KTGS to discover and optimize ligands for two classes of metalloenzymes, namely endoplasmic reticulum aminopeptidases (ERAPs) and elastase LasB from the bacterium Pseudomonas aeruginosa. ERAPs (1 and 2) are involved in the process of antigen maturation. These enzymes cleave peptide precursors into mature antigenic peptides so that they have an optimal size for their complexation to the major histocompatibility complex of class I and thus initiate or not the adaptive immune response. The expression levels of these proteases as well as single nucleotide polymorphisms have been associated with the development of cancers and autoimmune diseases. Thus, the modulation of these enzymes would allow to fight against pathologies associated with the immune system. P. aeruginosa is a Gram-negative bacterium with remarkable virulence and antimicrobial resistance. Today, antibiotic resistance represents a major public health issue and there is an urgent need for new therapeutics. In order to meet this need, new strategies have emerged such as targeting the virulence of bacteria to "disarm" them. LasB represents a therapeutic target of choice due to its extracellular localization and its physiopathological implications (colonization, invasion, evasion of immune response, biofilm formation, etc.). Although there is a clear unmet medical need in these two therapeutic areas, no modulator of ERAPs or LasB has reached the market. Thus, the use of the KTGS strategy followed by optimization phases allowed us to identify and optimize new families of ligands for these enzymes. These compounds can be considered as promising lead compounds since they present nanomolar affinities for their respective targets, selectivity and toxicity profiles as well as remarkable physicochemical properties
Debela, Mekdes Haile Mariam. "Crystal structures of the human tissue kallikreins 4, 5, 7, 10, characterisation of their substrate specificity and analysis of their various zinc inhibition mechanisms". München Verl. Dr. Hut, 2007. http://d-nb.info/988422395/04.
Texto completoCapítulos de libros sobre el tema "Zinc metalloenzyme"
HaeggstrÖM, J. Z., A. Wetterholm y B. Samuelsson. "Leukotriene A4 Hydrolase: A Zinc Metalloenzyme with Dual Enzymatic Activities". En Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury, 39–42. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3520-1_9.
Texto completoBreksa, Andrew P. y Timothy A. Garrow. "Betaine-Homocysteine S-Methyltransferase is an Abundant Zinc Metalloenzyme in Liver". En Trace Elements in Man and Animals 10, 1013–15. New York, NY: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47466-2_311.
Texto completoKamp, Marc Willem. "Zinc-Dependent Metalloenzymes – Computational Studies". En Encyclopedia of Biophysics, 2795–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_273.
Texto completoJordan, Matthew R., Matias Villarruel Dujovne, Daiana A. Capdevila y David P. Giedroc. "Metal ion homeostasis: Metalloenzyme paralogs in the bacterial adaptative response to zinc restriction". En Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-823144-9.00161-8.
Texto completo"ZINC SITES IN METALLOENZYMES". En Handbook on Metalloproteins, 947–48. CRC Press, 2001. http://dx.doi.org/10.1201/9781482270822-102.
Texto completo"ZINC SITES IN METALLOENZYMES 951". En Handbook on Metalloproteins, 993–1022. CRC Press, 2001. http://dx.doi.org/10.1201/9781482270822-108.
Texto completoBerreau, Lisa M. "Kinetic and mechanistic studies of the reactivity of Zn–OHn (n=1 or 2) species in small molecule analogs of zinc-containing metalloenzymes". En Advances in Physical Organic Chemistry, 79–181. Elsevier, 2006. http://dx.doi.org/10.1016/s0065-3160(06)41002-9.
Texto completoInformes sobre el tema "Zinc metalloenzyme"
Balch, William. Purification and characterization of dihydroorotase from Clostridium oroticum, a zinc-containing metalloenzyme. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.1687.
Texto completo