Literatura académica sobre el tema "Zero latency"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Zero latency".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Zero latency"
Bell, Simon y Steve Walker. "Futurescaping Infinite Bandwidth, Zero Latency". Futures 43, n.º 5 (junio de 2011): 525–39. http://dx.doi.org/10.1016/j.futures.2011.01.011.
Texto completoOostvogels, Jonathan, Fan Yang, Sam Michiels, Wouter Joosen y Danny Hughes. "Zero-Wire". GetMobile: Mobile Computing and Communications 25, n.º 1 (15 de junio de 2021): 34–38. http://dx.doi.org/10.1145/3471440.3471450.
Texto completoNikitha, Nikitha Nikitha. "Future Tech 5g Virtual Zero Latency". International Journal of Informatics and Communication Technology (IJ-ICT) 5, n.º 3 (1 de diciembre de 2016): 106. http://dx.doi.org/10.11591/ijict.v5i3.pp106-110.
Texto completoJack, Robert H., Adib Mehrabi, Tony Stockman y Andrew McPherson. "Action-sound Latency and the Perceived Quality of Digital Musical Instruments". Music Perception 36, n.º 1 (1 de septiembre de 2018): 109–28. http://dx.doi.org/10.1525/mp.2018.36.1.109.
Texto completoWu, Bo-Sheng, Chen-Chiung Hsieh y Yu-Wei Chen. "Zero-latency scheduling scheme for broadcasting popular movies". IEEE Transactions on Consumer Electronics 56, n.º 4 (noviembre de 2010): 2317–23. http://dx.doi.org/10.1109/tce.2010.5681106.
Texto completoSaad-Roy, Chadi M., Ned S. Wingreen, Simon A. Levin y Bryan T. Grenfell. "Dynamics in a simple evolutionary-epidemiological model for the evolution of an initial asymptomatic infection stage". Proceedings of the National Academy of Sciences 117, n.º 21 (8 de mayo de 2020): 11541–50. http://dx.doi.org/10.1073/pnas.1920761117.
Texto completoKavanagh, Kevin T. y Renaee Franks. "Analog and Digital Filtering of the Brain Stem Auditory Evoked Response". Annals of Otology, Rhinology & Laryngology 98, n.º 7 (julio de 1989): 508–14. http://dx.doi.org/10.1177/000348948909800704.
Texto completoWu, Ben, Yang Qi, Chenxi Qiu y Ying Tang. "Wideband Anti-Jamming Based on Free Space Optical Communication and Photonic Signal Processing". Sensors 21, n.º 4 (6 de febrero de 2021): 1136. http://dx.doi.org/10.3390/s21041136.
Texto completoKim, Sunghwan, Gyusun Lee, Jiwon Woo y Jinkyu Jeong. "Zero-Copying I/O Stack for Low-Latency SSDs". IEEE Computer Architecture Letters 20, n.º 1 (1 de enero de 2021): 50–53. http://dx.doi.org/10.1109/lca.2021.3064876.
Texto completoCai, Songfu y Vincent K. N. Lau. "Zero MAC Latency Sensor Networking for Cyber-Physical Systems". IEEE Transactions on Signal Processing 66, n.º 14 (15 de julio de 2018): 3814–23. http://dx.doi.org/10.1109/tsp.2018.2831623.
Texto completoTesis sobre el tema "Zero latency"
Kanj, Hind. "Zero-Latency strategies for video transmission using frame extrapolation". Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. https://ged.uphf.fr/nuxeo/site/esupversions/53e0c0d3-296e-477f-9adc-2dbc315128f5.
Texto completoThe demand for seamless, high-quality video content delivery with minimal latency is paramount in today's applications such as sports broadcasting, videoconferencing, and remote system control. However, video delivery still faces challenges due to unpredictable nature of communication channels. The variations in channel characteristics can impact the quality of experience in terms of content quality and End-To-End latency - the time elapsed between video acquisition at the transmitter and its display at the receiver.The aim of this thesis is to address the issue of real time applications with unicast transmission from server to client such as remote control applications, while maintaining a good quality. We test the effectiveness of a recent deep learning technique for latency compensation in the video transmission scheme and its impact on video quality. This technique predicts future frames using available previous frames, allowing the end-user to display the images at the desired time. The results demonstrate the promise of extrapolation, especially for content with low temporal information. However, it still needs to be improved in terms of quality, long-term prediction, and extrapolation delay.Various studies focus on the integration of a hybrid digital-analog scheme to improve the perceptual quality, taking advantage of the strengths of both digital and analog methods. We study the effectiveness of low-latency hybrid scheme in term of reducing latency while maintaining high video quality. The results show that the hybrid scheme improves the quality of the received video in most cases. However, the extrapolation artifacts outweigh encoding artifacts and mask the advantages of hybrid schemes. Thus, the improvement in hybrid scheme performance relies on the enhancement of extrapolation.Moreover, HTTP Adaptive Streaming methods have proven their effectiveness in improving the quality of experience by dynamically adjusting the encoding rate based on channel conditions. However, most of these adaptation algorithms are implemented at the client level, which poses challenges in meeting latency requirements for real time applications. In addition, in real time application, videos are acquired, compressed, and transmitted from the device acting as the server. Therefore, client-driven rate adaptation approaches are not suitable due to the variability of the channel characteristics. Moreover, in these methods, the decision-making is done with a periodicity of the order of a second, which is not reactive enough when the server is moving, leading to significant delays. Therefore, it is important to use a finer adaptation granularity in order to reduce the End-To-End delay. We aim to control the End-To-End latency during video delivery while ensuring a high quality of experience. A frame-level encoder rate control at the transmitter side is combined with a frame extrapolation at the receiver side to compensate the End-To-End delays. Frame-level rate control enables the system to adapt to sudden variations of channel characteristics. Null apparent End-To-End delay can be reached at the price of some signal quality. To the best of our knowledge, state-of-the-art algorithms try to optimize the individual sources of delay in the video delivery scheme, but not to reduce the whole End-To-End latency and achieve zero latency. A model predictive control approach involving the buffer level at the transmitter and the throughput estimation is used to find the optimal value of encoding rate for each frame. It dynamically adjusts the trade-off between the encoding rate and the extrapolation horizon at the receiver, while predicting the impact of the encoding rate decision on future frames, thus providing the best quality of experience
Wang, Qian. "Zero-shot visual recognition via latent embedding learning". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/zeroshot-visual-recognition-via-latent-embedding-learning(bec510af-6a53-4114-9407-75212e1a08e1).html.
Texto completoKadel, Rajendra. "A Latent Mixture Approach to Modeling Zero-Inflated Bivariate Ordinal Data". Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4701.
Texto completoEconomou, Theodoros. "Bayesian modelling of recurrent pipe failures in urban water systems using non-homogeneous Poisson processes with latent structure". Thesis, University of Exeter, 2010. http://hdl.handle.net/10036/111499.
Texto completoArrabal, Claude Thiago. "Estimação clássica e bayesiana para relação espécieárea com distribuições truncadas no zero". Universidade Federal de São Carlos, 2012. https://repositorio.ufscar.br/handle/ufscar/4562.
Texto completoFinanciadora de Estudos e Projetos
In ecology, understanding the species-area relationship (SARs) are extremely important to determine species diversity. SARs are fundamental to assess the impact due to the destruction of natural habitats, creation of biodiversity maps, to determine the minimum area to preserve. In this study, the number of species is observed in different area sizes. These studies are referred in the literature through nonlinear models without assuming any distribution for the data. In this situation, it only makes sense to consider areas in which the counts of species are greater than zero. As the dependent variable is a count data, we assume that this variable comes from a known distribution for discrete data positive. In this paper, we used the zero truncated Poisson distribution (ZTP) and zero truncated Negative Binomial (ZTNB) to represent the probability distribution of the random variable species diversity number. To describe the relationship between species diversity and habitat, we consider nonlinear models with asymptotic behavior: Exponencial Negativo, Weibull, Logístico, Chapman-Richards, Gompertz e Beta. In this paper, we take a Bayesian approach to fit models. With the purpose of obtain the conditional distributions, we propose the use of latent variables to implement the Gibbs sampler. Introducing a comparative study through simulated data and will consider an application to a real data set.
Em ecologia, a compreensão da relação espécie-área (SARs) é de extrema importância para a determinação da diversidade de espécies e avaliar o impacto devido à destruição de habitats naturais. Neste estudo, observa-se o número de espécies em diferentes tamanhos de área. Estes estudos são abordados na literatura através de modelos não lineares sem assumir alguma distribuição para os dados. Nesta situação, só faz sentido considerar áreas nas quais as contagens das espécies são maiores do que zero. Como a variável dependente é um dado de contagem, assumiremos que esta variável provém de alguma distribuição conhecida para dados discretos positivos. Neste trabalho, utilizamos as distribuições de Poisson zero-truncada (PZT) e Binomial Negativa zero-truncada (BNZT) para representar a distribuição do número de espécies. Para descrever a relação espécie-área, consideramos os modelos não lineares com comportamento assintótico: Exponencial Negativo, Weibull, Logístico, Chapman-Richards, Gompertz e Beta. Neste trabalho os modelos foram ajustados através do método de verossimilhança, sendo proposto uma abordagem Bayesiana com a utilização de variáveis latentes auxiliares para a implementação do Amostrador de Gibbs.
Lin, Yi-Sheng y 林易生. "Zero-Latency Cluster-Error Correction and Reliability Analyses for TSVs in 3D ICs". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/77334474475211950617.
Texto completo國立彰化師範大學
電子工程學系
104
In order to extend Moore's Law, three-dimensional stacked integrated circuits (3D-IC) has been seen as a new solution. However, the yield of 3D-IC base on through silicon via(TSV) is still now high. Therefore, TSVs testing and repair methods has become an important issue. Although many of TSVs repair methods have been proposed, but little mention of the symptoms of aging on TSVs soft error monitoring and repair methods. In this paper, we propose an ECC algorithms to deal with the cluster error occurred in TSVs channel. Experiments show that the proposed method can effectively improve about 103 times of MTBR, and 2DPC decoder can correct errors in the 1.72 ns. Comparing with the previous work the proposed method can correct four times of cluster errors in the same size of TSVs array. Keywords : TSVs、Cluster-error、ECC、Aging monitor.
(8844806), David Okposio. "NET ZERO DESICCANT ASSISTED EVAPORATIVE COOLING FOR DATA CENTERS". Thesis, 2020.
Buscar texto completoEvaporative cooling is a highly energy efficient alternative to conventional vapor compression cooling system. The sensible cooling effect of evaporative cooling systems is well documented in the literature. Direct evaporative cooling however increases the relative humidity of the air as it cools it. This has made it unsuitable for data centers and other applications where humidity control is important. Desiccant-based dehumidifiers (liquid, solid or composites) absorb moisture from the cooled air to control humidity and is regenerated using waste heat from the data center. This work is an experimental and theoretical investigation of the use of desiccant assisted evaporative cooling for data center cooling according to ASHRAE thermal guidelines, TC 9.9. The thickness (depth) of the cooling pad was varied to study its effect on sensible heat loss and latent heat gain. The velocity of air through the pad was measured to determine its effect on sensible cooling. The flow rate of water over the pad was also varied to find the optimal flow for rate for dry bulb depression. The configuration was such that the rotary desiccant wheel (impregnated with silica gel) comes after the direct evaporative cooler. The rotary desiccant wheel was split in a 1:1 ratio for cooling and reactivation at lower temperatures. The dehumidification effectiveness of a fixed bed desiccant dehumidifier was compared with that of a rotary desiccant wheel and a thermoelectric dehumidifier. A novel condensate recovery system using the Peltier effect was proposed to recover moisture from the return air stream, (by cooling the return air stream below its dew point temperature) thereby optimizing the water consumption of evaporative cooling technology and providing suitable air quality for data center cooling. The moisture recovery unit was found to reduce the mass of water lost through evaporation by an average of fifty percent irrespective of the pad depth.
Koemle, Dieter. "The impact of agri-environmental policy and infrastructure on wildlife and land prices". Doctoral thesis, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E538-E.
Texto completoLibros sobre el tema "Zero latency"
Zero Latency Leadership: Driving Equity, Trust, and Sustainability with Emerging Tech. Forbes Books, 2023.
Buscar texto completoCapítulos de libros sobre el tema "Zero latency"
Iafrate, Fernando. "Zero Latency Organization". En From Big Data to Smart Data, 21–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119116189.ch3.
Texto completoAttig, Christiane, Nadine Rauh, Thomas Franke y Josef F. Krems. "System Latency Guidelines Then and Now – Is Zero Latency Really Considered Necessary?" En Engineering Psychology and Cognitive Ergonomics: Cognition and Design, 3–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58475-1_1.
Texto completoGorawski, Marcin, Damian Lis y Anna Gorawska. "CUDA-Powered CTBE Algorithm for Zero-Latency Data Warehouse". En Communications in Computer and Information Science, 358–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23201-0_37.
Texto completoGorawski, Marcin, Damian Lis y Anna Gorawska. "Zero–Latency Data Warehouse System Based on Parallel Processing and Cache Module". En Intelligent Data Engineering and Automated Learning – IDEAL 2014, 465–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10840-7_56.
Texto completoGorawski, Marcin, Damian Lis y Michal Gorawski. "The Use of a Cloud Computing and the CUDA Architecture in Zero-Latency Data Warehouses". En Computer Networks, 312–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38865-1_32.
Texto completoIafrate, Fernando. "Use Case: Business Intelligence “New Generation” for a “Zero Latency” Organization (When Decisional and Operational BI Are Fully Embedded)". En Advances in Intelligent Systems and Computing, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37317-6_1.
Texto completoCrainiceanu, Ciprian M. "Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models". En Random Effect and Latent Variable Model Selection, 3–17. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76721-5_1.
Texto completoNarayan, Sanath, Akshita Gupta, Fahad Shahbaz Khan, Cees G. M. Snoek y Ling Shao. "Latent Embedding Feedback and Discriminative Features for Zero-Shot Classification". En Computer Vision – ECCV 2020, 479–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58542-6_29.
Texto completoQian, Yijun, Lijun Yu, Wenhe Liu y Alexander G. Hauptmann. "Rethinking Zero-shot Action Recognition: Learning from Latent Atomic Actions". En Lecture Notes in Computer Science, 104–20. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19772-7_7.
Texto completoWu, Tongtong, Meng Wang, Huan Gao, Guilin Qi y Weizhuo Li. "Zero-Shot Slot Filling via Latent Question Representation and Reading Comprehension". En PRICAI 2019: Trends in Artificial Intelligence, 123–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29894-4_10.
Texto completoActas de conferencias sobre el tema "Zero latency"
Pratap, Jayanth, Siyeop Yoon, Wen-Chih Liu, Quanzheng Li, Abhiram Bhashyam, Neal Chen y Xiang Li. "Zero-Shot Novel View Synthesis of Wrist X-Rays Using Latent Diffusion Model". En 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635244.
Texto completoXia, Haijun, Ricardo Jota, Benjamin McCanny, Zhe Yu, Clifton Forlines, Karan Singh y Daniel Wigdor. "Zero-latency tapping". En UIST '14: The 27th Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2642918.2647348.
Texto completoTrivisonno, R., R. Guerzoni, I. Vaishnavi y D. Soldani. "Towards zero latency Software Defined 5G Networks". En 2015 ICC - 2015 IEEE International Conference on Communications Workshops (ICC). IEEE, 2015. http://dx.doi.org/10.1109/iccw.2015.7247564.
Texto completoEngelberg, Shlomo y Osnat Keren. "Zero-latency zero-error codes for parallel asynchronous channels with arbitrary skews". En 2015 IEEE Information Theory Workshop (ITW). IEEE, 2015. http://dx.doi.org/10.1109/itw.2015.7133092.
Texto completoPalovuori, Karri y Ismo Rakkolainen. "Ballistic Tracking - A True Zero Latency Gaming Interface". En International Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2523429.2523441.
Texto completoVijayaratnam, Melan, Marco Cagnazzo, Giuseppe Valenzise, Anthony Trioux y Michel Kieffer. "Towards Zero-Latency Video Transmission Through Frame Extrapolation". En 2022 IEEE International Conference on Image Processing (ICIP). IEEE, 2022. http://dx.doi.org/10.1109/icip46576.2022.9897958.
Texto completoMolavianJazi, Ebrahim y Aylin Yener. "Low-Latency Communications over Zero-Battery Energy Harvesting Channels". En GLOBECOM 2015 - 2015 IEEE Global Communications Conference. IEEE, 2014. http://dx.doi.org/10.1109/glocom.2014.7417604.
Texto completoAustin, T. M. y G. S. Sohi. "Zero-cycle loads: microarchitecture support for reducing load latency". En Proceedings of MICRO'95: 28th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 1995. http://dx.doi.org/10.1109/micro.1995.476815.
Texto completoKim, Byoung Chul y In Suk Chun. "Zero Latency Queuing System Based on Deficit Round Robin". En 2007 16th International Conference on Computer Communications and Networks. IEEE, 2007. http://dx.doi.org/10.1109/icccn.2007.4317841.
Texto completoMolavianJazi, Ebrahim y Aylin Yener. "Low-Latency Communications over Zero-Battery Energy Harvesting Channels". En GLOBECOM 2015 - 2015 IEEE Global Communications Conference. IEEE, 2015. http://dx.doi.org/10.1109/glocom.2015.7417604.
Texto completoInformes sobre el tema "Zero latency"
Anderson, James y Penglong Zhang. Latent Exports: Almost Ideal Gravity and Zeros. Cambridge, MA: National Bureau of Economic Research, diciembre de 2020. http://dx.doi.org/10.3386/w28278.
Texto completoWillits, Daniel H., Meir Teitel, Josef Tanny, Mary M. Peet, Shabtai Cohen y Eli Matan. Comparing the performance of naturally ventilated and fan-ventilated greenhouses. United States Department of Agriculture, marzo de 2006. http://dx.doi.org/10.32747/2006.7586542.bard.
Texto completo